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Abstract 
The purpose of this study is to apply white noise process in measuring model 
adequacy targeted at confirming the assumption of independence. This en-
sures that no autocorrelation exists in any time series under consideration, 
and that the autoregressive integrated moving average (ARIMA) model en-
tertained is able to capture the linear structure in such series. The study ex-
plored the share price series of Union bank of Nigeria, Unity bank, and We-
ma bank obtained from Nigerian Stock Exchange from January 3, 2006 to 
November 24, 2016 comprising 2690 observations. ARIMA models were used 
to model the linear dependence in the data while autocorrelation function 
(ACF), partial autocorrelation function (PACF), and Ljung-Box test were ap-
plied in checking the adequacy of the selected models. The findings revealed 
that ARIMA(1,1,0) model adequately captured the linear dependence in the 
return series of both Union and Unity banks while ARIMA(2,1,0) model was 
sufficient for that of Wema bank. Also, evidence from ACF, PACF and Ljung- 
Box test revealed that the residual series of the fitted models were white noise, 
thus satisfying the conditions for stationarity. 
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1. Introduction 

The fundamental building block of time series is stationarity and basically, the 
idea behind stationarity is that the probability laws that govern the behaviour of 
the process do not change overtime. This is to ensure that the time series process 
is in a state of statistical equilibrium and would in turn enhance a statistical set-
ting for describing and making inferences about the structure of data that 
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somehow fluctuate in a random manner [1] [2] [3]. According to [3], a process 
is said to be strictly stationary if the whole probability structure must depend 
only on time differences. A less restrictive requirement, called weak stationarity 
of order k, is that the moments up to some order k depends only on time lags 
and that the second order stationarity plus an assumption of normality are suffi-
cient to produce strict stationarity (see also, [4] [5]). For simplicity, a time series 
is said to be stationary, if it has a mean, variance and autocovariance function 
that are constant over time (see [6]). Moreover, one most important and funda-
mental example of a stationary process is the white noise process which is de-
fined as a sequence of independent (uncorrelated) and identically distributed 
random variables with zero mean and constant variance [2] [3] [5]. Thus, the 
white noise process is particularly important and constitutes an essential be-
drock in time series model building. 

In this study, our aim is to apply white noise process in measuring model 
adequacy targeted at confirming independence assumption, which ensures that 
no autocorrelation exists in the time series considered and that the ARMA 
model entertained is able to capture the linear structure in the dataset.  

The motivation stems from the fact that the problem of statistical modeling is 
to achieve parsimony (i.e. the principle of model selection with the possibility of 
having the smallest number of parameters that completely express the linear de-
pendence structure, providing better prediction, and generalization of new ob-
servations) conditional on the restriction of model adequacy. 

Testing for model adequacy or diagnostic checking as defined by [7] incorpo-
rates all relevant information and when calibrated to the data no important sig-
nificant departures from statistical assumptions made can be found. Actually, 
model adequacy involves residual analysis and overfitting. In time series model-
ing, a good model parameter estimates must be reasonably close to the true val-
ues, should have the dependence structure of the data adequately captured, and 
should also produce residuals that are approximately uncorrelated [2] [6] [8]. 
These residuals are obtained by taking the difference between an observed value 
of a time series and a predicted value from fitting a candidate model to the data. 
They are useful in checking whether a model has adequately captured the infor-
mation in the data. According to [6], model adequacy is related primarily to the 
assumption that residuals are independent. Moreover, if the residuals of a given 
model are correlated, the model must be refined because it does not completely 
capture the statistical relationship amongst the time series [2]. Furthermore, a 
model is said to be adequate if the residuals are statistically independent imply-
ing that the residual series is uncorrelated. Therefore, in testing for model ade-
quacy, which is mainly to check for independence of the residual series, an au-
tocorrelation function (ACF), Partial autocorrelation function (ACF) and Ljung- 
Box test on the residuals are considered. 

Another adequacy checking tool is overfitting, which has to do with adding 
another coefficient to a fitted model so as to see if the resulting model is better. 
The following are identified as the implications of fitting and overfitting: 
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1) Specify the original model carefully. If a simple model seems promising, 
check it out before trying a more complicated model. 

2) When overfitting, do not increase the orders of both the autoregressive (AR) 
and moving average (MA) parts of the model simultaneously. 

3) Extend the model in directions suggested by the analysis of the residuals. 
However, one setback of overfitting is the tendency of the violation of the prin-
ciple of parsimony [2] [6]. 

Model adequacy has also been explored by the following studies: [7]-[17]. 
In addition, the remaining part of this work is organized as follows; Section 2 

takes care of the methodology, followed by the results and then the discussion in 
Section 3, while the conclusion of the overall results is handled in Section 4. 

2. Methodology 
2.1. Return Series  

The return series, tR , can be obtained given that tP  is the price of a unit share 
at time, t, while 1tP−  is the share price at time, t − 1. 

( ) ( ) ( ) ( ) ( )1ln 1 ln ln lnt t t t tR P B P P P−= ∇ = − = −            (1) 

here, tR  is regarded as a transformed series of the share price, tP , meant to 
attain stationarity while B is the backshift operator. Thus, both the mean and the 
variance of the series are stable [18] [19]. 

2.2. Autoregressive Integrated Moving Average (ARIMA) Model 

In [3] the extension of ARMA model to deal with homogenous non-stationary 
time series in which tX , itself is non-stationary but its thd  difference is a sta-
tionary ARMA model. Denoting the thd  difference of tX  by  

( ) ( ) ( )d
t tB B X Bϕ φ θ ε= ∇ =                    (2) 

where ( )Bϕ  is the nonstationary autoregressive operator such that d of the 
roots of ( ) 0Bϕ =  are unity and the remainder lie outside the unit circle.  
( )Bφ  is a stationary autoregressive operator (see also, [20] [21]). 

2.3. Stationarity 

The foundation of time series analysis is stationarity. Consider a finite set of re-
turn variables { }1 2

, , ,
nt t tR R R�  from a time series process,  

( ){ }: 0, 1, 2,R t t = + + � . The k-dimensional distribution function is defined as  

( ) { }1 21 1 2 1 2, , , , , , ,
t t kkR R k t t t kF r r r P R r R r R r= ≤ ≤ ≤� � �        (3) 

where , 1, 2, ,jr j k= �  are any real numbers.  
A process is said to be: 
1) first-order stationary in distribution if its one-dimensional distribution is 

time invariant. That is, if  

( ) ( )
 1 11 1t t kR RF r F r
+

= ,                     (4) 
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for any integers 1,t k  and 1t k+ . 
2) second-order stationary in distribution if 

( ) ( )
1 2 1 2, 1 2,1 2, , ,
t t t k t kR R R RF r r F r r

+ +
=                 (5) 

for any integers 1 2 1, , ,t t k t k+  and 2t k+ . 
3) the thn -order stationary in distribution if 

( ) ( )
1 2 1 21 1, , , , ,, , , , ,
t t t t k t k t kn nR R R n R R R nF r r F r r

+ + +
=� � �            (6) 

for any ( )1, , nt t�  and k integers. 
A process is said to be strictly stationary if (3.6) is true for any n, that is, 

1,2,n = �  
According to [3], a process { }tR  is weakly stationary if the mean ( )tE R µ=  

is a fixed constant for all t and the autocovariances ( ),t t k kCov R R γ+ =  depends 
only on the time difference or time lag k for all t. 

Stationary in the wide sense or covariance stationary is also referred to as 
second-order stationary process. 

2.4. White Noise Process 

A process { }ta  is called a white noise process if it is a sequence of uncorrelated 
random variables from a fixed distribution with constant mean, ( )t aE a µ= , 
usually assumed to be zero, constant variance, ( ) 2

t aVar a σ=  and  
( ), 0k t t kCov a aγ + == , for all 0k ≠ . It is denoted by ( )2~ WN 0,t aa σ , where 

WN stands for white noise [5]. By definition, a white noise process { }ta  is sta-
tionary with autocovariance function,  

2 , 0,
0, 0.

a
k

k
k

σ
γ

 =

≠
= 


                       (7) 

The autocorrelation function is given as: 

1, 0,
0, 0.k

k
k

ρ
≠

=
=




                      (8) 

while the partial autocorrelation function is 

1, 0,
0, 0.kk

k
k

ϕ =
=

 ≠
                      (9) 

Thus, the implication of a white noise specification is that the ACF and PACF 
are identically equal to zero. 

2.5. Autocovariance and Autocorrelation Functions 

According to [5], covariance between tR  and t kR +  denoted by ( ),t t kCov R R + , 
which is a function of the time difference, k, is called the autocovariance func-
tion { }kγ  of the stochastic process. As a function of k, kγ  is called the auto-
covariance function in the time series analysis since it represents the covariance 
between tR  and t kR +  from the same process. It is defined as 

( ) ( )( ), .k t t k t t kCov R R E R Rγ µ µ+ += = − −             (10) 
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The sample estimate of kγ  is kC  given by 

( )( )1

1 n k
k t t ktC R R R R

n
−

+=
= − −∑                 (11) 

Similarly, the correlation between tR  and t kR +  denoted by ( ),t t kCorr R R + , 
which is a function of the time difference, k, is called the autocorrelation func-
tion { }kρ  of the stochastic process. As function of k, kρ  is called the auto-
correlation function in time series analysis since it represents the correlation 
between tR  and t kR +  from the same process. It is defined as 

( )
( ) ( ) 0

,t t k k
k

t t k

Cov R R

Var R Var R
γ

ρ
γ

+

+

= =                (12) 

The corresponding sample estimate is given by 

0

ˆ , 0,1, 2,k
k

C
k

C
ρ = = �                    (13) 

2.6. Partial Autocorrelation Function (PACF) 

The conditional correlation between tR  and t kR +  after their mutual linear 
dependency on the intervening variables ( )1 2 1, , ,t t t kR R R+ + + −�  has been re-
moved, given by ( )1 2 1, , , ,t t k t t t kCorr R R R R R+ + + + −� , is usually referred to as the 
partial autocorrelation in time series analysis ([5]). 

Partial autocorrelation can be derived from the regression model, where the 
dependent variable, t kR + , from a zero-mean stationary process is regressed on 
k-lagged variables 1 2, ,t k t kR R+ − + − �  and tR , that is 

1 1 2 2 ,t k k t k k t k kk t t kR R R Rϕ ϕ ϕ α+ + − + − += + + + +�           (14) 

where kiϕ  denotes the thi  regression parameter and t kα +  is an error term 
with mean zero and uncorrelated with t k jR + − , for 1,2, ,j k= � . Multiplying 

t k jR + −  on both sides of the above regression equation and taking the expecta-
tion, we get 

1 1 2 2j k j k j kk j kγ ϕ γ ϕ γ ϕ γ− − −= + + +� .             (15) 

Hence,  

1 1 2 2j k j k j kk j kρ ϕ ρ ϕ ρ ϕ ρ− − −= + + +� .             (16) 

2.7. Diagnostic Checking of Linear Time Series Models 

Diagnostic checking is applied with an objective of uncovering a possible lack- 
of-fit of the tentative model and possibly unraveling the cause of such a case. If 
no lack-of-fit is indicated, the model is ready for use. In other words, if any 
inadequacy is found, the iterative cycle of identification, estimation and diag-
nostic checking is repeated until a suitable and appropriate representation is ob-
tained.  

Once the parameters of the tentative models have been estimated, we check 
whether or not the residuals obtained from the estimated equation are approx-
imately white noise. This is done by examining the ACF and PACF of the resi-
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duals to see whether they are statistically insignificant, that is, within two stan-
dard deviations at 5% level of significance. If the residuals are approximately 
white noise, the model may be entertained provided the parameters are signifi-
cantly different from zero. 

The Portmanteau lack-of-fit test uses the residual sample ACFs as a unit to 
check the joint null hypothesis test, which requires that several autocorrelations 
of ta  are zero. [17] proposed the Portmanteau statistics given as: 

( ) 2

1

ˆ
m

l
l

Q m T ρ∗

=

= ∑ ,                     (17) 

where T is the number of observations. 
A test statistic for the null hypothesis, 0 1: 0mH ρ ρ= = =� , against the al-

ternative, : 0a iH ρ ≠ , for some { }1, ,i m∈ �  under the assumption that { }ta  
is an i.i.d. sequence with certain moment conditions while ( )Q m∗  is asymptot-
ically a Chi-square random variable with m degrees of freedom. 

[22] modified the ( )Q m∗  statistic to increase the power of the test in finite 
samples as follows: 

( ) ( )
2

1

ˆ
2

m
l

l
Q m T T

T l
ρ

=

= +
−∑ ,                  (18) 

where T is the number of observations. 
The decision rule is to reject 0H  if ( ) 2Q m αχ> , where 2

αχ  denotes the 
100(1 – α)th percentile of a Chi-squared distribution with m – (p + q) degrees of 
freedom. The decision rule can also reject 0H  if the p-value is less than or 
equal to α, the significance level. 

In practice, the selection of m may affect the performance of the Q(m) statistic. 
The choice ( )lnm T≈  provides better power performance [4]. 

3. Results and Discussion 
3.1. Dataset 

Data collection was based on secondary source from the records of Nigerian 
Stock Exchange. The data on the daily closing share prices of the sampled banks 
(Union bank, Unity bank and Wema bank) from January 3, 2006 to November 
24, 2016 were obtained from the Nigerian Stock Exchange [23] and delivered 
through contactcentre@nigerianstockexchange.com. 

3.2. Interpretation of Time Plot 

Figures 1-3 represent the share price series for the three banks. The share prices 
of all the banks do not fluctuate around a common mean, which clearly indicates 
the presence of a stochastic trend in the share prices, and is also an indication of 
non-stationarity. Since the share price series are found to be non-stationary, the 
first difference of the natural logarithm of share price series is taken to obtain 
stationary (returns) series. The inclusion of the log transformation is to stabilize 
the variance. Figures 4-6 show that the returns series appear to be stationary. 
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Figure 1. Share price series of union bank of Nigeria. 

 

 
Figure 2. Share price series of unity bank.  

 

 
Figure 3. Share price series of wema bank.  
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Figure 4. Return series of union bank of Nigeria. 

 

 
Figure 5. Return series of unity bank. 

 

 
Figure 6. Return series of wema bank. 

3.3. Building Autoregressive Integrated Moving Average (ARIMA)  
Model  

3.3.1. Building Autoregressive Integrated Moving Average (ARIMA)  
Model of Union Bank of Nigeria 

1) Model identification 
From Figure 7 and Figure 8, both ACF and PACF indicate that mixed model 

could be entertained. The following models; ARIMA(1,1,0), ARIMA(0,1,1) and 
ARIMA(1,1,1) were considered tentatively. 
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Figure 7. ACF of return series of union bank of Nigeria. 

 

 
Figure 8. PACF of return series of union bank of Nigeria. 

 
2) Estimation of parameters 
From Table 1, ARIMA(1,1,0) model is selected based on the grounds of signi-

ficance of the parameters and minimum AIC. 
3) Diagnostic checking of the model 
From Figure 9 and Figure 10, all the lags coefficients of ACF and PACF are 

within the significance bands, that is, they are zero implying that the residual se-
ries of ARIMA(1,1,0) model appears to be a white noise series, that is, the series 
is independent and identically distributed with mean zero and constant variance.  

Evidence from Ljung-Box Q-statistics in Table 2 shows that ARIMA(1,1,0) 
model is adequate at 5% level of significance given the Q-statistic at Lags 1, 4, 8 
and 24. That is, the hypothesis of no autocorrelation is not rejected. Thus, con-
firming the independence of residual series.  

3.3.2. Building Autoregressive Integrated Moving Average (ARIMA)  
Model of Unity  

Bank  
1) Model identification 
From Figure 11 and Figure 12, both ACF and PACF indicate that mixed 

model could be entertained. The following models; ARIMA(1,1,0), ARIMA(0,1,1) 
and ARIMA(1,1,1) were considered tentatively. 

2) Estimation of parameters 
From Table 3, ARIMA(1,1,0) model is selected based on the grounds of signi-

ficance of the parameters and minimum AIC. 
3) Diagnostic checking of the model 
From Figure 13 and Figure 14, all the lags coefficients of ACF and PACF are 

within the significance bands except lag 9, that is, they are zero implying that the 

https://doi.org/10.4236/am.2019.1011069


I. U. Moffat, E. A. Akpan 
 

 

DOI: 10.4236/am.2019.1011069 998 Applied Mathematics 
 

residual series of ARIMA(1,1,0) model appears to be a white noise series, that is, 
the series is independent and identically distributed with mean zero and con-
stant variance.  

Evidence from Ljung-Box Q-statistics in Table 4 shows that ARIMA(1,1,0) 
model is adequate at 5% level of significance given the Q-statistic at Lags 1, 4, 8 
and 24. That is, the hypothesis of no autocorrelation is not rejected. Hence, con-
firming the independence of the residual series. 

3.3.3. Building Autoregressive Integrated Moving Average (ARIMA)  
Model of Wema Bank 

1) Model identification 
From Figure 15 and Figure 16, both ACF and PACF indicate that mixed 

model could be entertained. The following models; ARIMA(1,1,0), ARIMA(2,1,0), 
ARIMA(0,1,2) and ARIMA(2,1,1) were considered tentatively. 

2) Estimation of parameters 
From Table 5, ARIMA(2,1,0) model is selected based on the grounds of signi-

ficance of the parameters and minimum AIC. 
3) Diagnostic checking of the model 
From Figure 17 and Figure 18, all the lags coefficients of ACF and PACF 

are within the significance bands, that is, they are zero implying that the resi-
dual series of ARIMA(2,1,0) model appears to be a white noise series, that is, 
the series is independent and identically distributed with mean zero and con-
stant variance.  

Evidence from Ljung-Box Q-statistics in Table 6 shows that ARIMA(2,1,0) 
model is adequate at 5% level of significance given the Q-statistic at Lags 1, 4, 8 
and 24. That is, the hypothesis of no autocorrelation is not rejected. Thus, con-
firming the independence of the residual series. 

 
Table 1. ARIMA models for return series of union bank of nigeria. 

Model Parameter Estimate s.e z-ratio p-value AIC 

ARIMA(1,1,0) 1ϕ  0.1014 0.0192 5.2866 1.246e-07 −9132.2 

ARIMA(0,1,1) 1θ  0.0963 0.0186 5.176 2.265e-07 −9130.87 

ARIMA(1,1,1) 
1ϕ  0.2455 0.1523 1.6123 0.1069  

−9131.12 
1θ  −0.1453 0.1550 −0.9369 0.3488 

Source: output of data analysis. 
 

Table 2. Ljung-box test on ARIMA(1,1,0) model for return series of union bank of 
nigeria. 

Lag Ljung-Box Q-statistics p-value 

1 0.0133 0.9082 

4 2.3753 0.6671 

8 4.318 0.8274 

24 7.9309 0.9991 

Source: output of data analysis. 
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Table 3. ARIMA models for return series of unity bank. 

Model Parameter Estimate s.e z-ratio p-value AIC 

ARIMA(1,1,0) 1ϕ  0.0786 0.0192 4.0895 4.3230e−5 −7588.08 

ARIMA(0,1,1) 1θ  0.0744 0.0187 3.9858 6.7250e−5 −7587.19 

ARIMA(1,1,1) 
1ϕ  0.4172 0.1810 2.3056 0.0211 

−7586.04 
1θ  −0.3412 0.1876 −1.8191 0.0689 

Source: output of data analysis. 

 
Table 4. Ljung-box test on ARIMA(1,1,0) model for return series of unity bank. 

Lag Ljung-Box Q-statistics p-value 

1 0.0119 0.9133 

4 2.0207 0.7320 

8 6.6927 0.5701 

24 17.6390 0.8202 

Source: output of data analysis. 

 
Table 5. ARIMA models for return series of wema bank. 

Model Parameter Estimate s.e z-ratio p-value AIC 

ARIMA(1,1,0) 1ϕ  −0.3498 0.0181 −19.363 <2.2e−16 −6928.94 

ARIMA(2,1,0) 
1ϕ  −0.3925 0.0191 −20.5059 <2.2e−16 

−6967.33 
2ϕ  −0.1220 0.0191 −6.3787 1.786e−10 

ARIMA(0,1,2) 
1θ  −0.3956 0.0195 −20.2916 <2e−16 

−6966.61 
2θ  0.0383 0.0193 1.9843 0.04722 

ARIMA(2,1,1) 
1ϕ  −0.2709 0.1415 −1.9143 0.05558 

−6966.08 2ϕ  −0.0797 0.0544 −1.4655 0.14277 

1θ  −0.1236 0.1416 −0.8729 0.38272 

Source: output of data analysis. 
 

Table 6. Ljung-box test on ARIMA(2,1,0) model for return series of wema bank. 

Lag Ljung-Box Q-statistics p-value 

1 0.0184 0.8922 

4 1.1609 0.8845 

8 2.5555 0.9591 

24 8.6091 0.9983 

Source: output of data analysis. 

 

 
Figure 9. ACF of Residuals of ARIMA(1,1,0) Model fitted 
to Return Series of Union Bank of Nigeria. 
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Figure 10. PACF of Residuals of ARIMA(1,1,0) Model 
fitted to Return Series of Union Bank of Nigeria. 

 

 
Figure 11. ACF of return series of unity bank.  

 

 
Figure 12. PACF of return series of unity bank.  

 

 
Figure 13. ACF of Residuals of ARIMA(1,1,0) Model 
fitted to the Return Series of Unity Bank. 

 

 
Figure 14. PACF of Residuals of ARIMA(1,1,0) Model 
fitted to the Return Series of Unity Bank. 
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Figure 15. ACF of return series of wema bank. 

 

 
Figure 16. PACF of return series of wema bank. 

 

 
Figure 17. ACF of residual series of ARIMA(2,1,0) model 
fitted to return series of wema bank. 

 

 
Figure 18. PACF of residual series of ARIMA(2,1,0) mo- 
del fitted to return series of wema bank. 

 
So far, the residuals series of the selected models for the three banks consi-

dered have been analyzed and found to follow a noise process and it thus suffice 
the aim of our study. The study further agrees with the works of [7]-[17] that 
model adequacy could be measured by white noise processes through ACF, 
PACF and Ljung-Box test but differs in that it considers the returns series of Ni-
gerian banks. 
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4. Conclusion 

In summary, our study showed that model adequacy could be measured by 
white noise process through ACF, PACF, and Ljung-Box test. The role of white 
noise process in checking the model adequacy was properly appraised and con-
firmed that modeling a white noise process satisfies all the conditions for statio-
narity (independence). However, the failure to apply overfitting approach of 
model adequacy is one weakness of this study and it is recommended that fur-
ther study should be extended to cover overfitting. 
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