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Abstract 
In this article, by using the modified CK direct method, we give a relationship 
between the generalized fifth-order KDV equations with variable coefficients 
and the corresponding constant coefficients ones. Then, we construct the ab-
undant travelling solutions by the extended trial equation method (ETEM) in 
terms of different functions, such as the elliptic functions, rational functions, 
hyperbolic functions and trigonometric functions. The extended trial equa-
tion method is powerful and can be used to other partial differential equa-
tions and more research can be done by this method. 
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1. Introduction 

It is well known that the exact solutions of partial differential equations are an 
important problem in nonlinear science; the travelling wave solutions of partial 
differential equations with variable coefficients are always playing an important 
role in studying the long-time behavior of solutions and understanding the com-
plex nonlinear fluctuations. Especially in the multifarious real physical back-
ground such as the field of nonlinear optical crystal and plasma, nonlinear par-
tial differential equations (PDEs) with variable coefficients can often provide rea-
listic and powerful models than the corresponding constant coefficients ones 
when the inhomogeneities of media are considered. There are lots of studies have 
been conducted with different types of the PDEs, such as the modified trigono-
metric functions series [1] [2], the G G′  expand method [3] [4], the first integral 
method [5] [6], the modified CK direct method [7] [8] [9], the ( )( )exp φ ξ−  
method [10] [11], modified simple equation method [12] [13], infinite series 
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method [14] [15], the Lie symmetry analysis method [16]-[21] and the extended 
trial equation method [22] [23]. In this paper, we will use the modified CK direct 
method and the extended trial equation method (ETEM) to discuss the exact 
solutions for the following generalized fifth-order nonlinear partial differential 
KDV equation [24] [25] [26] [27] with time-dependent variable coefficients of 
the dispersion:  

( ) ( ) ( ) ( )
2 3 5

2
2 3 5 .u u u ut u u t F t u G t

x xx x x
u

t
α β∂ ∂ ∂ ∂ ∂
− − − −

∂ ∂ ∂
∂

∂ ∂
=

∂
       (1) 

here the derivative tu  represents the time evolution of a travelling wave as it 
travels in a certain direction, the function of nonlinear terms 2 ,x x xxu u u u  and 

xxxuu  are to collect the waves and the function of the linear term xxxxxu  is to 
disperse the waves, respectively, ( ) ( ) ( ) ( ), , ,t t F t G tα β  are arbitrary smooth 
functions of t. When ( ) ( ) ( ) ( ), , ,t t F t G tα β  be constant, the Equation (1) be 
the generalized fifth-order KDV equation. What’s more, we can get many other 
famous fifth-order partial differential equations by taking different values of the 
parameters: 

Sawada-Kotera (SK) equation: when 
2

5, , 1
2

FF Gβ α= = = =  

25 5 5 0.t x x xx xxx xxxxxu u u u u uu u+ + + + =  

Caudrey-Dodd-Gibbon (CDG) equation: when 
2

30, , 1
5

FF Gβ α= = = =  

2180 30 30 0.t x x xx xxx xxxxxu u u u u uu u+ + + + =  

Lax equation: when 232 , , 1
10

F F Gβ α= = =  

230 20 10 0.t x x xx xxx xxxxxu u u u u uu u+ + + + =  

Kaup-Kuperschmidt (KK) equation: when 
2510, , , 1

2 2
FF F Gβ α= = = =  

250 25 10 0.t x x xx xxx xxxxxu u u u u uu u+ + + + =  

Ito equation: when 
223, 2 , , 1

9
FF F Gβ α= = = =  

22 6 3 0.t x x xx xxx xxxxxu u u u u uu u+ + + + =  

These equations can describe motions of waves in shallow water under gravity 
and in a one-dimensional nonlinear lattice. It is an important mathematical model 
with wide applications in quantum mechanics and nonlinear optics. Until now, a 
great number of authors have used lots of methods to solve these PDEs, Alvaro 
and H. Salas use the exp function method to obtain some exact solutions of Equ-
ation (1), Abdul-Majid Wazwaz obtained some new solition solutions of the 
modified form of fifth-order KDV equation (fKdV). In 2014, F. I. Leite consi-
dered the new concepts of self-adjoint equations formulated by Ibragimov and 
Gandarias are applied to the fifth-order evolution KDV equations. In 1989, Clark-
son and Kruskal put forward the CK direct method for the first time, and then 
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Lou modified the CK direct method and proposed a simple method which called 
the modified CK direct method. Furthermore, many scholars have studied the 
nonlinear equations with this method. In this paper, a new ETEM method is ap-
plied to the variable coefficient KDV equation which is reduced by CK method 
for the first time, and a series of new exact solutions are obtained. 

The aim of this research is to establish an equivalence relation between the va-
riable coefficients PDE and the corresponding constant coefficients one, and use 
a variety of distinct trail equations to construct some new travelling wave solu-
tions of the constant coefficients equation. In this way, we can obtain a series of 
new exact solutions of the variable-coefficient equation by the relation between 
the variable-coefficient equation and the constant-coefficient equation, such as 
the trigonometric function solution, soliton solution, periodic solution and ra-
tional solution. In section 2, the equivalence relation between the fifth-order KDV 
equation with variable coefficient and the corresponding constant coefficient 
equation is given by using the modified CK direct method. In section 3, the 
ETEM is briefly introduced. In section 4, we obtain some new types of travelling 
wave solutions to Equation (1). In section 5, the more possibility of ETEM me-
thod for solving partial differential equations is discussed. In section 6, the con-
clusion and discussion are given. 

2. Equivalence Transformations (ETs) of Generalized  
Fifth-Order KDV Equation 

In this section, we will use the modified CK direct method to look for the equi-
valence transformations between Equation (1) and the corresponding following 
equation. 

2 0,t x x xx xxx xxxxxu au u bu u cuu du+ + + + =                (2) 

where , , ,a b c d  are arbitrary constants. Suppose that Equation (1) has the fol-
lowing solution: 

( ) ( ), , ,u x t A BU X T= +                      (3) 

where ( ) ( ) ( ) ( ), , , , , , ,A A x t B B x t X X x t T T x t= = = =  are functions can be de-
termined by requiring ( ),U U X T=  satisfy the transformation  
{ } { }, , , ,x t u X T U→ . in other words, we let { }, ,X T U  to satisfied the corres-
ponding constant coefficients equation of Equation (1) as following 

2 0.T X X XX XXX XXXXXU aU U bU U cUU dU+ + + + =         (4) 

Then substituting Equation (3) into Equation (1), requiring ( ),U U X T=  and 

TU  satisfied Equation (4), we can collect the coefficients of U, letting their de-
rivatives to be zero, we have 

0,xxxxx tGBX dBT− =  
2 3 0,x tFB X cBT− =  

  
3 2 215 10 0,x x xx x xxxFBX A GBX X GBX X+ + =               (5) 
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10 5 3 0,xx xxx x xxxx x xxGBX X GBX X FBX X a+ + =  

0,xx x xxx xxxxx tBX A FBX A GBX BXβ + + + =  

2 0.xxxxx x xx x xxx tGA A A A A FA A Aα β+ + + + =  

Solving above equations, we have 

0 2 33 5
2 0 2

0, , , , ,t tcT T
A B C F G d X C x C

C C C
= = = = = +  

2 3
2 0 2 0

, ,t tT T
a b

C C C C
α β= =                      (6) 

where tT  is an arbitrary function of t, 1 2 3, ,C C C  are arbitrary constants. Then 
with Equation (6), we can obtain new travelling wave exact solutions for the Eq-
uation (1) as follows: 

( )( )0 2 3 , .u C U C x C T t= +                      (7) 

If ( ),U X T  is the solution of fifth-order KDV equation with constant coeffi-
cients, then ( ),u x t  also is a solution of Equation (1). 

3. Description of the Extend Trial Equation Method 

In this section, we introduce the extend trial equation method (ETEM) as fol-
lows. 

Step1. Firstly, we consider the following nonlinear partial differential equa-
tion: 

( )1 , , , , , , , 0,t x xx xt tt xxxF u u u u u u u =                (8) 

In order to look for the solutions of Equation (1), we make the travelling wave 
transformation 

( ) ( ), ,u x t U ξ=  

where x ctξ = − , and c is an arbitrary constant. 
Then the Equation (8) can be converted to an ordinary differential equation as 

following 

( )2 , , , , 0.F U U U Uξ ξξ ξξξ =                    (9) 

Step 2. We suppose that the exact solution of Equation (9) is of the form 

1
,i

i
i

u Y
δ

τ
=

= ∑                          (10) 

where ( )1,2,3, ,i iτ δ=   are arbitrary constant, and iY  satisfied the following 
condition 

( ) ( ) ( )
( )

2
2 0 1 2

2
0 1 2

,
Y Y Y Y

Y Y
Y Y Y Y

θ
θ

ε
ε

φ ξ ξ ξ ξ
ψ ζ ζ ζ ζ

+ + + +′ = Λ = =
+ + + +





        (11) 

where θξ  and εζ  are arbitrary positive integers to be determined later. 
Step 3. According to the balance principle we can determine a relation of θ , 

ε  andδ . We can take some different values of θ , ε  and δ  and the solution 
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(10) can be written as a series of infinity solutions. 
Step 4. Substituting Equation (10) and Equation (11) into Equation (9), let-

ting the coefficients of Y to be zero, by solving the system of algebraic equations 
by some software like Maple and Mathematica, we can figure out the values of 

,θ εξ ζ  and δτ , then reducing Equation (11) to the elementary form as follows: 

( )
( )

( )
( )0

1 d d ,
Y

Y Y
YY

ψ
ξ η

φ
± − = =

Λ
∫ ∫               (12) 

where 0η  is an arbitrary constant.  
Using a complete discrimination system for polynomial to classify the differ-

ent forms of Equation (12), we can write the travelling wave solutions respec-
tively. In this paper, the solutions of PDEs with variable coefficients also can be 
written respectively by the conclusion we got in the last section. Moreover, this 
method is appropriate for lots of other PDEs which can be discussed as follows. 

4. ETEM to Generalized Fifth-Order KDV Equation  

In this section, we discuss the generalized fifth-order KDV equation by using ex-
tend trial equation method. 

2 0.t x x xx xxx xxxxxu au u bu u cuu du+ + + + =                (13) 

Using the travelling wave transformation 
( ) ( ),u x t U ξ= , where x Ctξ = − , 

Equation (13) turns into the following ordinary differential equation, then in-
tegrate the equation once: 

( ) ( )2 43
1 0,

3 2
a b cC CU U U cUU dU− ′ ′′− + + + + =           (14) 

where 1C  is the integration constant. Substituting Equations (10) and (11) into 
Equation (14) 

1
1 0 ,U Y Yδ δ

δ δτ τ τ−
−= + + +  

3 3 3 3 3 3 3
1 0 ,U Y Yδ δ

δ δτ τ τ−
−= + + +                 (15) 

( )
2 2

1 2
1 , , , ,U Y Y X Y

δ θ ε
δ

δδτ τ θ δ ε
+ − −

−′ ′= + = +   

( ) ( )4 2 2 4
2 , , , .U X Y δ θ ετ θ δ ε + − −= +                (16) 

Using the balance principle, we find the highest degree terms of two Equa-
tions (15) and (16) should be the same, so we have 

2.δ θ ε= − −  

By assuming and assigning the variables that satisfy the above conditions, we 
can obtain the traveling wave solution of the Equation (13) in many cases. 

If 0, 3ε θ= =  and 1δ = , then 

0 1 ,U Yτ τ= +  

2 3
0 1 2 3

1
0

,
Y Y Y

U
ξ ξ ξ ξ

τ
ζ

+ + +′ =  
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( )2
1 2 3

1
0

2 3
,

2

Y Y
U

ξ ξ ξ
τ

ζ

+ +
′′ =  

( )2 3
0 1 2 3 2 3

1 3
2

0

3
,

Y Y Y Y
U

ξ ξ ξ ξ ξ ξ
τ

ζ

+ + + +
′′′ =  

( )
2 3 2 2

4 3 2 3 1 3 2 0 3 1 2
1 2

0

15 15 9 2 6
,

2
Y Y Y Y

U
ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ

τ
ζ

+ + + + +
=       (17) 

where 0 3 0ζ ξ ≠ .  
Substituting Equation (17) into Equation (14), collecting the coefficients of Y 

and solving these algebraic equation systems respectively, we can obtain: 

3 1 0 1,Lξ ζ τ=  

( )0 0 1
2

2

3 2
,

L c a
L

ζ τ
ξ

+
= −  

( )
( )

2 2 2 2 2 2 2 2 2 2 2 2
0 1 0 1 2 0 1 0 2 0 2 0 0 2

1 2
1 2 1

9 3 12 2 4
,

9

L dc L L c L adc L a L ac da CL

L dL b

ζ τ τ τ τ τ τ
ξ

τ

− + − − + − +
=

+
 

0ξ  (See Appendixes A1),         (18) 

where 
2 2

1
2 40 4 4

30
c b ad b bc cL

d
− − + − + + +

= ± , 

2 2 2
3 1 1 154 15 9L L d L db L dc b bc= + − + − , 2 115L dL c b= + + . We can use Equation 

(18) and Equation (12) to get 

( )
( )

3 2
3 2 1 0

0
0

1 d d .
Y Y Y Y

Y Y
Y

ξ ξ ξ ξ
ξ η

ζ
+ + +

± − = =
Λ

∫ ∫         (19) 

Then, we will discuss some of the special form of solutions of Equation (14) as 
follow.  

If Equation (19) can be written as following form: 

( )

( )
( )

(

3 2
3 2 1 0

0 13 2
1 1

2

2 2 2 2 2 2 2 2 2 2 2 2
1 0 1 2 0 1 0 2 0 2 0 0 2

2
1 2 1

3 2 2 3 3 3 3 3 3 2 3 3
0 0 2 2 0 2 0 1 1 2 0 2 1 0 2

3 2

9 3 12 2 4

9

2 6 3 27 9 3

Y Y Y Y
L c a

L Y Y
L

L dc L L c L adc L a L ac da CL
Y

L dL b

d L a L ab CL b C L L d c L L ac L

ξ ξ ξ ξ
τ

τ

τ τ τ τ τ τ

τ

ζ τ τ τ τ τ

+ + +

+
= −

− + − − + − +
+

+

+ − − + − − +

 

) ( )
( )

2 3 2 3 2 3 3 3 2 3 3 3 2
0 2 0 2 0 1 0 1 2 0 2

3 3 3 3 3 2 3 2 2 3 2 2
1 2 0 1 2 0 0 2 1 0 2 0 1

2 3 2 2 3 3 2 2 3 2
0 1 0 1 2 0 1 2 0 1 2 2 1 3

3
1

6 3 81 24 3 6

9 27 54 24 162

108 72 9 9 3

.

ac L c L C d L c d a C L b d CL a

L L da CL L d c L L d c L da d L c a

d L ca c L L ad d L L ac d CL L c L L

Y

τ τ τ τ τ

τ τ τ τ τ

τ τ τ τ τ

α

− − − − − +

− + + + −

− + − +

= −

  (20) 

where 1α  is an arbitrary constant. Collecting the coefficients of Y of Equation 
(20), let all coefficients to be zero, we can get the following results 
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1 2
1 0

1 1

31 , ,
3 3

L
L cL a

α
τ τ= =

+
 

(
) ( )( )

2 3 2 2 2 2 2 2 2
1 1 1 2 1 1 1 2 1 2

2 2
1 1 1 1

3 135 18 180 9 6 12

60 12 4 2 3 2 ,

C L dc L L c L adc L bc aL L acL L

L da L abc a b L L c a

α= − + + + −

+ + + +
 

1̀C         (See Appendixes A2) (21) 
In this family, Equations (18), (19) and (21) lead to get 

2 3
3 0 2 1 0 1 1 0 0 1 0, 3 , 3 , .ξ ζ ξ α ζ ξ α ζ ξ α ζ= = − = = −             (22) 

And  

( )
( ) ( )

0 3
121

1 d 2d .YY
YY Y

ξ η
αα

± − = = = −
−Λ −

∫ ∫          (23) 

By Equation (23), (21), we can get the rational exact solution of Equation (14) 
as following 

( )
( )

1 2
1 2

1 1 0

3 1 4 .
3 3

LU
cL a L
α

ξ α
ξ η

 
 = + +

+  − 
 

( )
( )

1 2
1 2

1 1 0

3 1 4, ,
3 3

Lu x t
cL a L x Ct
α

α
η

 
 = + +

+  − − 
           (24) 

where 

(
) ( )( )

2 3 2 2 2 2 2 2 2
1 1 1 2 1 1 1 2 1 2

2 2
1 1 1 1

3 135 18 180 9 6 12

60 12 4 2 3 2 ,

C L dc L L c L adc L bc aL L acL L

L da L abc a b L L c a

α= − + + + −

+ + + +
 

Hence, with the relation of Equation (7) obtained above, Equation (1) have 
the following form of rational travelling wave solution 

( )

( )

2 2

1

0
2 2

0 1 22 2
0

2 40 4 43 15
30

,
2 40 4 43 3

30

1 4 ,
2 40 4 4

30

c b ad b bc cd c b
d

u x t C
c b ad b bc cc a

d

C
X CTc b ad b bc c

d

α

α
η

  − − + − + + +  ± + +
    =

 − − + − + + +
 ± +
 
 

 
 + +
   − −− − + − + + +   ±

 
 

 (25) 

where 2 3X C x C= + , T is an arbitrary function of t (Figure 1 and Figure 2). 
1) In the following, we chose some new coefficients to make it easier to calcu-

late 

3 1 0 1 2 4 0 0, ,L Lξ ζ τ ξ ζ τ= =  

 
( )( ) ( )( )2 2 2 2

1 4 0 4 0 0 0 1 42 9 ,L d L c a C dL bξ τ τ τ ζ τ= − + − + +  

(
) ( )

3 3 2 3
0 0 1 0 0 1 0 0 1 1 1 4 0

2 3 3 2 3 3 3 2
4 0 0 0 4 0 4 0 4 0 1 3

2 9 27 3 27 3 6

3 3 3 3 3 3 3 .

adL ab dCL bC dL C bC cdL

c L ac cC d L adL dCL L

ξ ζ τ τ τ τ τ

τ τ τ τ τ τ τ

= − − + + − − +

− + − − − +
 (26) 
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Figure 1. The three-dimensional picture of the exact solution (25) of Equation 
(1), and its projection at 03, 2, 1, 3b c a d η= = = = =  and 11α = . 

 

 

Figure 2. The two-dimensional picture of the equation 
exact solution (25) of Equation (1), and its projection at 

0t = . When 03, 2, 1, 3b c a d η= = = = =  and 11α = . 
 

where  
2 2

1
2 40 4 4 ,

30
c b ad b bc cL

d
− − + − + + +

= ±  

2 2 2
3 1 1 154 15 9 ,L L d L db L dc b bc= + − + −   

( ) ( )4 1 13 2 15 .L cL a dL b c= + + +  
If Equation (19) can be written as following form: 

( )
( ) (

) ( ) ( )

2 2 2 2
4 0 4 0 0 03 2 3

1 1 4 0 1 02
1 4 1 5

3 2 3 2 3 3
0 1 0 0 1 1 1 4 0 4 0 0

22 3 3 3
0 4 0 4 0 4 0 2 3

2 1 9
9 3

27 3 27 3 6 3 3

3 3 3 3 ,

L d L c a C
L Y L Y Y adL

dL b L

ab dCL bC dL C bC cdL c L ac

cC d L adL dCL Y Y

τ τ τ ζ
τ τ τ

τ τ

τ τ τ τ τ τ

τ τ τ τ α α

− + − +
+ + + −

+

− + + − − + − +

− − − + = − −

 (27) 

where 2 3,α α  are arbitrary constants. Collecting and letting all coefficients of Y 
of Equation (27) to be zero, we can get the following results 
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2 3
1 0

1 4

21 , ,
L L

α α
τ τ

+
= =  

(

)

2 2 2 2 2 2
1 4 2 1 4 2 3 1 4 3 1 4 1 1 4 2 32

4 1

2 2 2 2 2 2
1 4 4 4 1 4 2 3 1 2 1 2 3 1 3

1 17 26 2 8 8
2

2 2 8 8 2 ,

C L L d L L d dL L L L c L L c
L L

L L c L b L b L a L a L a

α α α α α α α

α α α α α α α α

= + + − −

− + + + + +
 

1C          (See Appendixes A3) (28) 
In this family, Equation (18), (19) and (28) lead to get as follows: 

( ) ( ) 2
3 0 2 2 3 0 1 2 2 3 0 0 3 2 0, 2 , 2 , ,ξ ζ ξ α α ζ ξ α α α ζ ξ α α ζ= = − + = + = −   (29) 

where 0ζ  is an arbitrary constant. 
When 3 2 0α α− > , 

( )
( )( )

31
0 1

3 2 3 222 3

d 2 tan ,
YY

Y Y

α
ξ η

α α α αα α

−
 −

± − = = −  
− −  − −

∫    (30) 

we can solve for Y 

( ) ( )3 22
3 3 2 0tan .

2
Y

α α
α α α ξ η

 −
= + − − 

  
           (31) 

By Equation (31), (29), we can get the rational exact solution of Equation (14) 
as following 

( ) ( ) ( )3 222 3
3 3 2 0

4 1

2 1 tan .
2

U
L L

α αα α
ξ α α α ξ η

  −+
 = + + − − 
    

    (32) 

With the relation of Equation (7), Equation (1) have the following form of ra-
tional travelling wave solution 

( )
( )

( ) ( )

2 2

2 3

0
2 2

2 2

3 22
3 3 2 0

2 40 4 42 15
30

,
2 40 4 43 2

30

1

2 40 4 4
30

tan ,
2

c b ad b bc cd b c
d

u x t C
c b ad b bc cc a

d

c b ad b bc c
d

X CT

α α

α α
α α α η

   − − + − + + +   + ± + +
     =

  − − + − + + +
 ± +    

+
 − − + − + + +
 ±
 
 



  −
 × + − − − 
     



(33) 

where 2 3X C x C= + , T is an arbitrary function of t. (Figure 3 and Figure 4) 
When 3 2 0α α− < , 

( ) ( )3 22
2 2 3 0csch .

2
Y

α α
α α α ξ η

 −
= + − − 

  
             (34) 

Similarly, we can get the exact solution of Equation (1) as follow 
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Figure 3. The three-dimensional picture of the exact solution (33) of Equa-
tion (1), When 03, 2, 1, 1b c a dη= = = = =  and 2 31, 5α α= = . 

 

 

Figure 4. The two-dimensional picture of the equation exact solution (33) of Equation (1), 
and its projection at 0t = . When 03, 2, 1, 1b c a dη= = = = =  and 2 31, 5α α= = . 

 

( )
( )

( ) ( )

2 2

2 3

0
2 2

2 2

2 32
2 2 3 0

2 40 4 42 15
30

,
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(35) 

where 2 3X C x C= + , T is an arbitrary function of t (Figure 5 and Figure 6). 
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Figure 5. The three-dimensional picture of the exact solution (35) of 
Equation (1), when 03, 2, 1, 1b c a d η= = = = =  and 2 33, 1α α= = . 

 

 

Figure 6. The two-dimensional picture of the equation exact 
solution (35) of Equation (1), and its projection at 0t = , when 

03, 2, 1, 1b c a d η= = = = =  and 2 33, 1α α= = . 

5. More Discussion 

In this article, we obtained a series of exact travelling wave solutions of fifth-order 
KDV equation by the extended trail equation method; according to picking dif-
ferent parameters we can get more exact analytic solutions of nonlinear partial 
differential equations like fifth-order KDV equation. 

The extend trial equation method (ETEM) is proving to play an important 
role in solving partial differential equations, by using a variety of trail equations, 
we can construct lots of new types of travelling wave solutions. In this paper, we 
only considered the following parameters 

0, 3, 1.ε θ δ= = =  

In a later study we can also study different situations such as 1δ ≠  or 0ε ≠ . 
In this paper, the highest degree of Equations (15) and (16) should be the same, 
according to balance the highest degree terms of these two Equations (15) and 
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(16). So we can take any other parameters that satisfies the following equation 

2.δ θ ε= − −  
For example 
1) When 0, 4ε θ= =  and 2δ = . 
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where 0 4 0ζ ξ ≠ . 
2) When 1, 4ε θ= =  and 1δ = . 
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(39) 

where θξ  and εζ  are arbitrary positive integers to be determined in later cal-
culations.  

In later studies, when studying other nonlinear partial differential equations, 
we can also obtain the relationship of parameters through balancing the highest 
degree terms of these equations, select parameters and apply the Extend trial 
equation method (ETEM) to solve the exact solution of the equation. 
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6. Conclusion 

In this letter, the ETEM has been successfully applied to construct exact travel-
ing wave solutions for fifth-order KDV equation. Then, the solutions of corres-
ponding nonlinear partial differential equations with variable coefficients are ob-
tained by the equivalence transformation given in Section 2. In later studies, many 
solutions of variable coefficient PDEs can be considered in the same procedure. 
Generally, for tackling exact solutions to vc-PDEs are difficult, the results in this 
paper provide a useful supplement to the existing literature. Moreover, the equiva-
lence transformation and improved ETEM can be used to other types of vc-PDEs 
in mathematical physics. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Qureshi, M.I., Quraishi, K.A. and Srivastava, H.M. (2008) Some Hypergeometric 

Summation Formulas and Series Identities Associated with Exponential and Trigo-
nometric Functions. Integral Transforms & Special Functions, 19, 267-276. 
https://doi.org/10.1080/10652460801896024 

[2] Yu, H. (2016) On Generalized Trigonometric Functions and Series of Rational Func-
tions. Journal of Number Theory, 180, 512-532.  
https://doi.org/10.1016/j.jnt.2017.05.015 

[3] Zhang, Z., Zhong, J., Dou, S., Liu, J., Peng, D. and Gao, T. (2013) A New Method to 
Construct Travelling Wave Solutions for the Klein-Gord-Zakharov Equations. Ro-
manian Journal of Physics, 58, 766-777. 

[4] Miao, X. and Zhang, X. (2011) The Modified (G’/G)-Expansion Method and Trav-
eling Wave Solutions of Nonlinear the Perturbed Nonlinear Schrödinger’s Equation 
with Kerr Law Nonlinearity. Communications in Nonlinear Science and Numerical 
Simulation, 16, 4259-4267. https://doi.org/10.1016/j.cnsns.2011.03.032 

[5] Feng, Z. and Wang, X. (2003) The First Integral Method to the Two-Dimensional 
Burgers-Korteweg-de Vries Equation. Physics Letters A, 308, 173-178. 
https://doi.org/10.1016/S0375-9601(03)00016-1 

[6] Eslami, M. and Rezazadeh, H. (2015) The First Integral Method for Wu-Zhang Sys-
tem with Conformable Time-Fractional Derivative. Calcolo, 53, 475-485. 
https://doi.org/10.1007/s10092-015-0158-8 

[7] Qian, S. and Tian, L. (2007) Modification of the Clarkson-Kruskal Direct Method 
for a Coupled System. Chinese Physics Letters, 24, 2720-2723. 
https://doi.org/10.1088/0256-307X/24/10/002 

[8] Chen, M. and Liu, X.Q. (2011) Exact Solutions and Conservation Laws of the Ko-
nopelchenko-Dubrovsky Equations. Pure & Applied Mathematics, 27, 533-532. 

[9] Yuan, Q. and Lei, Y. (2011) Symmetry Groups and New Exact Solutions of (2+1)- 
Dimensional Broer-Kaup-Kupershmidt (BKK) System. International Conference on 
Multimedia Technology. 

[10] He, J. and Abdou, M. (2007) New Periodic Solutions for Nonlinear Evolution Equa-
tions Using Exp-Function Method. Chaos, Solitons & Fractals, 34, 1421-1429. 

https://doi.org/10.4236/jamp.2019.711183
https://doi.org/10.1080/10652460801896024
https://doi.org/10.1016/j.jnt.2017.05.015
https://doi.org/10.1016/j.cnsns.2011.03.032
https://doi.org/10.1016/S0375-9601(03)00016-1
https://doi.org/10.1007/s10092-015-0158-8
https://doi.org/10.1088/0256-307X/24/10/002


S. F. Sun et al. 
 

 

DOI: 10.4236/jamp.2019.711183 2698 Journal of Applied Mathematics and Physics 
 

https://doi.org/10.1016/j.chaos.2006.05.072 

[11] Kudryashov, N.A. and Loguinova, N.B. (2009) Be Careful with the Exp-Function 
Method. Communications in Nonlinear Science & Numerical Simulation, 14, 1881- 
1890. https://doi.org/10.1016/j.cnsns.2008.07.021 

[12] Hossain, A.K.M.K.S., Akbar, M.A. and Wazwaz, A.M. (2017) Closed Form Solu-
tions of Complex Wave Equations via the Modified Simple Equation Method. Co-
gent Physics, 4, Article ID: 1312751.  
https://doi.org/10.1080/23311940.2017.1312751 

[13] Akter, J. and Ali Akbar, M. (2015) Exact Solutions to the Benney-Luke Equation 
and the Phi-4 Equations by Using Modified Simple Equation Method. Results in 
Physics, 5, 125-130. https://doi.org/10.1016/j.rinp.2015.01.008 

[14] Jiao, X.Y. and Lou, S.Y. (2009) Approximate Direct Reduction Method: Infinite Se-
ries Reductions to the Perturbed mKdV Equation. Chinese Physics B, 18, 3611- 
3615. https://doi.org/10.1088/1674-1056/18/9/001 

[15] Taghizadeh, N., Mirzazadeh, M. and Farahrooz, F. (2011) Exact Travelling Wave 
Solutions of the Coupled Klein-Gordon Equation by the Infinite Series Method. 
Applications and Applied Mathematics, 6, 1964-1972. 

[16] Liu, H.Z., Li, J.B. and Liu, L. (2010) Lie Symmetry Analysis, Optimal Systems and 
Exact Solutions to the Fifth-Order KdV Types of Equations. Journal of Mathemati-
cal Analysis and Applications, 368, 551-558. 
https://doi.org/10.1016/j.jmaa.2010.03.026 

[17] Wang, G.W., Liu, X.Q. and Zhang, Y.Y. (2013) Symmetry Reduction, Exact Solu-
tions and Conservation Laws of a New Fifth-Order Nonlinear Integrable Equation. 
Communications in Nonlinear Science and Numerical Simulation, 18, 2313-2320. 
https://doi.org/10.1016/j.cnsns.2012.12.003 

[18] Liu, H.Z. (2015) Painlevé Test, Generalized Symmetries, Bäcklund Transformations 
and Exact Solutions to the Third-Order Burgers’ Equations. Journal of Statistical 
Physics, 158, 433-446. https://doi.org/10.1007/s10955-014-1130-8 

[19] Liu, H.Z. and Li, J.B. (2012) Painlevé Analysis, Complete Lie Group Classifications 
and Exact Solutions to the Time-Dependent Coefficients Gardner Types of Equa-
tions. Nonlinear Dynamics, 80, 515-527. https://doi.org/10.1007/s11071-014-1885-0 

[20] Sahoo, S. and Ray, S.S. (2017) Analysis of Lie Symmetries with Conservation Laws 
for the (3+1) Dimensional Time-Fractional mKdV–ZK Equation in Ion-Acoustic 
Waves. Nonlinear Dynamics, 90, 1105-1113.  
https://doi.org/10.1007/s11071-017-3712-x 

[21] Xin, X.P. (2018) Non-Local Symmetries and Exact Solutions of Nonlinear Devel-
opment Equations. Journal of Liaocheng University (Natural Science), 32, 15-20. 
(In Chinese) 

[22] Ekici, M., Mirzazadeh, M., Sonmezoglu, A., et al. (2017) Nematicons in Liquid 
Crystals by Extended Trial Equation Method. Journal of Nonlinear Optical Physics 
& Materials, 26, Article ID: 1750005. https://doi.org/10.1142/S0218863517500059 

[23] Ekici, M., Mirzazadeh, M., Sonmezoglu, A., et al. (2017) Optical Solitons with An-
ti-Cubic Nonlinearity by Extended Trial Equation Method. Optik—International 
Journal for Light and Electron Optics, 136, 368-373. 
https://doi.org/10.1016/j.ijleo.2017.02.004 

[24] Abbasbandy, S. and Zakaria, F.S. (2008) Soliton Solutions for the Fifth-Order KdV 
Equation with the Homotopy Analysis Method. Nonlinear Dynamics, 51, 83-87. 
https://doi.org/10.1007/s11071-006-9193-y 

https://doi.org/10.4236/jamp.2019.711183
https://doi.org/10.1016/j.chaos.2006.05.072
https://doi.org/10.1016/j.cnsns.2008.07.021
https://doi.org/10.1080/23311940.2017.1312751
https://doi.org/10.1016/j.rinp.2015.01.008
https://doi.org/10.1088/1674-1056/18/9/001
https://doi.org/10.1016/j.jmaa.2010.03.026
https://doi.org/10.1016/j.cnsns.2012.12.003
https://doi.org/10.1007/s10955-014-1130-8
https://doi.org/10.1007/s11071-014-1885-0
https://doi.org/10.1007/s11071-017-3712-x
https://doi.org/10.1142/S0218863517500059
https://doi.org/10.1016/j.ijleo.2017.02.004
https://doi.org/10.1007/s11071-006-9193-y


S. F. Sun et al. 
 

 

DOI: 10.4236/jamp.2019.711183 2699 Journal of Applied Mathematics and Physics 
 

[25] Bridges, T.J., Derks, G. and Gottwald, G. (2002) Stability and Instability of Solitary 
Waves of the Fifth-Order KdV Equation: A Numerical Framework. Physica D— 
Nonlinear Phenomena, 172, 190-216.  
https://doi.org/10.1016/S0167-2789(02)00655-3 

[26] Leite Freire, I. and Santos Sampaio, J.C. (2012) Corrigendum: Nonlinear Self-Ad- 
jointness of a Generalized Fifth-Order KdV Equation. Journal of Physics A Mathe-
matical & Theoretical, 45, Article ID: 119502.  
https://doi.org/10.1088/1751-8113/45/11/119502 

[27] Triki, H. and Biswas, A. (2011) Soliton Solutions for a Generalized Fifth-Order KdV 
Equation with T-Dependent Coefficients. Waves in Random & Complex Media, 21, 
151-160. https://doi.org/10.1080/17455030.2010.539632 

  

https://doi.org/10.4236/jamp.2019.711183
https://doi.org/10.1016/S0167-2789(02)00655-3
https://doi.org/10.1088/1751-8113/45/11/119502
https://doi.org/10.1080/17455030.2010.539632


S. F. Sun et al. 
 

 

DOI: 10.4236/jamp.2019.711183 2700 Journal of Applied Mathematics and Physics 
 

Appendixes 

( 3 2 2 3 3 3 3 3 3 2
0 0 0 2 2 0 2 0 1 1 2 0 2 1

3 3 2 3 2 3 2 3 3 3 2 3 3
0 2 0 2 0 2 0 1 0
3 2 3 3 3 3 3 2

1 2 0 2 1 2 0 1 2 0 0 2 1
3 2 2 3 2 2 2
0 2 0 1

2 6 3 27 9

3 6 3 81 24

3 6 9 27 54

24 162 108

d L a L ab CL b C L L d c L L

ac L ac L c L C d L c d a

C L b d CL a L L da CL L d c L L d

c L da d L c a d

ξ ζ τ τ τ τ

τ τ τ τ τ

τ τ τ τ

τ τ

= − − + − −

+ − − − −

− + − + +

+ − −

) ( )
3 2 2 3
0 1 0 1 2

3 2 2 3 2
0 1 2 0 1 2 2 1 3

72

9 9 3 .

L ca c L L ad

d L L ac d CL L c L L

τ τ

τ τ τ

+

− +

  (A1) 

3 5 2 2 5 2 3 4 2 2 4 2
1̀ 1 1 2 1 2 2 1 2

4 2 4 3 4 2 2 4 3
1 2 1 2 1 1

3 3 3 2 3 2 2 3 2 2
1 2 1 2 1 2 1 2

3 3 2 3
1 2 1 2 1 2

(10935 2187 1458 14580

1944 729 4374 243

324 972 162 4860

2592 972 81

C L L d c L d c L L dc L L d ac

L L dbc L L dc L d ac L dbc

L L da L L dac L L bc L L d a

L L abcd L L adc L L

α= + − +

+ − + +

+ − − +

+ − + 2 2 3 3
1 281b c L L bc−

 

)

3 2 2 3 2 3 3 2 3 2 2
1 1 1 3 1 2 1 2

2 2 2 2 2 2 2 2
1 2 1 2 1 2 1 2
2 3 2 2 2 2 2 2 2 2
1 1 1 3 1 2 1 2

3 2 3 2
1 1 3 3 1 1

2916 486 27 36 108

864 324 108 108

648 324 54 36 36

72 36 8 2 3

L a d c L adbc L L c L L ab L L abc

L L a bd L L a dc L L ab c L L abc

L a d L a bcd L L ac L L a b L L a bc

L da b L L a c L a L L c

+ + + + −

+ − + −

+ + + + −

+ + + ( ) ( )( )3
12 9 .a dL b+ +

(A2) 

( ) (
2 2 3 3 2 3 2 2 2

1 1 4 2 1 2 3 4 1 2 32 3
1 4 1

2 2 3 2 2 2 3 2 2 2 3 2
1 2 3 1 4 2 3 2 1 4 3 2 1 3

2 2 3 2 2 2 2 2 3 3 3
2 1 3 4 1 3 2 1 4 3 1 4 2

2 2 2 2
1 4 2 3 1 4

1 156 432 135
6 9

48 1863 810 216

24 54 6 6

15 6

C L dL b L ad L d L
L L dL b

L ab L d L L d L L ad

L ab L d L L L bd L L db

L L b L L

α α α α α

α α α α α α α α

α α α α α α

α α

= + +
+

+ + + +

+ + + +

+ + 2 2 3 3 2 2 3
3 2 1 4 2 4 1 2

2 3 3 3 2 3 2 3 2 3
1 4 2 1 4 3 1 4 3 1 4 2 2 3 4 3

432 54

48 54 6 6 3

b L dcL L dcL

L L bc L dcL L L bc L L bc L L

α α α α

α α α α α α

− −

− − − − +

 

2 2 3 3 2 2 3 3 3 3 2 2 3 2 3
1 4 2 1 4 2 1 2 4 1 2 1 2

3 2 2 3 3 3 2 3 2 2 2
1 4 3 1 3 1 3 2 1 4 3

2 2 2 2 2 2 3 2
1 1 4 2 3 2 1 4 3 1 4 2 3
2 2 2 2 2
4 1 2 3 1 4 2 3

6 918 288 54 32

54 36 4 144

342 36 648

135 72

L L b L d L L ad L d L L ab

L d L L ad L ab L L bd

L bdL L L L bc L dcL

L dcL L L bc

α α α α α

α α α α α

α α α α α α

α α α α

+ + + + +

+ + + +

+ − −

− − −

)
2 2 2 2 2
4 1 3 2 1 4 2 3

2 2 2 3 3 2 3 2
1 4 3 2 3 2 1 4 1 4 2 3 1 4 3 2

54 15

6 324 15 6 .

L dcL L L bc

L L bc L L d L L bd L L bd

α α α α

α α α α α α α α

−

− − + +

(A3) 

 

https://doi.org/10.4236/jamp.2019.711183

	Exact Solutions for a Class of Nonlinear PDE with Variable Coefficients Using ET and ETEM
	Abstract
	Keywords
	1. Introduction
	2. Equivalence Transformations (ETs) of Generalized Fifth-Order KDV Equation
	3. Description of the Extend Trial Equation Method
	4. ETEM to Generalized Fifth-Order KDV Equation 
	5. More Discussion
	6. Conclusion
	Conflicts of Interest
	References
	Appendixes

