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Abstract 
Explosive synchronization (ES), as one kind of abrupt dynamical transitions 
in nonlinearly coupled systems, has become a hot spot of modern complex 
networks. At present, many results of ES are based on the networked Kura-
moto oscillators and little attention has been paid to the influence of chaotic 
dynamics on synchronization transitions. Here, the unified chaotic systems 
(Lorenz, Lü and Chen) and Rössler systems are studied to report evidence of 
an explosive synchronization of chaotic systems with different topological 
network structures. The results show that ES is clearly observed in coupled 
Lorenz systems. However, the continuous transitions take place in the 
coupled Chen and Lü systems, even though a big shock exits during the syn-
chronization process. In addition, the coupled Rössler systems will keep syn-
chronous once the entire network is completely synchronized, although the 
coupling strength is reduced. Finally, we give some explanations from the 
dynamical features of the unified chaotic systems and the periodic orbit of the 
Rössler systems. 
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1. Introduction 

Complex networks are ubiquitous in the world, such as transportation networks, 
Internet, wireless networks and phone networks. In 1998, Watts and Strogatz 
presented the small-world network model [1] [2], which was a network model 
with the small average path length but the large clustering coefficient. Later, the 
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scale-free network model whose degree distribution obeys a power-law distribu-
tion [3], is proposed by Barabási and Albert in 1999. Since then, they make great 
progress of complex networks and become the theoretical basis of modern com-
plex networks. Synchronization, as a collective dynamical behavior, is an impor-
tant and interesting direction of complex networks. In the past two decades, 
synchronization of complex networks has extensively attracted increasing atten-
tion and practical applications [4]-[10], such as parallel computing. However, all 
the reported cases examples are of continuous phase transitions. 

Recently, it has been shown that discontinuous transitions can take place in 
networks of periodic oscillators [11], called explosive synchronization (ES). As 
one kind of abrupt dynamical transitions in nonlinearly coupled systems, it has 
attracted widespread attention from the systems science community [12]-[17]. 
Traditionally, the master stability function is used to study the continuous 
change of systems and to focus on the synchronizability of networks, rather than 
synchronization processes. However, explosive synchronization is commonly 
observed in heterogeneous networks. Gómez-Gardeñes et al. [11] proposed that 
ES could occur in the networked Kuramoto oscillators and the following two 
conditions are satisfied: 1) a scale-free network structure and 2) the existence of 
a positive correlation between the natural frequency of an oscillator and its de-
gree. There are many systems in the world that are not Kuramoto systems, but 
chaotic systems. A large system is said to undergo a phase transition when one 
or more of its properties change abruptly after a slight change in a controlling 
variable. If the transitions are discontinuous or abrupt, they are called a 
first-order. Conversely, when the transitions are continuous or smooth, they are 
second-order. Generally, there are two main factors to influence phase transi-
tions of complex networks as following: 1) the topological structure of the net-
work and 2) the dynamics of the system. More recently, there are many studies 
of ES based on Kuramoto and little attention is paid to other chaotic dynamics 
in [13] [14] [15]. Zhao [12] studied explosive synchronization of complex net-
works with different chaotic oscillators and indicated that explosive synchroni-
zation only takes place in the coupled Lorenz systems. However, Zhao only 
considers the process from incoherence to synchrony, ignoring the process from 
synchrony to incoherence. Generally speaking, explosive synchronization can be 
said to happen in complex networks when the following conditions are satisfied: 
1) the emergence of the first-order transition and 2) the hysteresis curve appears 
in the process from synchrony to incoherence. 

Motivated by the above discussions, this paper investigates explosive synchro-
nization in complex dynamical networks coupled with chaotic systems. The 
chaotic systems to be studied contain the unified chaotic systems (Lorenz, Lü 
and Chen) [18] and the Rössler systems [19]. The advantage of the unified chao-
tic system is that it can be adjusted to different chaotic systems by changing one 
parameter. Compared with the Kuramoto model, the chaotic systems are used 
more widely. In addition, the networks are constructed in [20] that generate a 
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one-parameter family of complex networks. It can easily adjust the topological 
structures of networks and measure the degree of heterogeneity of the final net-
works. The numerical simulations show that explosive synchronization is ob-
viously discovered in the coupled Lorenz systems of different structures, but 
there are not obvious first-order transitions and hysteresis curves for coupled Lü 
and Chen systems. Moreover, for the coupled Lü and Chen systems there are 
some shocks in synchronization transitions. Additionally, for the coupled 
Rössler systems, it has a surprising phenomenon that it cannot desynchronize 
once it is synchronized. Our researches consider not only the dynamics of chao-
tic systems, but also the network structures. 

The rest of this paper is organized as follows. Section 2 introduces the network 
model and preliminaries. Sections 3 presents lots of simulations of the coupled 
unified chaotic systems and analyzes the results from the dynamical behaviors of 
systems. Section 4 provides some simulations of coupled Rössler systems and 
discusses the phenomenon from the view of the periodic orbit. Finally, Section 5 
gives the conclusion of this paper. 

2. Model Description and Preliminaries 

Consider an undirected and unweighted network of N coupled chaotic oscilla-
tors as follows: 

( ) 1 ,N
i i ij jjx F x c xλ

=
= + ∑                     (1) 

where 1,2,3, ,i N=  , m
ix R∈  is the m-dimensional state variable of the node 

i and ( ) : m mF R R→  is a continuous vector function. The outer-coupling ma-
trix ( )ij N N

c
×

 is defined as C A D= −  and describes the coupling topology of 
the network, where ( )ij N N

A a
×

=  is the adjacency matrix of the network ( 1ija =  
if nodes i and j are connected, and 0 otherwise), ( )ijD d=  is the diagonal ma-
trix with 1

N
ii ijjd a

=
= ∑  and λ  is the coupling strength. 

Since the inner coupling matrix is the identity matrix, the synchronization re-
gion is unbounded based on the master-stability-function approach [21]. When 
the coupling strength becomes large enough, the complex network (1) will 
achieve complete synchronization. The network (1) is said to achieve global 
complete synchronization if ( ) ( )lim 0i jt

x t x t
→∞

− = , for , 1, 2, ,i j N=  . To 
monitor such synchronization transition as λ  grows, the global order parame-
ter ( )p t  and the local error parameter ( )ie t  are defined. 

The global order parameter ( )p t  is described in [12]: 

( ) ( ) ( ) ( )( )1
1 1 2

2 ,
1

N N
i jj i jp t r x t x t

N N
θ−

= = +
= − −

− ∑ ∑          (2) 

where θ  is Heaviside function 

( )
0, 0

,
1, 1

x
x

x
θ

≤
=  ≥

                        (3) 

and r is a small positive constant. Obviously, ( ) [ ]0,1p t ∈ , can quantify the de-
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gree of synchronization among the N oscillators and measure the coherence of 
the collective motion. The network (1) is fully synchronized when the value 

1p = , while the network (1) is the incoherent state when the value 0p = . 
The local error parameter is described as 

( ) ,i ie t x x= −                         (4) 

where 1,2, ,i N=   and 1
N

iix x N
=

= ∑ . The ( )ie t  reflects the motion state 
of each node in some extent and can measure whether the i-th node is synchro-
nized. The network (1) is fully synchronized when the value ( ) 0ie t =  for all 
nodes 1,2, ,i N=  . 

In this paper, the unified chaotic systems (Lorenz, Lü, Chen) and Rössler sys-
tems are selected to study explosive synchronization of coupled chaotic systems 
in different network structures. 

The unified chaotic system is described by [18]: 

( )( )
( ) ( )

( )

25 10

28 35 29 1 ,
1 8
3

x y x

y x xz y

z xy z

α

α α

α

= + −

 = − − + −

 = − +







                (5) 

where α  is a parameter. The system is chaotic when the parameter [ ]0,1α ∈ . 
The unified chaotic system is essentially the convex combinations of Lorenz sys-
tem and Chen system. It represents the whole family of infinitely many chaotic 
systems in the middle, while the Lorenz system and the Chen system are just two 
extreme cases. According to the value of parameter, the system (5) can be classi-
fied as follows: when 0 0.8α≤ < , the system (5) belongs to the generalized Lo-
renz system; when 0.8α = , the system (5) belongs to the generalized Lü system; 
when 0.8 1α< ≤ , the system (5) belongs to the generalized Chen system. 

The Rössler system is described by [19]: 

( )

( )
,

x y z
y x ay
z b z x c

= − +


= +
 = + −







                       (6) 

where 0.15, 0.2, 5.7a b c= = = . 
In further exploring the influence of topological structures on explosive syn-

chronization, we use a one-parameter family of complex networks in [20]. This 
parameter measures the degree of heterogeneity of the final networks by inter-
polating from Barabási-Albert (BA) to Erdös-Rényi (ER) networks by tuning 

[ ]0,1β ∈ . Let us assume the final size of the network to be N. The network is 
generated starting from a fully connected core of 0m  nodes and a set ( )0u  of 

0N m−  unconnected nodes. Then, at each time step, a new node (not selected 
before) is chosen from ( )0u  and linked to m other nodes. Each of the m edges is 
linked with probability β  to a randomly chosen node (avoiding self-connections) 
from the whole set of N − 1 remaining nodes and with probability (1 β− ) fol-
lowing a linear preferential attachment strategy [20]. Finally, the process is re-
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peated 0N m−  time steps. With this procedure, the networks interpolating be-
tween the limiting cases of BA ( 0β = ) and ER ( 1β = ) structure are generated. 

3. The Unified Chaotic System as Node Dynamics 

In this section, a lot of numerical simulations of the unified chaotic systems 
(Lorenz, Lü, and Chen) are presented in different network structures. Figure 1 
( 0α = ), Figure 2 ( 0.8α = ) and Figure 3 ( 1α = ) respectively show synchroni-
zation diagrams of Lorenz, Lü and Chen systems with different network struc-
tures. For each panel in them, the synchronization values ( )p t  are computed, 
labeled as Forward and Backward continuations. The red lines represent For-
ward and the yellow lines represent Backward. In Forward numerical trials, the 
state of the network is monitored as a function of the coupling strength, by 
gradually increasing the value of λ in steps δλ  from 0λ . Therefore, the value 
of the global order parameter p is computed for 0 0 0, , , nλ λ δλ λ δλ+ + . Fur-
thermore, we look for a first-order transition and a synchronization hysteresis, 
so we do the simulations also in the reverse way, i.e., starting from 0 nλ δλ+ , 
and gradually decreasing the coupling strength by δλ  at each step. Correspon-
dingly, Figure 4 ( 0α = ), Figure 5 ( 0.8α = ) and Figure 6 ( 1α = ) respectively 
show the local error diagrams for coupled Lorenz, Lü, and Chen systems with 
different network structures under Forward continuations. Here, we select 

0.01δλ =  and set 0.01r =  in the Heaviside function. 
For each panel in Figure 1, we can find that for the coupled Lorenz systems, a 

sharp, first-order synchronization transition appears from the incoherent state 
to full synchronization. The global order parameter remains 0p   until the 
network begins to synchronize in which p jumps suddenly to 1p   during 
Forward continuations. This result illustrates that all nodes of the network have 
achieved the synchronization state in an instant when the coupling strength in-
creases to a threshold fλ . Moreover, the Backward continuation also shows an 
abrupt transition from the fully synchronized state to the incoherent one. Simi-
larly, this result also illustrates that all nodes of the network fall into the incohe-
rent state in an instant when the coupling strength decreases to a threshold bλ . 
However, the two abrupt phase transitions happen at different threshold i.e. 

f bλ λ≠  so that the whole synchronization diagram displays a strong hysteresis 
seen in yellow lines and meanwhile indicates that explosive synchronization is 
irreversible. In addition, the order parameter p has a slight oscillation before 
achieving complete synchronization. In order to further explore the change of 
the dynamical behavior of each node, the corresponding local error diagrams are 
plotted along the forward continuation and it can monitor the evolution of the 
dynamics for every node defined in section 2, as shown in Figure 4. ( ) 0ie λ =  
represents that the entire network is in a synchronous state, and the simulta-
neously sharp drop indicates the emergence of explosive synchronization. We 
can see that dynamical behaviors of nodes retain, i.e., 0ie ≠  until the coupling 
strength fλ λ= , which indicates the abrupt synchronization observed in Figure 1.  
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Figure 1. (color online) The synchronization diagrams ( )p λ  of the networked Lorenz systems for different networks con-

structed using the model introduced in [20]. The β  values in each panel are (a) 0β =  (BA), (b) 0.2β = , (c) 0.6β = , (d) 
1β =  (ER). The four panels show both Forward and Backward continuations, as λ  is changed in steps of 0.01δλ = . The red 

line is Forward and the yellow line is Backward. The size of the networks is N = 200 and the average degree is 6k = . 

 

 

Figure 2. (color online) The synchronization diagrams ( )p λ  of the networked Lü systems for different networks constructed 

using the model introduced in [20]. The β  values in each panel are (a) 0β =  (BA), (b) 0.2β = , (c) 0.6β = , (d) 1β =  
(ER). The four panels show both Forward and Backward continuations, as λ  is changed in steps of 0.01δλ = . The red line is 
Forward and the yellow line is Backward. The size of the networks is N = 200 and the average degree is 6k = . 
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Figure 3. (color online) The synchronization diagrams ( )p λ  of the networked Chen systems for different networks constructed 

using the model introduced in [20]. The β  values in each panel are (a) 0β =  (BA), (b) 0.2β = , (c) 0.6β = , (d) 1β =  
(ER). The four panels show both Forward and Backward continuations, as λ is changed in steps of 0.01δλ = . The red line is 
Forward and the yellow line is Backward. The size of the networks is N = 200 and the average degree is 6k = . 

 

 
Figure 4. (color online) The error diagrams ( )ie λ  of the networked Lorenz systems for different networks constructed using the 

model introduced in [20]. The values in each panel are (a) 0β =  (BA), (b) 0.2β = , (c) 0.6β = , (d) 1β =  (ER). The four 
panels show errors of all nodes as λ  is increased in steps of 0.01δλ = . The size of the networks is N = 200 and the average de-
gree is 6k = . 
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Figure 5. (color online) The error diagrams ( )ie λ  of the networked Lü systems for different networks constructed using the 

model introduced in [20]. The β  values in each panel are (a) 0β =  (BA), (b) 0.2β = , (c) 0.6β = , (d) 1β =  (ER). The four 
panels show errors of all nodes as λ  is increased in steps of 0.01δλ = . The size of the networks is N = 200 and the average de-
gree is 6k = . 

 

 

Figure 6. (color online) The error diagrams ( )ie λ  of the networked Chen systems for different networks constructed using the 

model introduced in [20]. The β  values in each panel are (a) 0β =  (BA), (b) 0.2β = , (c) 0.6β = , (d) 1β =  (ER). The 
four panels show errors of all nodes as λ  is increased in steps of 0.01δλ = . The size of the networks is N = 200 and the average 
degree is 6k = . 
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Thus, the first-order transition of the networked Lorenz systems corresponds to 
a process in which no microscopic signal of synchronization is observed until 
the threshold of coupling strength fλ  is reached. 

The conclusive information conveyed by Figure 1 and Figure 4 is that a 
first-order transition emerging in the networks coupled with Lorenz systems is, 
indeed, not associated with any specific network structures. It is worth noticing 
that one can have first-order transitions in coupled Lorenz systems for hetero-
geneous or homogeneous topologies, without any conditions such as a positive 
correlation between the graph connections and the node dynamics. 

However, the synchronization diagrams of coupled Lü and Chen systems are 
contrasted with the Lorenz system, between which the differences are very ap-
parent, as shown in Figure 2 ( 0.8α = ) and Figure 3 ( 1α = ). There are huge 
shocks, and even sometimes the coupled systems are suddenly to desynchronize 
when the networks are almost to synchronize during the Forward continuation. 
However, the global order parameter ( )p λ  will keep being a stable value, pro-
vided the network achieves complete synchronization. This result shows that 
there exists partial synchronization for coupled Lü and Chen systems. It can be 
understood as second-order transitions in a certain sense. Moreover, an obvious 
hysteresis phenomenon from complete synchronization to incoherence is not 
observed in networks coupled with Lü and Chen systems. Although the red line 
and the yellow line are not completely coincident, the forward threshold fλ  is 
very close to the backward threshold bλ . We guess that these small distances 
between fλ  and bλ  resulted from systematic errors in numerical simulations. 
Simultaneously, we can find that the local error parameters of some nodes are 
gradually reduced to zero, i.e., a second-order transitions towards synchroniza-
tion take place in networked Lü and Chen systems, as shown in Figure 5 and 
Figure 6. Finally, we think that explosive synchronization mainly depends on 
the dynamics of systems based on the above discussions. It may be possible that 
explosive synchronization emerges by imposing a positive correlation between 
the heterogeneity of the network structures and node dynamics, which is worthy 
of further investigation. 

4. The Rössler System as Node Dynamics 

In this section, some numerical simulations of the coupled Rössler systems are 
presented in different networks. The global synchronization diagrams ( )p λ  
and local error diagrams ( )ie λ  are computed, similarly to the coupled unified 
chaotic systems, as shown in Figure 7 and Figure 8. Numerical simulations 
show that the coupled Rössler systems achieve synchronization much faster than 
Lorenz systems for the same network topologies. Therefore, ( )ie t  becomes ze-
ro with a very small λ . 

For each panel in Figure 7 shows a typical second-order transition in Forward 
process. To analyze deeply the synchronization transition, we monitor the evo-
lution of the dynamical behaviors of every node. Figure 8 shows that the  
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Figure 7. (color online) The synchronization diagrams ( )p λ  of the networked Rössler systems for different networks con-

structed using the model introduced in [20]. The β  values in each panel are (a) 0β =  (BA), (b) 0.2β = , (c) 0.6β = , (d) 
1β =  (ER). The four panels show both Forward and Backward continuations as λ  is changed in steps of 0.01δλ = . The red 

line is Forward and the yellow line is Backward. The size of the networks is N = 200 and the average degree is 6k = . 

 

 
Figure 8. (color online) The error diagrams ( )ie λ  of the networked Rössler systems for different networks constructed using the 

model introduced in [20]. The β  values in each panel are (a) 0β =  (BA), (b) 0.2β = , (c) 0.6β = , (d) 1β =  (ER). The 
four panels show errors of all nodes as λ  is increased in steps of 0.01δλ = . The size of the networks is N = 200 and the average 
degree is 6k = . 
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local error parameters ( )ie λ  of nodes are continuously reduced to zero, as the 
coupling strength λ  is increased, which results in a second-order transition. 

Importantly, as shown in Figure 7, in Backward continuations, the coupling 
constantly decreases, but the network will keep synchronous for all different 
network structures. We think that the phenomenon is caused by the dynamical 
features of Rössler systems. To explain it, we plot the Rössler attractors after 
network synchronization. We find that the trajectory of coupled Rössler systems 
moves into a periodic orbit once the network synchronizes, as shown in Figure 
9. To further verify our conjecture, we plot the Z-direction trajectory of one 
node randomly chosen from the network, as shown in Figure 10. It is clearly 
observed that the trajectory is periodic. Therefore, synchronization of the 
coupled Rössler systems will not be destroyed once it is achieved. 

5. Conclusion 

In conclusion, we reported the transitions towards synchronization of coupled 
chaotic systems in different networks. Our results show that the emergence of 
explosive synchronization mainly depends on the dynamics of chaotic systems, 
especially the specific dynamical state at which the chaotic systems. We have 
given here numerical proof that a first-order and irreversible synchronization 
transition takes place in a network of coupled Lorenz systems, although the 
network structures are more homogeneous. It has been seen that the correlation 
between node dynamics and topological heterogeneity is not a necessary condi-
tion for such an explosive transition in networked Lorenz systems. But for the  

 

 
Figure 9. (color online) The Rössler attractors diagrams for different networks constructed using 
the model introduced in [20]. The β  values in each panel are (a) 0β =  (BA), (b) 0.2β = , (c) 

0.6β = , (d) 1β =  (ER), and the coupling strength 0.25λ = . 
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Figure 10. (color online) Z-direction trajectories of one of the Rössler systems after complete synchronization achieved. The β  
values in each panel are (a) 0β =  (BA), (b) 0.2β = , (c) 0.6β = , (d) 1β =  (ER). 
 

networked Lü and Chen systems, a second-order transition towards synchroni-
zation is observed, even in the heterogeneous network structures. Surprised, the 
synchronous state of the networked Rössler systems would not be destroyed 
once the network achieves complete synchronization, which is because the syn-
chronized Rössler systems move into a periodic orbit. Our findings extend the 
possibility of encountering first-order transitions to a larger variety of network 
topologies. This will help us to apply the uncovered mechanism to practice in 
the future. 
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