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In this paper, we present a new method for solving a class of high-order quasi
exactly solvable ordinary differential equations. With this method, the com-
puted solution is expressed as a linear combination of the canonical polyno-
mials associated with the given differential operator. An iterative algorithm
summarizing the procedure is presented and its efficiency is demonstrated
through considering two applied problems.
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1. Introduction

Let us consider the ordinary differential operator D of order v >2,

(D))= 3 A, (022

i=0

(1)

where {Ai (X);i = 0,1,---,\/} isasetof v+1 polynomials,
deg [Ai (X)] =i+p forall i=0,1---,v, where pis a prescribed nonnegative in-
teger called the height of D, with

I+

A (X)::

a=]

AX), =01

0

(2)

This paper is concerned with the solution of the following problem: Given

n .
n>0 and p=0, construct two polynomials, y(x) = Z y]-XJ of degree n and
=0

P :
/?,(X) = Z/ljx’ of degree p such that the pair {y(X),/l(X)} satisfies the follow-

i=0
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ing ordinary differential equation exactly
(By)(x)=2(x)y(x)- (3)

When v =2, Equation (3) is called quasi exactly solvable (QES). This class of
QES problems has applications in various fields of engineering, chemistry and
quantum mechanics. Many different techniques to solve QES equations are re-
ported in the literature: Among these are the Functional Ansatz Method, Con-
straint polynomial approach, asymptotic iteration method and Lie algebraic
method (see [1]-[7]). The case v =2 was also discussed very recently in [8],
where the authors developed a new approach based on a special set of polyno-
mials associated with the differential operator D called canonical polynomials.
The main objective of this paper is to extend that canonical polynomials ap-
proach to solve equations of the form (3) with arbitrary order v >2. More pre-
cisely, we present a procedure to construct a pair of polynomials based on the
canonical polynomial associated with D. While the existing method for solving
QES requires the solution of a nonlinear algebraic system with dimensions de-
pending on the desired degree of y; the canonical polynomial approach presented
in [8] requires a nonlinear algebraic system of dimensions depending on p only.
This advantage is due to the fact that the sequence of canonical polynomials en-
joys the permanence characteristic [9].

The canonical polynomials (to be explained shortly) appeared for the first
time in [10] wherein Lanczos developed an efficient method, called the Tau me-
thod, to approximate the exact solution of differential equations in terms of a fi-
nite number of canonical polynomials. Later on, the concept of the canonical
polynomial was generalized in [11] to develop a recursive approach of the Tau
method that can apply to more complex differential equations. And it was due to
the computational efficiency of the canonical polynomials that makes the Tau
method more competitive compared to other existing approximation methods
(more details can be found in [12]-[17]).

Section 2 will concentrate on the construction of the canonical polynomials
associated with the v th differential operator (1) and on their computation. In
Section 3 we present an algorithm that allows to obtain the pair of polynomials
{y(x),ﬂ(x)} in an effective way. Two examples confirming our results are

discussed in Section 4.

2. The Canonical Polynomials

Let D be the differential operator defined in (1). In this section we recall the
main features of the canonical polynomials associated with D (see [11]), and we

give an algorithm for computing them. First rewrite (3):

(Dy)(x)—ﬂ(x)y(x){iAi(x)‘”—yj+<Ao<x>—a<x))y<x>=o

i-1 dx’

That is
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(0y)(x):= $A (0 -0

i=0 dx

where AZ(X)::AO(X)—A(X) and A:(X):Ai(x),izl,Z,---,v. So, for the

sake of simplicity, we shall hide the asterisk "™*" and carry out the analysis for

(Dy)(x):= 2A<>‘”=o @)

keeping in mind that A;(X) involves the unknown coefficients of A(Xx).
Definition 1. For any integer k>0, Q, (X) is called a kth canonical func-
tion of D if DQ, = x*.

The following notation will enable us to formulate the next theorem:

!
) K ks
AY =A5, where 5, =1 (k-r)! (5)
0 if 0<k<r
ol =Y Y, and g =AY, (6)
i=0 i=j

Theorem 1. Under the above assumptions and notation, the canonical func-
tions associated with the diftferential operator (4) are formally generated by the

recursion:
* 1 pl
Qk+p:W Za Qk+] Zﬂ] ij ’ k= 012 (7)
p i=0

provided agk) #0.
In particular, if p=0 and aék) #0, then
« 1

Q =W|:Xk _Zﬁj(k)Q;_j}, k=012,
a i1

0

Proof For k=0,1,2,---

Dx =ZOLZ§ Ar,»X‘}k(k—1)(k—2)~--(k—r+1)x"'

) ;){rji; AJXj}(k —-r)! = ZV:ri)(Ari(skr)xM*r

r=0j=0
ko A yior ok e[ <
=X ArjX =X z Al+j X+Z ZAI]
r=0j=0 j=0\i= j=1\li=]
3 PONS +iﬂ§k)xk—j = oIy +pz_:agk)xk+j +iﬂj(k)xk—1
=0 =L =0 =

p-1 v
(K)xke 4 ;)ag” DQ;.; + ;ﬂ}”DQk_j.
1= 1=
Since Dis linear, the latter yields:

p-1 v
D{Xk EDICIRCNED I/l } = ap X, (®)
j=0 j=1

DOI: 10.4236/ajcm.2019.94018 236 American Journal of Computational Mathematics


https://doi.org/10.4236/ajcm.2019.94018

T. H. Alzanki et al.

p-1 v
If at)k) =0,then x“- > agk)Q:+j - Zﬁgk)Q:,j is an exact solution.

j=0 =1
If ag() # 0, then we obtain the desired formula for {Q; } :
* 1 K pt K) ~* 4 K) ~*
Qcip :W{X —ZO!E )Qk+j _Zﬁj( )Qk—j .
ap j=0 j=1

In particular, if p=0 then

j=1

=alx +3 pYDQ_;.
j=1

If aék) =0, then X* —Zﬁ}k)Q:_J— is an exact solution.
=1

If aék) #0, then
« 1 L)
R :W{Xk -5 )Qk_,}-
o -1
This completes the proof.

For illustration, when Kk =0, Equation (7) gives:

* 1 -1 0) ~* v 0 * 1 Rt 0) ~*
Q, =5 il-2a’Q - X A7Q; = il- 2 a"Q -
OCp j=0 j=1 OCp j=0

When k=1,
_— 1 Pl ) A* Y V) ~*
Qpu =~ X~ 2L Q=2 57Q
p j =

*

p
G {X_O‘EsllQp__ agl)Qm ﬁl(l)QO}‘

]
o

Proceeding this way, we find that for k=0,1,2,3,---
Qr., espan{L,x, -, x fUspan {Q5,Q; -+, Q; 1 }.

We are able now to formulate one of the main results of this paper:
Theorem 2. Forall k=0,1,2,---, each Qk:p can be written in the form

Q;+p(x):Qk+p(X)+Rk+p 9)

where Q,,,(X) is a polynomial of degree k, called a canonical polynomial as-

sociated with D, and generated by the self starting recursive formula:

Q1:Q2:"':Qp-1:0

do. -t § 0 ¥ g0 it o 20

an Qk+p_m X =2.0"Q; =2 B 'Q '(' ap #* )
=1

p

(10)
J:
and where Ry, 1is a linear combination of the undefined canonical polynomials

p-1
{Qg, Q. Q;fl} , called residual, and written as R, , = ZP;S?pQr*
r=0

>
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where { p,((i)p k> 0} are sequences of constants given by the self starting recur-

sion

PV

1 [ e v .
and pi'), =w{—z ool —Zﬂﬁk)Pﬁr-)j}' (if af? #0)
b j=0 =

1 ifi=] . .
= . with 0<i, j<p-1
0 otherwise
(11)

Proof. This follows by an induction argument once (9) is inserted in (10) and

the terms are rearranged:

Qk+p

1N
—
x
=
|
o
iR
<

agk) (Qk+j + Rk+j)_ ” 'Bl(k) (Qk*j R )}

j=0 j=1

& S0 & k)
0‘ Qk+J Za Re.j — 2.5 QH-Zﬁ,— Rkj}
j=1 j=1

j=0 j=

1 p-1 v (k)
) a Qk+J Zﬂ Qk j Za k+j_Zﬂj R
=i

O.’p j=0
1 !
=Tk) a Qk+J Zﬂ le
O.’p j=0
1) & m S 4(6)
+Tk){_. aj Rk+j_zﬂj Rk—j
ap j=0 j=1
1 pt
:W a Qk+] Zﬂ ij
ap j=0
1 -1 p-1 (r) .
N (zpkﬂ |- [zpk,-q]
ap j=0 r=0
1 =
:W 6{ Qk+J Zﬂj ij
C(p j=0

11 p-1 )
+ W a] pk+] Zﬂ] pk] Q

yielding Equations (10) and (11) as required.

3. Construction of Solution

This section is concerned with the construction of the two polynomials
{y(x).A,(x)} that satisfy Equation (4).
Theorem 3. The above notation and assumptions hold. Suppose that the

p .
coefficients {AOJ-, i=01--, p} of Ay(X)=D Ax' satisty the following system
i=o

consisting of P+1 algebraic equations:

—_n-z(njlp)' (12)
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Fi{ ( 'H):I Prsj + { (Ai'l):| ,(f,)j=0, r=01--,p-1 (13)

where {p&r)} are given by (11). Then

p-1

Y, (x)=x"-Ya\"Q,., - Y A"Q,_, (14)
=1

i=0

Is an exact polynomial solution of Equation (4) where {agn) , /)’J(n)} are parame-
ters determined in terms of {A1J ,1=01,---, p}ivzo as defined in (5)-(6), and {Qk}
Is a sequence of canonical polynomials associated with D and recursively gener-
ated by (10)

Proof Let nx1. Setting k=n in Equation (8) we get
p-1
D{x“—ZaE” Zﬂ } X, (15)
=0

If condition (12) holds, then (5) implies that agn) =0 and consequently the
right hand side of (15) vanishes:

S a % A
D{X —j_oaj Qnﬂ—;ﬂj Qn_j}:

p-1 v
Yy (x)=x" —;)aﬁ Q. —Z;ﬁE Qo
1= 1=

becomes an exact solution, but not necessarily an exact polynomial due to the

In other words,

appearance of the undefined canonical polynomials {QS,QI,---,Q;&}. How-

ever, in order to be an exact polynomial, Y, (X) must be independent of the p

undefined canonical functions {Q,* }:1. This can be achieved by an appropriate

adjustment of the p coefficients {AOO,AOlj,---,Pb,p_l} of A,(x) as explained

next. Using (9) in Y, (X) we can write:
p-1 v
Y, (x)=x" —Zaﬁ")Qmj —Zﬁ}n)Q S
p-1
_X _Jzoa ( n+J n+]) Zﬂj ( nJ n—')
p-1
[ Z(:Ja n+j Zﬂj n- jJ

J

(g,

i=0
p-1 o v (n) -
[ a\"Q,.; = > B Qn,] (16)
j=0 j=1
p-1 p-1
+Z[ >l pl - Zﬂ pn,JQ (17)
r=0 j=0

Working out the coefficients of {Q: } pi: in (17) we find that due to Equation
r=
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(13) we get:
SORGIR S OG)
_Z(:)aj pn+j +Zlﬂj pn—j :O'
j= j=

Thus Y, (x) reduces to the polynomial (16)
0 S i)
Yo () =x"=2a"Qu — 2 B7Q -
j=0 =

The following corollary follows immediately from the previous theorem:
Corollary 4. If p=0 and

Avo =—n!g—(n'§‘i)! (18)

then

() =x"-2 A",

=1
Is an exact polynomial solution of Equation (4) where

1 4
Q :W{Xk _Zﬂj(k)ij}, k=0,12,- (19)
j=1

0
(note that ﬂ}k) =0 if j<k and thereforeall Q,’s are defined).
Computational aspects
For computational purposes, one can reduce the height of D from p to zero by
differentiating (4) p times. This is due to the following trivial identity:
dr

p |
SrUV)=Xcutvi, o S (20)
X k=0

~k!(p—k)!

Applying this identity to (4) we get

dr LgP d -
_ 9 Ay 9 dy
_dxp[ oY :|+k:1 X"[Ai(x) xij d A]
From (20),
d® y Ak A (K) (9K) _ S ok A)(pK) o A (P)
d p[ Oy]:ZCpAO y = CpAO y +Ao y
k=0 k=0
&~k A(K)(pK)
=Y Ci AP 1 (plAy, )y

p P X
;?[AV y(V)J - kz C; ﬂ(k) y(v+ P = A, y(v+ Py > CEA5k> y(v+ p-k)

Inserting the later in (18) we get
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v-1 AP . -1
(D™y)(x)=A,y"? {Z;—D(Ai (X)y('))+pZCEAé”y“’”}(p!%,p)y(zz)
k=1 OX k=0

which is a differential operator of order v+ p with height 0. Therefore we can
apply our results to (22) and reconstruct the solution of the original problem by
an antiderivative process. This will reduce the computation cost because the re-

sidual subspace of the new operator will be 0.

4. Applications

In the section we solve two applied problems by means of Algorithm ((12)-(13)-
(14)-(18)-(19)) formulated in Theorem 3:

Example 1. Modified Manning potential with parameters. Let us consider the
Schrodinger’s equation

IV v () (x) = Ew (23)

where the potential V (x) is given by
V (x)=-v;sech®x —v,sech*x—v,sech’x where V;, v, are given constant pa-
rameters and V, is an unknown parameter and £ is the unknown eigenvalue.

We wish to compute £and v,. This potential describes a double-well potential

V.
whenever v, >0, v, <0, V,>0 and ——-<1 which was discussed in ([6],
V2
(7).
Equation (23) can be written as a 2nd order QES in the form (4) with height
p=1.Setting z=tanh®x and

J-E

w(x)= exp{gtanh2 xj(l—tanh2 X) 2 $(x)

allows to write (23) as
B, (2)#"(2)+B.(2)¢'(2) + B, (2)4(2) =0 (24)
where
B,(z)=-4z+47°
Bl(z):—2+(6+4x/¥—4\/q)z+4\/qz2
Bo(z)z(x/E—E—\/q—vl—v2 —v3)+(v1+v2 +3\/Z+2\/Zx/3)z

We can reduce the height of Equation (24) from p=1 to p=0 by taking

its first derivative:

% B,(2)¢"(2)+B,(2)#'(2)+B,(2)¢(2)]=0

which implies that

A (2)9"(2)+A,(2)¢"(2)+ A (2)¢' (2)+ Ay (2)4(2)=0 (25)
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where
A;(z)=-4z+47°
Az(z)=—6+(14+4(\/E—\/Z))z+4ﬁz2
Ay (2)=6+V-E ~E+4(V=E — ;) -, ~v, -V, -, (26)
+(1lﬁ+2ﬁﬁ+vl+v2)z
A, (2)=B)(2) =3\, +2V-E v, +v, +Y,

We solved Equation (25) by Algorithm ((12)-(13)-(14)) with n=5, v, =1
and v, =-50.
First we use Equations (10)-(11) to compute the canonical polynomials asso-

ciated with Equation (25). Here are some of them:

1
Z)=——,
v, z 71
Z :_____y
() 640 32 160
2 2
QZ(Z):_ Vs + V_3_E Z+7&_Z__@’
11520 (576 288 128 36 1440
3 2 2
Q,(2)= V: L [_ Vv +127v3_17947 Z_523v3
122880 6144 1024 768 61440
(Vs 13),., 22487v, 7’ 1271741
384 12 7680 32 3840
4 3 3 2
Q. (2)=- Vi 77V L Ve 157y +129889v3_1474407 ,
614400 30720 {30720 3840 7680 640
v 9y, 534 2_219017v32+ v, 24T,
1920 192 5 153600 160 80

681721v, z* 104477841

1920 20 3200

From (12), we have

a

(n—"i)!

3
ny:
i=1

which gives E =-169.
From (26), A, =-20 and therefore B,(z)=230-v,-20z where v, takes
the six values:
229.2464376447439023, 281.6583890371778959, 344.0001059505978400,
415.4312871412210056, 495.5461344115843794, 584.1176458146749767

=24(-1++-E)=0

which are the zeros of the following polynomial

P(v,)= Ve —2350v; + 2256468V, —1132669000v; + 313363258912V —45290385058560v, + 2670960608870400
5) =
122880

whose the plot is given in Figure 1. Further, for n=5, we obtain obtain ¢(z)

for the six values of Vv, are
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P(vs)
2x107 |

1x107 |

~1x107 |
-2x107 |

-3x107 |

—4x107k

Figure 1. Plot of P(v,) whose the zeros are v,.Here n=5.

¢, () =848965.2873783716955968 + 319874.14074375779974682
+44578.58028998949015572° + 2890.72672319845322187°
+87.68839058881402447* + 2°

¢, (z) =—3233.8652725518631273 +83528.1351716517372919z
+21688.97520608862867822° +1968.44807153403729172°
+74.58540274070552602" + z°

¢ (2) = 22.2163496075455889 — 1266.33310454785994082
+6294.64945412251468042° +1094.99872197126435212°
+58.99997351235054002" + z°

¢, (2) =-0.1710184447933733 +15.85608517146252862
—173.38044285085671952” + 392.81099831688303772°
+41.14217821469474867" + 2°

¢ 5 (2) =0.0013228922922234 - 0.1756444672214074z
+3.09420418546887652% —15.33053211804910172°
+21.1134663971039051z* + z°

¢ (2) =—9.8748769085397727 x10°° +0.0017484340817809z
—0.04371153524567132% +0.34601709741119837°
—1.0294114536687442z" + 2°

The graphs of the six functions are shown in Figure 2.
Example 2. The Schrodinger’s equation of O(N) invariant decatic anhar-
monic oscillator in N-dimensional spherical coordinates is
d’R(r) N-1dR(r) [I(I+N-2)
- - +
dr’ roodr r?

+2(V(r)-E)|R(r)=0 (27)

1-N

where R stands for the radial wave function. Setting R(r)=r 2 y/(r) trans-
forms Equation (27) to
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229.246

800000 -
600000

g
ES

400000 -

200000 -

o-

281,658 2.

4000 sor

3000
2000 -

1000

wlx)
Wix)

-1000 [

10
2000 - I
3000 201

0.0020 -

F 0.000015
0.0015
0.0010 -

0.0005 -

wix)
Wix)

0.000010

5.x10°6 |- [\ [\ A [\
0.000000

-5.x106 | \j \/
~0.000010

0.0000 -

-0.0005

-0.0010 -

-0.0015

Figure 2. Plot of the wave function W(X) for the six values of v, that are the roots of p(v,)=0 that appear at the top of each

plot. n=5.

d’w(r) [ u(u-1
- drg ){ (r )+2(V(r)—E) w(r)=0 (28)
where y=€+%(N—l), (¢ being a positive integer.

Further, consider the transformation

2 4 6

V’(Z)=f”exp(—a%—ﬂ%—7%J¢(z); z=r?

where y = V2 and {a, /5’} are parameters that depend on two unknowns /4,
and 4,:

p=— and azl[ﬂg—l—‘f}
y 4

A, and 4, should computed with the eigenvalue E. This yields a second or-
der ODE of the form (1) with height p=2:

Bz(z)%+81(z)z—f

e +B,(z)¢(2)=0

B, (z)=4((N+20)/2-y7* - p2* - a2)
By (2)=(2a8—7 (M +4)-24,) 2" +(a® - B(M +2) - 24 ) 2+ 2E —aM
with

M=N+2l, y=v2, f=Afy. a=(i-4/4)/y
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In order to obtain an equation with height p =0, we differentiate it twice to

get:
A (2)8Y (2)+ A, (2)8"(2)+ A, (2)8"(2) + A (2) ¢ (2) + A, (2)#(2) = 0 (29)
where
A,(z)=B,(z)=4z
A;(z)=2B,(2)+B,(2)=8+2(2(+N)-4daz-482> - 4y7’
A,(z)=B32(z)+2B;(z)+B,(2)
=—8a+2E—aM +(a’ -16-24, - f(2+M))z
+(2ap-24y -24, -y (4+M))2?
A, (2)=B](2)+2B}(z)=2a* -8B 44 ~2(2+M)
+(-24y +4(20B -2, ~ 7 (4+M)))z
A, (2)=Bg(z)=2(2af 224, —7(4+M))

The canonical polynomials are obtained by recursion (10)-(11):

1
) =—n-o- —
% (2) 4af —18y —4
Q.(2)- 2—-a’ +11B+(-2+2af-9)z
S 6(-2+ 20 13y ) (<2+ 208 -9y)
Qz(z):(4—26a—4a2+a4+52ﬁ+165ﬁ2+4E—4aﬁE—169ay+26Ey)Di
2
+(~4+2a* ~308+ 4aff - 2a° 4+ 30al § —187+9a27—135ﬁy)Di
2
2
+(4-8ap +4a’ +44;/—44a,b’7+11772)é—
2
(30)

where D, =12(-2+2af-17y)(-2+2af-13y)(-2+2a-9y)
We have applied Algorithm ((12)-(13)-(14)) for different sets of parameters:
)For n=2, 4 =1, 4, =1, N=3, /=1, y=v2, B=4/y,
a= (/13 —/142/4)/7/ , p=0; v=4, the unknown E, 4,1, are determined by
solving the following system:

—24-204\/2 +122,2, 322 =0 (31)
~15184570 - 42338902 + 347972E +79152V/2E ) 4,
+(200600 + 3476042 ) 27
+(179700 + 4540702 - 4656E ~544/2E ) 2}

( (32)
+(—680 — 402 — 2960E —10236\/§E)/1f
+(~520-4100v/2 +16E ~324/2E2) 7

(_

+(~11625-82512 +104V/2E ) A7 + 330E4] =0
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106642188+ 34864280+/2 — 208783242 — 474912/277 ~17499684°
— 32540981243 +13968; +1632v/24) +1596842 + 59960~/2
+1108984¢ +17820v/242 — 264+/24] —13884¢ —1155+/24¢
+(~65284; — 2793632 +1924/247 +11844] | E =0

(33)

Note that Equation (31) and Equation (33) are linear in 4; and Erespective-
ly. So we compute 4, and Fin terms of 4, and substitute their expressions in
Equation (32) which gives the values of A,. As a result we get for E>0 two
sets of solutions:

Setl
A, =10.4794241513810915978439288620
A, = 3.57541756044743705617752580655
E =10.3921270096757567640709427917

Set 2
A, =10.4794241513810915978439288620
A, =2.96736011311581477714971460010
E =45.4729663748453390359477629584

For Set 1 we have

o =6.20558774817446509454508658219,
S =2.09824045820667335037013178954,

y=~2, p=2
and the exact solution of Equation (29) when n=2 is

¢, (2) = 0.148569159577064357603068196653
—0.890196601343371995098741638225z + z°

Then the wave function for n=2 is

2 4 6
r

w,(z2)=r" exp(—a%—ﬂj—yg}zﬁz (z); z=r?
which is plotted in Figure 3.
2) For n=4; A4 =1; A4,=1; N=6; (=1; )/:x/i; p=0; v=4;
M =N +2| we obtain a system of equations with unknown E, A;, 4, . This sys-
tem has three sets of solutions:
Set1

A, =15.2213022374713691334593627854

A, =3.35080280384336327546445916262

E =122.054198917713672699520321911

Set 2
A, =14.6173922152479058765833382408
A, =3.74178054365072115240609371379
E =64.518363537276464736709058162
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-0.002]

-0.004 |

Figure 3. Plot of wave function v, (X) for the Set1 (n=2).

Set 3
A, =14.3050849085847171927078631515
A, =4.24082480839216204741958029044
E = 20.6723051499346259885190817057

The exact polynomial solution of Equation (29) that corresponds to each set
of the computed parameters above are:

Set1: ¢,(z)=0.05123329350714747 —0.55678527469919100z
+1.8658287318845738002° — 2.3783650091782239102° + z*
Set 2: ¢,(z)=1.83303106908165349 —7.57827320512557611z
+5.047295170626524337° +1.590310549244210902° + z*
Set 3: ¢, (z) = 40.08040813732159932 + 35.428855863221486652
+20.94732836908738593z° +5.6319289706101214952° + z*
Figure 4 shows y,,(X).
3)For n=8; 4 =1; A4, =1; N=6; ¢=1.Here are the results:

Setl Set 2
A, =20.56410237324861185 A, =20.56410237324861185
A, =3.779556076814648561 A, =3.779556076814648561
E =284.2200173241970169 E =284.220017324197016903
Set 3 Set4
Ay =19.97053471979101493 A, =19.49903355415370773
A, =4.043790238076919932 A, =4.34676919014164935
E =200.814293836308274681 E =128.39046011355799670
Set5 Set 6
A, =19.19007126134549327 A, =19.09600441735804689
A, = 4.69538124652545845 A, =5.10347417185941959
E =68.10813774437088605 E = 21.86369137050343994

The exact solution that corresponds to Set 1:
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Figure 4. Plot of wave function ,,(X) forthe Set1(n=4).

w2)
o i
x X
CR
o ~ )

0.0 0.5 1.0 1.5 20

Figure 5. Plot of wave function ,,(X) for the Set1(n=8).

¢, (z)=0.0018666121867654 —0.05510169269655697
+0.5790267235874925z° — 2.94616317659453237°
+8.16344067005234062* —12.87296916739633692°
+11.45738651695910702° —5.3265009701024445z" + 2°,

Figure 5 shows /g, (X)

5. Conclusion

In this paper we have extended the canonical polynomials approach that was de-
veloped in [8] to solve QES differential equations of arbitrary high order v >2.
While the existing methods for solving QESs require the solution of a nonlinear
algebraic system whose dimensions depend on the desired degree of y(x), our
new approach requires solving a nonlinear algebraic system of dimensions de-
pending on p, the height of the differential operator. This advantage is due to the
fact that the sequence of canonical polynomials enjoys the permanence charac-

teristic.
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