/
oo Resmurch
0.00 Publishing

Journal of Applied Mathematics and Physics, 2019, 7, 2685-2700
https://www.scirp.org/journal/jamp

ISSN Online: 2327-4379

ISSN Print: 2327-4352

Exact Solutions for a Class of Nonlinear PDE
with Variable Coefficients Using ET and ETEM

Shifei Sun, Lina Chang, Hanze

Liu

School of Mathematical Sciences, Liaocheng University, Liaocheng, China
Email: 345503418@qq.com, changlina2018@163.com, hnz_liu@aliyun.com

How to cite this paper: Sun, S.F., Chang,
L.N. and Liu, H.Z. (2019) Exact Solutions
for a Class of Nonlinear PDE with Variable
Coefficients Using ET and ETEM. Journal of
Applied Mathematics and Physics, 7, 2685-
2700.
https://doi.org/10.4236/jamp.2019.711183

Received: October 16, 2019
Accepted: November 2, 2019
Published: November 5, 2019

Copyright © 2019 by author(s) and
Scientific Research Publishing Inc.

This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Abstract

In this article, by using the modified CK direct method, we give a relationship
between the generalized fifth-order KDV equations with variable coefficients
and the corresponding constant coefficients ones. Then, we construct the ab-
undant travelling solutions by the extended trial equation method (ETEM) in
terms of different functions, such as the elliptic functions, rational functions,
hyperbolic functions and trigonometric functions. The extended trial equa-
tion method is powerful and can be used to other partial differential equa-
tions and more research can be done by this method.
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1. Introduction

It is well known that the exact solutions of partial differential equations are an
important problem in nonlinear science; the travelling wave solutions of partial
differential equations with variable coefficients are always playing an important
role in studying the long-time behavior of solutions and understanding the com-
plex nonlinear fluctuations. Especially in the multifarious real physical back-
ground such as the field of nonlinear optical crystal and plasma, nonlinear par-
tial differential equations (PDEs) with variable coefficients can often provide rea-
listic and powerful models than the corresponding constant coefficients ones
when the inhomogeneities of media are considered. There are lots of studies have
been conducted with different types of the PDEs, such as the modified trigono-
metric functions series [1] [2], the G'/G expand method [3] [4], the first integral
method [5] [6], the modified CK direct method [7] [8] [9], the exp(—¢(§))
method [10] [11], modified simple equation method [12] [13], infinite series
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method [14] [15], the Lie symmetry analysis method [16]-[21] and the extended
trial equation method [22] [23]. In this paper, we will use the modified CK direct
method and the extended trial equation method (ETEM) to discuss the exact
solutions for the following generalized fifth-order nonlinear partial differential
KDV equation [24] [25] [26] [27] with time-dependent variable coefficients of

the dispersion:

0 , 0 0%u ou o%u o°u
Zu=—a(® Zu- 1) EF(u s -G (1) .
at =SB a5 RO (05

ox® (1

here the derivative U, represents the time evolution of a travelling wave as it

travels in a certain direction, the function of nonlinear terms u®u,,u,u, and

are to collect the waves and the function of the linear term U is to

uu XXXXX

disperse the waves, respectively, a(t), p (t), F(t),G(t) are arbitrary smooth
functions of # When «(t),B(t),F(t),G(t) be constant, the Equation (1) be
the generalized fifth-order KDV equation. What’s more, we can get many other
famous fifth-order partial differential equations by taking different values of the

parameters:
2

F
Sawada-Kotera (SK) equation: when f=F =5a = 7,6 =1

u, +5u°u, +5u U, +5uu,, +u, =0.

XXXXX

2
Caudrey-Dodd-Gibbon (CDG) equation: when f=F =30,a = F?,G =1
u, +180u’u, +30u,u, +30uu,, +u,, =0.

Lax equation: when S =2F,« :%FZ,G =1

u, +30u’u, +20u,u, +10uu, +u, =0.
. . 5 Fz
Kaup-Kuperschmidt (KK) equation: when F =10, = 3 Fa= 716 =1
u, +50u’u, +25u,u,, +10uu,, +u, ., =0.
) 2F°
Ito equation: when F =3,8=2F,a = ,G=1
U, +2u’u, +6u,u, +3uu,, +U,, =0.

These equations can describe motions of waves in shallow water under gravity
and in a one-dimensional nonlinear lattice. It is an important mathematical model
with wide applications in quantum mechanics and nonlinear optics. Until now, a
great number of authors have used lots of methods to solve these PDEs, Alvaro
and H. Salas use the exp function method to obtain some exact solutions of Equ-
ation (1), Abdul-Majid Wazwaz obtained some new solition solutions of the
modified form of fifth-order KDV equation (fKdV). In 2014, F. I. Leite consi-
dered the new concepts of self-adjoint equations formulated by Ibragimov and
Gandarias are applied to the fifth-order evolution KDV equations. In 1989, Clark-
son and Kruskal put forward the CK direct method for the first time, and then
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Lou modified the CK direct method and proposed a simple method which called
the modified CK direct method. Furthermore, many scholars have studied the
nonlinear equations with this method. In this paper, a new ETEM method is ap-
plied to the variable coefficient KDV equation which is reduced by CK method
for the first time, and a series of new exact solutions are obtained.

The aim of this research is to establish an equivalence relation between the va-
riable coefficients PDE and the corresponding constant coefficients one, and use
a variety of distinct trail equations to construct some new travelling wave solu-
tions of the constant coefficients equation. In this way, we can obtain a series of
new exact solutions of the variable-coefficient equation by the relation between
the variable-coefficient equation and the constant-coefficient equation, such as
the trigonometric function solution, soliton solution, periodic solution and ra-
tional solution. In section 2, the equivalence relation between the fifth-order KDV
equation with variable coefficient and the corresponding constant coefficient
equation is given by using the modified CK direct method. In section 3, the
ETEM is briefly introduced. In section 4, we obtain some new types of travelling
wave solutions to Equation (1). In section 5, the more possibility of ETEM me-
thod for solving partial differential equations is discussed. In section 6, the con-

clusion and discussion are given.

2. Equivalence Transformations (ETs) of Generalized
Fifth-Order KDV Equation

In this section, we will use the modified CK direct method to look for the equi-
valence transformations between Equation (1) and the corresponding following

equation.

u, +au’u, +buu, +cuu, +du,, =0, (2)

XXXXX

where a,b,c,d are arbitrary constants. Suppose that Equation (1) has the fol-

lowing solution:

u(x,t)=A+BU(X,T), 3)

where A=A(Xt),B=B(xt),X =X(xt),T=T(xt) are functions can be de-
termined by requiring U =U (X, T) satisfy the transformation
{x,t,u} > {X,T,U}. in other words, we let {X,T,U} to satisfied the corres-

ponding constant coefficients equation of Equation (1) as following
U; +aU’U, +bU, U, +cUU, . +dU . =0. (4)

Then substituting Equation (3) into Equation (1), requiring U =U (X,T) and
U, satisfied Equation (4), we can collect the coefficients of U letting their de-
rivatives to be zero, we have

GBX,,,, —dBT, =0,

XXXXX

FB?X?—cBT, =0,

FBX A+15GBX, X2 +10GBX X, =0, (5)
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10GBX X, +5GBX, X, +3FBX X a=0,
BBX A +FBX,_ A+GBX, +BX, =0,

XXXXX

GA(xxxx + AXOCAZ +ﬁAxxAx + FA(XXA+ A =0.

Solving above equations, we have

A=0,B= CO,F—CC ,G= dC5,X:C2X+C3,
T,
o= , P = 6
CC2 p= CC (©)

where T, is an arbitrary function of 4 C;,C,,C, are arbitrary constants. Then
with Equation (6), we can obtain new travelling wave exact solutions for the Eq-
uation (1) as follows:

U=CyU (Cx+C,,T(1)). (7)

If U(X,T) is the solution of fifth-order KDV equation with constant coeffi-

cients, then U (X,t) also is a solution of Equation (1).

3. Description of the Extend Trial Equation Method

In this section, we introduce the extend trial equation method (ETEM) as fol-
lows.

Stepl. Firstly, we consider the following nonlinear partial differential equa-
tion:

Fy (U, Uy, Uy, Uy, Uy, Uy Uy +++) =0, (8)

T X Xk Pt

In order to look for the solutions of Equation (1), we make the travelling wave

transformation
u(x1)=U (&),
where & =x-ct,and cis an arbitrary constant.

Then the Equation (8) can be converted to an ordinary differential equation as

following
F, (U0, U, U ) =0, )

Step 2. We suppose that the exact solution of Equation (9) is of the form
5o
=>nY', (10)
i1

where 7,(i=12,3,---,8) are arbitrary constant, and Y' satisfied the following

condition

, (11)

Y 2, . 6
(Y')2 —A(Y)= () _ SotaY +6Y 2+ +&Y .
'//(Y) o+ ey +4Y 4+ LY
where &, and ¢, are arbitrary positive integers to be determined later.

Step 3. According to the balance principle we can determine a relation of &,
& and S . We can take some different values of @, & and & and the solution
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(10) can be written as a series of infinity solutions.

Step 4. Substituting Equation (10) and Equation (11) into Equation (9), let-
ting the coefficients of Y to be zero, by solving the system of algebraic equations
by some software like Maple and Mathematica, we can figure out the values of

&,,¢, and 7y, then reducing Equation (11) to the elementary form as follows:

i(f—%)ﬂﬁw = /%dY, (12)

where 7, isan arbitrary constant.

Using a complete discrimination system for polynomial to classify the differ-
ent forms of Equation (12), we can write the travelling wave solutions respec-
tively. In this paper, the solutions of PDEs with variable coefficients also can be
written respectively by the conclusion we got in the last section. Moreover, this

method is appropriate for lots of other PDEs which can be discussed as follows.

4. ETEM to Generalized Fifth-Order KDV Equation

In this section, we discuss the generalized fifth-order KDV equation by using ex-

tend trial equation method.

u, +au’u, +bu.u, +cuu,, +du,, =0. (13)

X000
Using the travelling wave transformation
u(x,t) =U (5), where &=x-Ct,
Equation (13) turns into the following ordinary differential equation, then in-
tegrate the equation once:
C,-CuU +3u3+E(U')2+cUU"+dU(“) =0, (14)
3 2
where C, is the integration constant. Substituting Equations (10) and (11) into
Equation (14)
U=z, +7, Y 4oty
U=z 423 Y¥3 q gl (15)

26+0-¢-2

U =60, '+ =X, (1,0,6,6)Y 2 +-,

U =X, (7,6,8,6)Y 7202 4. (16)

Using the balance principle, we find the highest degree terms of two Equa-
tions (15) and (16) should be the same, so we have
0=0-¢c-2.
By assuming and assigning the variables that satisfy the above conditions, we
can obtain the traveling wave solution of the Equation (13) in many cases.
If ¢=0,=3 and §=1, then

U=r7,+1Y,
. SHEY +&Y HEY?
U'=rg ,
o
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Uo, (G287 +38YY)
) 2 ,
Uz g HEY TEYPHEYP (6 436Y)
| &
U =g 1Y HISEEY 94‘21?2\/ 2LV +65E 15, -
;

where ¢,&, #0.

Substituting Equation (17) into Equation (14), collecting the coefficients of ¥
and solving these algebraic equation systems respectively, we can obtain:

& = Lo,

4oty (3Lc+2a)

962 = L2

&, (-9Ldc’zg +3L,L,¢%r; —12L,adcer; — Larg +2L,ac; —4da’rg +CL) )
7,12 (9dL, +b) ’

L=

&, (See Appendixes Al), (18)

~2c—b ++/~40ad +b? +4bc + 4c?
30d

L, =541%d* +15L,db—9L,dc +b* —bc, L, =15dL, +¢+b . We can use Equation

(18) and Equation (12) to get

£(&-m)=] Al(Y)dY=IJ§3Y +§2Y§:§1Y+§°YdY- (19)

where L ==

>

Then, we will discuss some of the special form of solutions of Equation (14) as

follow.

If Equation (19) can be written as following form:

EYPHEYTHEY +EY
7, (3L,c+ 2a)Y2
L2

(-9Lde?; +3L,L,¢°z; ~12L,adcr; - Larg +2L,acz; —4da’r; +CL3 ) y

+
7,12 (9dL, +b)

+2¢, (-6dz515a” — Labry +3CLbr, - 27C, L L5d - 9c’z L3 L, +3acz; L
—6ac’r; L5 —3c7,L5C —81d %7  Lc® — 24d°z5a’ —3C,L5b + 6d 7,CL3a
-9, L3dar? +27CL L3 dz, + 54c*22L, L2d + 24criL,da? —162d*7 L’c’a
~108d°z5Lca’ +72¢°z; L, Lyad —9d 5L, L5ac + 9dz,CLy Lic ) /(3L37/ L )
=(Y-o )3 :

= |-1"'1Y3 -

(20)

where ¢, is an arbitrary constant. Collecting the coefficients of ¥ of Equation

(20), let all coefficients to be zero, we can get the following results
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1 3a,L,
T]_ =T z-o =~
L 3cl, +3a

C =30/ (135L3dc” ~18LL,c* +180L adc + 9L5bc” +6al, Ly —12acL, L,
+60L,da* +12L,abc + 4a’h) /(2L (3L,c+ 2a)),

C, (See Appendixes A2) (21)
In this family, Equations (18), (19) and (21) lead to get
§3=é’0,§2=—3a1§0,§1=3a12§0,§o=—a13§0. (22)

And
dy 2

Y—al)g \/Y_al'

(23)

1
i(g_ﬂo)zj.\/A(Y)dY:.[(

By Equation (23), (21), we can get the rational exact solution of Equation (14)

as following
()=t L, 4|
3L, +3a L (E-m,)
u(x,t):&Jri 0!1+;2 , (24)
3L +3a L (X—Ct—ﬂo)
where
C =30/ (135L3dc” ~18L5L,c* +180L adc + 9L5bc” +6al, Ly —12acL, L,
+60L,da” +12L,abc + 4a’h) /(2L (3L,c+ 2a)),

Hence, with the relation of Equation (7) obtained above, Equation (1) have

the following form of rational travelling wave solution

_ _ _ 2 2
3a1[15d[i 2¢—b+~/—40ad + b? + 4bc + 4¢ }Hb}

30d

U(X't):CO \/ 2 2
3¢ i—2c—b+ —40ad +b“ +4bc +4c +3a
30d (25)
+C ! o+ 4 ,
0 2 2 1 2
£+—2c—b+x/—40ad+b +4bc +4c ] (X =CT —1n,)
h 30d

where X =C,x+C,, T'is an arbitrary function of ¢ (Figure 1 and Figure 2).
1) In the following, we chose some new coefficients to make it easier to calcu-

late
& =L&on, & = LGty
& =(2(-L3deg + Lerf —ar +C) ¢ )/(z’l(gdL4 +b)),
& =2¢, (—9adL1r§' —abz] +27dCL 7, +3bCr, — 27dL,C, —3bC, +6cdLiz]

(26)
~3¢°L,73 +3acz] —3cCr, —3d°Ljr) - 3adl,z; +3dCL,z, ) /(37L,).
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3 E
0
-1000 § 0 5
-5 ¢ 10
-10

X

Figure 1. The three-dimensional picture of the exact solution (25) of Equation
(1), and its projectionat b=3,c=2,a=d=17,=3 and a=11.

-100

-200-

-300

-400

Figure 2. The two-dimensional picture of the equation
exact solution (25) of Equation (1), and its projection at
t=0.When b=3c=2,a=d=17,=3 and o =11.

where

L _, —2c—b++/—40ad + D’ + 4bc + 4c”
B 30d

L, =54L2d* +15L,db—9L,dc +b* - b,
L, =(3cL, +2a)/(15dL, +b+c).

If Equation (19) can be written as following form:
2(-13d7) + L,crl —arl +C) ¢
(2Lidz + Lo ~az; +C) Y + 1 (-9adL,z;
7,(9dL, +b) 37, L
—abz] +27dCLz, +3bCr, —27dL,C, —3bC, +6cdLiz; —3c?L,7: +3aczs (27)

~3¢Cr, —3d°L}z; —3adl, 73 +3dCLz, ) = (Y —a, )’ (Y - at3),

Lo Y®+L,z,Y?+

where a,,a, are arbitrary constants. Collecting and letting all coefficients of ¥’

of Equation (27) to be zero, we can get the following results
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20, +
lei,‘[o:—az 0{3,
I-4
1
2L,

-2l L,ca? + Libatl +2%ba,a, +8Laa’ +8Laa,a, + 2L1aa§),

C

(17 d e} + 261, Lidaa, + 2dL, a5 —8L Lot 8L, L,Ca,ar,

C, (See Appendixes A3) (28)
In this family, Equation (18), (19) and (28) lead to get as follows:

&=60:& :_(20‘2 +0!3)§0, S=a, (az +20‘3)§ov & :_a3a22§07 (29)

where ¢, isan arbitrary constant.

When o;-a, >0,

i(cf—?]o)=.|. dv =- 2 tan~* I:—M:l’ (30)

1
(Y-,)(Y —a)2 X~ X

we can solve for ¥

Y =a;+(a; -a,)tan’ {%(g_ﬂo):l- (31)

By Equation (31), (29), we can get the rational exact solution of Equation (14)
as following

U (§)ZM+H% +(a _az)tan{—\")‘g%(g_%)ﬂ. (32)

L,

With the relation of Equation (7), Equation (1) have the following form of ra-

tional travelling wave solution

_ _ _ 2 2
(2a2+a3)[15d{i 2¢ —b +/—40ad + b7 + 4bc + 4c }bH]

30d
u(x,t)=C, N
2 2
3¢ i—20—b+ —40ad +b” +4bc +4c 92
30d
+ ! (33)
+—Zc—b+x/—40ad +b? + 4bc + 4c?
B 30d

x[as +(a; —a, )tan? l:—,asz_az(x -CT -7, )‘“ :

where X =C,x+C;, T'is an arbitrary function of ¢ (Figure 3 and Figure 4)
When a;-a, <0,

Y =a, +(a, - ay)csch? [%(f‘ﬂo )1 (34)

Similarly, we can get the exact solution of Equation (1) as follow
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-4e+06

-3e+06

-2e+06

-le+061 |

Figure 3. The three-dimensional picture of the exact solution (33) of Equa-
tion (1), Whenb=3,c=2,7,=1a=d =1 and o,=1a,=5.

20
22
24
26
28
30

-32

34
2100 80 -60 40 20 0 20 40 60 80 100

Figure 4. The two-dimensional picture of the equation exact solution (33) of Equation (1),
and its projectionat t=0.When b=3c=2,7=l,a=d=1 and «,=1a,=5.

2 2
(20, + z3) 15d(J_F—ZC—b+\/—4Oad+b +4bc+4c ]+b+c

30d
U(X’t):CO \/ 2 2
3¢ i—2c—b+ —40ad +b“ +4bc +4c +2a
30d
+ ! (35)
L —2c-b+ J—40ad +b? + 4bc + 4¢?
h 30d

x| a, +(a, —ay

)esch? {—“ 0622— % (X =CT -7, )}

where X =C,x+C,, T'is an arbitrary function of ¢ (Figure 5 and Figure 6).
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-35 1 0 0
-50

1-50 -

-100

Figure 5. The three-dimensional picture of the exact solution (35) of
Equation (1), whenb=3,c=2,a=d =17,=1 and «,=3,a,=1.

-200+

-300+

-4001

-5007

Figure 6. The two-dimensional picture of the equation exact
solution (35) of Equation (1), and its projection at t=0, when
b=3c=2a=d=17,=1 and «,=3,0,=1.

5. More Discussion

In this article, we obtained a series of exact travelling wave solutions of fifth-order
KDV equation by the extended trail equation method; according to picking dif-
ferent parameters we can get more exact analytic solutions of nonlinear partial
differential equations like fifth-order KDV equation.

The extend trial equation method (ETEM) is proving to play an important
role in solving partial differential equations, by using a variety of trail equations,
we can construct lots of new types of travelling wave solutions. In this paper, we
only considered the following parameters

e=0, =3, 6=1.

In a later study we can also study different situations suchas §#1 or £=0.
In this paper, the highest degree of Equations (15) and (16) should be the same,
according to balance the highest degree terms of these two Equations (15) and
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(16). So we can take any other parameters that satisfies the following equation
0=0-¢c-2.
For example
1) When £=0,0=4 and §=2.

(V') - O(Y) _&G+EY+EY +EY +EY" |

() co 0
and
U=r1,+1Y +7,Y?,
o m LY WE +EY +EY I+ EYR Y
N ,
U’"=
12Y 47,8, + AV 20, &, +10Y°0, 8, +3Y 20,8, +8Y 20,8, + Y 1,8, + 6Y 1,8, + 1,6, + 41,8,

26,

m 1
U" =& + &Y + EY P+ EYT +E Y (28750, +6Yr,é,

Jet (37)

FI5Y 20,8, 43V 18, +8Y 1,6, + 1,6, +30,8)),

where ¢,&, #0.
2) When ¢=1,60=4 and 5=1.
(Y,)Z:CD(Y):‘§0+§1Y+§2Y2+§3Y3+§4Y4
¥ (Y) Lot Y

: (38)

then

U=r7,+1Y,

U JE+EY +EY2 4+ EY3 4 EY"
:Tl ,
\)§0+é’lY
Ur s EH25Y 4357 +4EYY G(GHEY+EYT+EYHEYY)
' 2(é’o+§1Y)2 2(§O+4'1Y)3

5
2

U"=1 [%(40 FEY ) 2 (1267 +BEY +28, )&+ EY +EY P+ EYP +EY*

—%41(40 FOY YR (G426 435N ALY W T EY T ENT T ENTENT (39)

9
2

3
+g§12 (go +§1Y) (50 +&Y +6sz2 +§3Y3+§4Y4)2]7

where &, and ¢, are arbitrary positive integers to be determined in later cal-
culations.

In later studies, when studying other nonlinear partial differential equations,
we can also obtain the relationship of parameters through balancing the highest
degree terms of these equations, select parameters and apply the Extend trial
equation method (ETEM) to solve the exact solution of the equation.
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6. Conclusion

In this letter, the ETEM has been successfully applied to construct exact travel-
ing wave solutions for fifth-order KDV equation. Then, the solutions of corres-
ponding nonlinear partial differential equations with variable coefficients are ob-
tained by the equivalence transformation given in Section 2. In later studies, many
solutions of variable coefficient PDEs can be considered in the same procedure.
Generally, for tackling exact solutions to vc-PDEs are difficult, the results in this
paper provide a useful supplement to the existing literature. Moreover, the equiva-
lence transformation and improved ETEM can be used to other types of vc-PDEs

in mathematical physics.
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Appendixes

& =24, (-6dz515a’ — Labrg +3CL3bz, - 27C, L, L5d - 9c* 5 L5 L,
+3acr L3 —6ac’riLs —3cr, L3C -81d%7313c® - 24d°2a’
~3C,L3b+6d7,Clia—9L, Lidar? + 27CL L3dr, +54¢°7 L, 2d (A1)
+24cril,da’ —162d°r 1 %c’a—108d 7 Lca’ + 72¢*z L, Lad
~9dz3L, Bac +9dr,CLLc) /(3571 ).

C, = (10935L°L,d%c* + 2187 L5d *c® —1458L5 L5dc? +14580L; L,d *ac

+1944L71,dbc® - 72917 L, dc® + 4374Ld *ac? + 2431} dbc®

+3241313da - 97213 2dac - 162L°L2bc” +4860L°L,d*a’
+259213L,abcd —972L3L,adc” +81L3L,b%c?* - 8101, bc®
+2916L3a°d*c +486L%adbc® + 27L°L,c* + 362 L3ab —108L% L3abc
+864L°L,a’hd —324L°L,a*dc +108L%L,ab’c —108L°L,abc’
+648L2a%d” +324%a%bed + 5417 L,ac” +36L,L,a’b* —36L, L,a’bc
+72L1da3b+36L1L3a2c+8L3a3)/(2Lf (3Lc+2a)’ (9dL, +b)).

(A2)

1

= —)(156Ldeiba§ +4328ada?a, +13513d% 2 ala;

6L7LS (9dL, +b

+48%aba’a, +18630d% 20l a, +810a, d? 5o +216a, Lada?
+24a,2aba? + 5450 2ala, + 612 bd o + 6L, Lidba;

+15L Lsb*cl e, + 6L Lib% el a, — 432L0dcL, o5 —54L5dcL o)

- 48171 ,bca; —54LdcL,a; —6L2L,beas — 6L Libea; +3alasLiL,

+6L, 2% +918L3d° Lia? + 2880ad ol +54L3d° L + 322 aba;
+54Ld%Lse; +36Lada; + 4L abas +144a, 2 Libd ol

+3422bde Lo a, — 36a, L bea? —648L3dcL, o) o, (A3)
-135L5dcle el e, — 7210 L beal e, — 545 dc e o e, — 151 Libea? a,
—-6L,L3bcaa, —324aa, 5L, d +15L, Libd ;o + 6L, Libd a3 cr, ).
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