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Abstract 
The vertex connectivity ( )Gκ  of a graph G is the minimum number of nodes 
whose deletion disconnects it. Graph connectivity is one of the most funda-
mental problems in graph theory. In this paper, we designed an ( )2O n  time 

algorithm to solve connectivity problem on circular trapezoid graphs. 
 

Keywords 
Algorithm Design, Connectivity Problem, Intersection Graphs,  
Circular Trapezoid Graphs 

 

1. Introduction 

The vertex connectivity ( )Gκ  of a graph G is the minimum number of nodes 
whose deletion disconnects it. The computation of ( )Gκ  for a given graph G is 
known as the vertex connectivity (vertex connectivity) problem, and it is one of 
the most fundamental problems in graph theory. In recent years, many studies 
related to vertex connectivity have been conducted [1]-[6]. Even and Tarjan de-
veloped an ( )1.5O mn  time algorithm to calculate the vertex connectivity of a 
general graph [7]. In many cases, more efficient algorithms can be developed by 
restricting the classes of graphs. For example, Ghosh and M. Pal presented an 
( )2O n  time algorithm to solve the VC problem for trapezoid graphs [8]. Sub-

sequently, this algorithm was improved by Ilić [9] to ( )logO n n  time by using 
a binary indexed tree. 

Lin introduced circular trapezoid graphs (CTG), which constitute a proper 
superclass of trapezoid graphs and circular-arc graphs [10]. He also presented 

( )2 log logO n n  time and ( )2 logO n n  time algorithms for the maximum weigh- 
ted independent set and the minimum weighted independent dominating set on 
CTGs, respectively [10]. In this paper, we designed an ( )2O n  time algorithm 
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to solve the VC problem on CTGs. Our algorithm was realized by skillfully com-
bining the methods of [9] and [11]. 

The rest of this paper is organized as follows. Section 2 describes some defini-
tions of circle trapezoid graphs and models and introduces the extended circle 
trapezoid model, as well as some notations. Section 3 presents some properties 
on circle trapezoid graphs, which are useful for finding vertex connectivity in an 
efficient manner. Section 4 describes our algorithm for the VC problem and its 
complexity. Finally, Section 5 concludes the paper. 

2. Definitions 

We describe the circular trapezoid model (CTM) before defining the CTG. The 
model comprises inner and outer circles C1 and C2 with radii 1 2r r< , respec-
tively. Each circle is arranged counterclockwise with consecutive integer values 
1,2, , 2n , where n is the number of trapezoids. Consider the two arcs, A1 and 
A2, on C1 and C2, respectively. Points a and b are the first points encountered 
when traversing the arc A1 counterclockwise and clockwise, respectively; simi-
larly, points c and d are the first points encountered when traversing the arc A2 
counterclockwise and clockwise, respectively. A trapezoid is the region in circles 
C1 and C2 that lies between two non-crossing chords ac and bd. A trapezoid iCT   
is defined by four corner points [ ], , ,i i i ia b c d . Without loss of generality, we as-

sume that each trapezoid has four distinct corner points. Each trapezoid iCT  is 
numbered in ascending order according to their corner point ia , i.e., i j<  if 

i ja a< . The geometric representation described above is the CTM. Figure 1(a)  

illustrates an example of a CTM M having 8 trapezoids. For example, CTM is 
used for cities comprising cityscapes that spread radially around facilities such as 
stations and rotaries. It is used to visually represent the relationships among 
communities (linkage of transportation networks, sharing of infrastructure facil-
ities, etc.), and it is applied to the optimization of city planning and facility ar-
rangement. Table 1 shows the details of M as depicted in Figure 1(a). 
 

 
(a)                                       (b) 

Figure 1. Circular trapezoid model M and graph G. (a) Circular trapezoid model M; (b) 
Circular trapezoid graph G. 
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Table 1. Details of CTM M. 

i 1 2 3 4 5 6 7 8 

ia  1 3 5 7 8 11 13 15 

ib  4 6 9 10 12 14 2 16 

ic  16 7 6 3 12 8 15 13 

id  4 11 9 5 14 10 1 2 

 
A graph G is a CTG if it can be represented by the following CTM M: each 

vertex of the graph corresponds to a trapezoid, and two vertices in G are consi-
dered adjacent if and only if their corresponding trapezoids intersect. Figure 1(b) 
illustrates the CTG G corresponding to CTM M shown in Figure 1(a). In this 
example, G is disconnected by removing vertices 1, 5, and 6 from G. Thus, the 
vertex connectivity of G is 3. 

In the following, we introduce an extended circular trapezoid model (ECTM) 
constructed from a CTM. Let n be the number of trapezoids in CTM M. Con-
sider a fictitious line p that connects the points placed between 1 and 2n of C1 
and C2. First, we cut CTM along fictitious line p and expand the two circles C1 
and C2 into parallel horizontal lines called top and bottom channels, respectively.  

Hereafter, to avoid confusion, we denote trapezoids in CTM and ECTM by 

iCT  and iT , respectively. Finally, for each iT , 1 i n≤ ≤ , copies of i nT +  and 

i nT −  are created by shifting 2n to the right and left, respectively. An ECTM is 
constructed from a CTM by the above process, which can be executed in ( )O n  
time [11]. Figure 2 illustrates an ECTM EM constructed from the CTM M 
shown in Figure 1(a). Table 2 shows the details of EM. 

Some notations that form the basis of our algorithm in Section 4 are defined 
as follows. A separating set in a connected graph G is a set of vertices whose de-
letion disconnects G. We introduce a new concept to ECTM that is similar to the 
separating set in CTG. A separating trapezoid set in an ECTM EM is a set of 
trapezoids whose deletion separates EM into two or more components. Let S be 
a separating trapezoid set of EM. EM S−  is a trapezoid set that is obtained by 
deleting S from all trapezoid sets of EM. If EM S−  has k components, we de-
note ( )cn EM S k− = . Moreover, let [ ]G EM S−  be a induced subgraph of G 
by the trapezoid set EM S− . 

3. Properties of Vertex Connectivity on TCGs 

We describe some lemmas that are useful for constructing the algorithm for the 
VC problem. 

Lemma 1. [11] For a given CTM M, an ECTM EM corresponding to M is con-
structed in ( )O n  time.  

Lemma 2. [9] For a trapezoid graph G, the VC problem is solved in ( )logO n n  
time.  

Lemma 3. [9] By Lemma 2, for an ECTM EM, all smallest separating trape-
zoid sets can be found in ( )logO n n  time.  
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Table 2. Details of ECTM EM. 

i −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

ia  −15 −13 −11 −9 −8 −5 −3 −1 1 3 5 7 8 11 13 15 17 19 21 23 24 27 29 31 

ib  −12 −10 −7 −6 −4 −2 −14 0 4 6 9 10 12 14 2 16 20 22 25 26 28 30 18 32 

ic  0 −9 −10 −13 −4 −8 −1 −3 16 7 6 3 12 8 15 13 32 23 22 19 28 24 31 29 

id  −12 −5 −7 −11 −2 −6 −15 −14 4 11 9 5 14 10 1 2 20 27 25 21 30 26 17 18 

 

 

Figure 2. Extended circular trapezoid model EM. 
 
Lemma 4. [11] Let S be a separating trapezoid set of an ECTM EM. Then, for 

an ECTM EM, we can compute ( )cn EM S−  in ( )O n  time.  
Lemma 5. Let G be a CTG G corresponding to an ECTM EM and let S be a 

separating trapezoid set of EM. Then, a CTG [ ]G EM S−  is connected if  
( ) 2cn EM S− = . Furthermore, a CTG [ ]G EM S−  is disconnected if  
( ) 3cn EM S− ≥ .  
(Proof) If EM consists of one component, it is obvious that G is connected. 

We consider the case when ( ) 2cn EM S− = , i.e., EM consists of two compo-
nents. Assume that EM is divided into two components Ci and Cj, and vertices 

iv  and jv  ( i j< ) are in Ci and Cj, respectively. A trapezoid that intersects a 
fictitious line p is called a feedback trapezoid, where p connects the points placed 
between 1 and 2n of C1 and C2 in CTM M. No path exists from iv  to jv  

through kv  for , ,i k jv v v  ( i k j< < ) since EM is divided into two components 

Ci and Cj. However, some paths exist from iv  to jv  through some feedback 
trapezoids. Thus, in the case where EM consists of two components, G is con-
nected. In the case where EM consists of three or more components, no path ex-
ists from iv  to jv  through or even through feedback trapezoids. This implies 
that CTG G corresponding to CTM M is disconnected. 

4. Algorithm 
4.1. Outline of Algorithm 

Efficient algorithms that address various problems concerning non-circular in-
tersection graphs (interval, permutation, trapezoid, etc.) have been developed. 
However, in general, problems for circular intersection graphs tend to be more 
difficult than those for non-circular intersection graphs. One cause is because, in 
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contrast to non-circular intersection graphs, we cannot determine the starting 
position of an algorithm uniquely for a circular intersection graph owing to the 
existence of feedback elements. For several problems, we can develop circular 
versions of the existing algorithms by constructing extended intersection models 
for the problems. By using extended intersection models such as an ECTM, we 
can determine the start position of an algorithm uniquely and apply the algo-
rithms of the non-circular versions partially. For instance, this method has been 
applied to develop efficient algorithms for the shortest path query problem [12] 
[13] and the articulation vertex problem [14] on circular-arc graphs, maximum 
clique and chromatic number problems [15], the spanning forest problem [16] 
and the articulation problem [17] on circular permutation graphs, and the span-
ning tree problem [11] and the hinge vertex problem [18] on circular trapezoid 
graphs. 

Here, we concisely describe the outline of our algorithm. When a given CTG 
has articulation vertices, the vertex connectivity is 1. We can find articulation 
vertices in ( )O n m+  time by applying the traditional method with depth first 
search. Then, we discuss graphs that do not contain articulation vertices. 

First, we construct an ECTM EM from a given CTM M by using Honma et 
al.’s algorithm [11] (Figure 2). Next, we compute the family of minimum cardi-
nality separating trapezoid set { }1 2, , ,S mF S S S=   for a constructed EM. In 

the example in Figure 2, we obtain { }{ }1SF T=  and { }( )1 2cn EM T− = . At 

this time, if even one Si exists such that ( ) 3,c i i Sn EM S S F− ≥ ∈ , the size of Si is 

the vertex connectivity of CTG G, by Lemma 5. By Lemma 4, for each i SS F∈ , 

( )c in EM S−  can be computed in ( )O n  time by Honma et al.’s algorithm [11]. 

Conversely, we consider the case where multiple ,1iS i m≤ ≤  exist such that 

( ) 2c in EM S− = . In this case, [ ]iG EM S−  is a connected graph for every Si, 

by Lemma 5. In this case, a CTM iM S−  has a fictitious line connecting C1 and 
C2 that does not intersect any trapezoid in iM S−  (Figure 3(a)). The model 
opened along this line is equivalent to a regular trapezoid model, and we denote 
it as EM ′  (Figure 4). Again, we compute the minimum cardinality separating 
trapezoid sets iS ′  of EM ′  by using Ilić’s algorithm [9]. In the example of 
Figure 4, we obtain { }5 6,iS T T′ = .  

After this process, ( ) 3c i in EM S S ′− − ≥  holds and [ ]i iG EM S S ′− −  is dis-
connected, by Lemma 5. We can obtain the vertex connectivity of G by  

1minm
i i iS S= ′

 . We formally describe Algorithm VC-CTG as follows. A CTM M 
is taken as an input. Our algorithm uses both Ilić’s and Honma et al.’s algo-
rithms [9] [11]. 

4.2. Algorithm VC-CTG and Its Analysis 

In this section, we present Algorithm VC-CTG to compute the vertex connectiv-
ity of a CTG G. We formally describe Algorithm VC-CTG as follows. A CTM M 
is taken as an input. Our algorithm uses both Ilić’s and Honma et al.’s algo-
rithms [9] [11]. 
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(a)                                       (b) 

Figure 3. Circular trapezoid model { }1M T−  and graph { }1G M T −   . (a) CTM 

{ }1M T− ; (b) CTG { }1G M T −   . 

 

 
Figure 4. Extended circular trapezoid model EM ′ . 

 
Here, we analyze the complexity of Algorithm VC-CTG. In Step 1, we check 

whether given graph G has articulation vertices using the traditional algorithm. 
Moreover, we return that vertex connectivity is 2 when the minimum degree of 
vertices in G is 2. This step can be done in ( )O n m+  time. In Step 2, we con-
struct an ECTM EM from a given CTM M as an input. This step can be per-
formed in ( )O n  time by using Honma et al.’s algorithm [11]. In Step 3, we first 

compute all minimum cardinality separating trapezoid sets SF . This process 
can execute in ( )logO n n  time by using Ilić’s algorithm [9]. Here, we obtain the 

vertex connectivity iS  of G if there exists i SS F∈  such that ( ) 3c in EM S− ≥ . 

This can execute in ( )logO n n  time by using Honma et al.’s algorithm [11]. 

In Step 4, we compute a minimum cardinality separating trapezoid set iS ′  of 

iEM S−  for each i sS F∈ . Step 3 requires ( )2O n  time. Thus, we obtain the fol-

lowing theorem. 
Theorem 6. Algorithm VC-CTG computes the vertex connectivity of CTG in 

( )2O n  time by taking its CTM M as an input.  
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5. Conclusion 

In this study, we proposed Algorithm VC-CTG, which operates in ( )2O n  time, 
to compute the vertex connectivity of a CTG. Our algorithm uses both Ilić’s and 
Honma et al.’s algorithms [9] [11]. CTM is used for cities comprising cityscapes 
that spread radially around facilities such as stations and rotaries. It is used to 
visually represent the relationships among communities (linkage of transporta-
tion networks, sharing of infrastructure facilities, etc.), and it is applied to the 
optimization of city planning and facility arrangement. Solutions to the VC prob-
lem can be applied to detect connection vulnerabilities in actual networks. Thus, 
we believe that this paper is significant from both theoretical and algorithmic 
perspectives. Future research will address reducing the complexity of the algo-
rithm and extending the results to other graphs. 
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