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Abstract 
The influence of low-frequency sonolysis on the kinetics bimolecular liq-
uid-phase reactions was studied with due regard for the association (dimers 
and trimers) of starting reagents. The mathematical modeling of chemical 
reactions that were described by nonlinear differential equations is per-
formed. The steady states, the singular points characteristics, the nature of 
concentration oscillations in the reaction system are described. With increas-
ing frequency and amplitude of low-frequency sonic waves (up to some criti-
cal value), we observed the cessation of the reaction. This observation offers 
an additional tool for controlling reaction rate by the external action of 
low-frequency vibrations. The conclusions of the work are obtained under 
certain assumptions. The exact determination of the critical conditions for 
changes in dynamics is beyond the scope of the problem.  
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1. Introduction 

When studying the kinetics of liquid-phase reactions, the dependence of the rate 
constants on the concentration of the reagent, the extreme nature of the Arrhe-
nius dependence of the rate constant on temperature were found [1] [2]. These 
kinetic anomalies are not described by the kinetics of a homogeneous medium. 
The character of these anomalies is most strictly explained by the concept of the 
structural organization of the liquid during the formation of associates due to 
intermolecular interactions [2] [3] [4]. Theoretical and experimental data show 
that the association of molecules affects the reactivity of the molecules that form 
the associates [3] [4] [5] [6]. 
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The associative structure of a liquid reaction system opens up new possibilities 
for controlling the kinetics of reactions by various kinds of external influences. 
Although many works are devoted to the mechanical effect on liquid-phase reac-
tions, they usually study the phenomenological aspects of the effect of high-freq- 
uency acoustic fields on the reaction system [7] [8]. 

Data on the effect of the association of reagents on the kinetics of reactions are 
still ignored in the literature, and the theory of phenomena induced by periodic 
mechanical action, taking into account the supramolecular structure of the reac-
tion medium, is being developed relatively recently. 

Previously, we have proposed [2] [3] [4] that some anomalies in the kinetics of 
bimolecular liquid-phase reactions can be explained by the formation of the as-
sociates of starting reagents. Earlier, the effect of sonolysis on the reaction kinet-
ics in liquids was explored mostly for high-frequency acoustic waves [7] [8]. 
Meanwhile, noticeable chemical effects were also reported for low-frequency (10 
- 100 Hz) acoustic waves [9] [10] [11]. Deeper insight into the mechanism of this 
phenomenon can be reached via mathematical modeling of such reactions [12] 
[13]. The review aims at discussing possible approaches to regulate the kinetics 
of chemical reactions under the action low-frequency external action.  

2. Mathematical Model 

In this work, we modeled the influence of low-frequency sonolysis on the stabil-
ity of intermediates in the А + В → С reactions in associated liquids [2], by using 
the reaction of alcohol A and isocyanate B yielding urethane С as an example [1] 
with the formation of associates of reactant A, namely, dimer A2 and trimer A3. 

The association of the reactants even a formally one stage bimolecular reac-
tion turns into a multistage process: 

( )2 1 1A A A ,k k−+ ↔                         (1) 

( )2 3 2 2A A A ,k k−+ ↔                        (2) 

( )2 3 3 3A A A 2A k+ + →                       (3) 

( )2 4 4В B B ,k k−+ ↔                         (4) 

( )2 3 5B A С B 2A k+ → + + .                     (5) 

Here, [A], [A2] and [A3] are the concentrations of monomer, dimer and tri-
mer forms of alcoyol, respectively, [B] is the concentration of isocyanate, ki and 
k–i are the rate constants for the forward (i) and reverse (–i) reactions, respec-
tively. 

The kinetic equations for the intermediates of the system under consideration 
have the form:  
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According to the ideas of A. Tobolsky and G. Eyring, associates are fragile 
formations that are easily destroyed by a mechanical field [14]. 

The external action with ω = 2πv generates tensile stress σ that affects reaction 
rate constant 

( ) ( )0 exp  i i iik k E RTω γ σ− −−
 = − +  , 

where γi is a structure-sensitive coefficient and ( )0 sinР tσ ω= . Under steady-state 
conditions, the concentration of dimer B2 and intermediates is described by the 
following system of parametric equations:  

( ) ( )1 1 2 2d d exp sin exp sinx t a x P t a x by P t uxyµ γ ω γ ω= − − + −        

( ) ( ) 1
2d d exp siny t ax by P t uxy my g yγ ω −= − + − +   ,         (7) 

where x = [A2], y = [A3], μ = k1 [A]2, a1 = k−1, a2 = k2 [A], b = k−2, u = k3 [A], m = 
k4 [B]2, 1

4 5g k k −
−= .  

We also assume that a change in k (ν) during compression can be neglected in 
view of low compressibility of liquids. Moreover, the associates can be formed in 
case of some favorable mutual disposition of the reagents, which is infringed due 
to diffusion and formation of voids under the action of tension strain. With in-
creasing separation between the reactive species, the reaction may transfer to a 
mode of diffusion control. Slow association at the stage of compression is known 
in the literature [5].  

In order to escape cumbersome calculations, we solved the problem for a situ-
ation when [A] = [B] = const, In this case, the expression for rate w for forma-
tion of product С can be represented [3] [4] as:  

[ ] [ ] [ ]{ } ( )12 1
4 5 3 4 5 3B A Aw k k k k my g y

− −
−= + = + .           (8) 

Accordingly, the expression for effective rate constant (keff) acquires the form:  

[ ]{ } [ ][ ] [ ]1 1
eff 4 5 4 5 3 3A A A Bk k k k k

− −
−= + . 

It follows that the dependence of w on ω manifests itself in an inexplicit way.  
Equations (7) describes the dynamic behavior of a system with two degrees of 

freedom. The following situations are possible in terms of the concentrations of 
intermediates A2 and A3: the absence of a steady-state solution, the existence of 
only one steady state, and, finally, the existence of two steady states. Solving sys-
tem of Equations (7) makes it possible to obtain the kinetic concentration de-
pendence for x (t) and y (t) and to study the process of reaching a stationary 
(equilibrium) mode.  

Let us introduce the following notation: 

( )
( )

d d ,

d d ,

x t x y

y t x y

= Φ

= Ψ
.                       (9) 

Under the condition that ( ) ( ), , 0x y x yΦ = Ψ = , let us find a singular point 
(an equilibrium point) (x0, y0) in the x, y phase plane from the equation 

( ) ( )d ,d ,y t x xy yΨ= Φ ,                   (10) 
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and consider changes in the integral curves x(t) and y(t) as a motion along the 
phase plane. In this case, the problem of finding the properties of the singular 
points reduced to studying the stability of the motion at the point (x0, y0) using a 
known technique [1] [15]. 

For this purpose, consider Equation (9) with respect to the variables (ξ, η) by 
representing the variables x and y in the following forms: 

0

0

x x
y y

η
ξ

= +

= +
.                            (11) 

By substituting Equations (11) into Equations (9) and expanding the functions 
Φ (x, y) and Ψ (x, y) into series, we obtain, in the first order of smallness, a li-
nearized system: 

d d

d d
x y

x y

t

t

η η ξ

ξ η ξ

= Φ +Φ

= Ψ +Ψ
,                       (12) 

in which , , ,x y x yΦ Φ Ψ Ψ  are values of the partial derivatives of the functions Φ 
(x, y) and Ψ (x, y) by x and y, respectively, at the singular point (x0, y0). The be-
havior of the solutions of system Equations (12) near the considered singular 
point is determined by the properties of the system of linear differential equa-
tions with constant coefficients.  

The standard solution (12) can be represented as a superposition of exponen-
tials: 

1 2e et t
x y

δ δη = Φ +Φ , 

1 2e et t
x y

δ δξ = Ψ +Ψ , 

where δi (i = 1, 2) are the roots of the characteristic equation 
2 0p qδ δ+ + = ,                       (13) 

in which x yp = Φ +Ψ , x y y xq = Φ Ψ +Φ Ψ  and. In this case, the stability of the 
steady-state solution is determined by the coefficients p and q of Equations (13). 

3. Results and Discussion 

The problem was numerically solved for the case [A] = [B] = const (open sys-
tem) by varying all the parameters of the system of Equations (7). Calculation 
below was carried out for model systems with the following parameters: [A2]0 = 
x (0) =1.8 M, and [A3]0 = y (0) = 0.23 M, μ = 35 M∙s−1 and m = 200 M∙s−1. 

For the case without external action (γ1 = γ2 = 0) the phase portrait of the sys-
tem was determined by solving equation (10) and the linearized system of Equa-
tions (12) and (13). On the phase plane, the integral curves x (t) and y (t) 
(Figure 1) have the form of concentric circles emerging from a singular point at 
х0 = 2.51081 and у0 = 0.33924, which is a stable center. 

The concentrations x (t) and y (t) were calculated with the same parameters 
from the system of Equation (7). Unusual oscillations are observed in the system 
the maximum of the amplitudes changes harmonically (as is typical for a stable 
central mode) with a rather long oscillation period (Figure 2). However,  
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Figure 1. Phase portrait of y = [А3] in neighborhood of singular point. 

 

 
Figure 2. Dependence of concentrations y = [А3] on time t at P = 0. 

 
within each individual period of harmonic oscillations, there is a fine structure 
that is formed by oscillations with a smaller period. 

The concentrations x (t) and y (t) were calculated from (7) for different am-
plitudes P and frequencies ω and exhibited similar behavior. Essential change in 
the structure of oscillations happens at ω0 = 0.4 s−1 and for P > 2. With increas-
ing ω, functions x (t) and y (t) acquire rather complicate profiles (Figure 3) or 
exceedingly large spread (Figure 4), which can be explained by the presence [A3] 
and high formation rate for associates B2. Increase in ω leads to the formation of 
unstable focuses.  

For [A] = [B] = const, we obtained the kinetics of change in the concentra-
tions of associates А2 and А3 as a function of amplitude Pand frequency ω at 
starting stable-node stability. Two critical ω values were found to occur. For low 
P and ω, we observed oscillations in the concentration of the associates without 
change in the type of equilibrium. An increase in P and/or ω results in hybrid 
oscillations. For low ω, Pmin is close to zero. With increasing, we come to a 
second critical phenomenon: bifurcation of the system state. At the bifurcation 
point, the oscillations are insignificant but, with increasing ω, two kinds of har-
monic oscillations with close periods but different amplitudes and concomitant 
pulsations come into being (see Figure 3). 
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Figure 3. Dependence of concentrations y = [А3] on time t at P = 3. 

 

 
Figure 4. Dependence of concentrations y = [А3] on time t at P = 4. 

 
A reasonable question arises on the applicability of the results obtained for 

open systems to the closed ones which are most frequent in experimental. 
Strictly speaking, reagent concentrations in closed systems remain unsteady 
only during a certain period of reaction during which the concentrations of 
intermediates may be considered as quasi-stationary. It has been shown expe-
rimentally that the dissipation structures can also form in closed systems as well 
[14]. 

4. Conclusions 

As far as we know, this work made almost the first attempt to generalize data on 
the kinetics of a complex process in a liquid medium during the association of 
reagents. 

The above results suggest that sonolysis can be used as an additional tool for 
controlling the liquid-phase reactions involving the associates of starting rea-
gents. The development of ideas about the structural organization of reagents in 
the liquid phase, about its effect on chemical reactions, about changes in the 
structural organization of reagents due to external influences of a different na-
ture, allows a new approach to solve applied problems of chemistry, biochemi-
stry, and medicine. 
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