
Journal of Applied Mathematics and Physics, 2019, 7, 2579-2594
https://www.scirp.org/journal/jamp

ISSN Online: 2327-4379
ISSN Print: 2327-4352

DOI: 10.4236/jamp.2019.711176 Nov. 5, 2019 2579 Journal of Applied Mathematics and Physics

A Simulated Annealing Algorithm for
Scheduling Problems

Crescenzio Gallo, Vito Capozzi

Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy

Abstract
An algorithm using the heuristic technique of Simulated Annealing to solve a
scheduling problem is presented, focusing on the scheduling issues. The ap-
proximated method is examined together with its key parameters (freezing,
tempering, cooling, number of contours to be explored), and the choices made
in identifying these parameters are illustrated to generate a good algorithm
that efficiently solves the scheduling problem.

Keywords
Scheduling, Simulated Annealing, Discrete Optimization Algorithm

1. Introduction

In general terms, an operation is defined as an elementary activity whose realiza-
tion requires a machine, that is, an instrument capable of performing operations.
For example, a production process is composed of operations that require the use
of resources (machines, manpower).

There are three main problems to be considered:
1) Loading: to allocate the operations to the available resources;
2) Sequencing: to determine the sequence according to which the operations

are to be performed;
3) Scheduling: to define the planning of each operation; that is, to identify its

instants of beginning and completion.
The term “scheduling” can be used to indicate the timing according to which

the operations must be carried out and the process that leads to the identifica-
tion of this timing. Scheduling problems [1] therefore concern the use over time
of limited resources for which there is a demand.

A machine can be: dedicated (if it can only perform certain operations), or

How to cite this paper: Gallo, C. and
Capozzi, V. (2019) A Simulated Annealing
Algorithm for Scheduling Problems. Jour-
nal of Applied Mathematics and Physics, 7,
2579-2594.
https://doi.org/10.4236/jamp.2019.711176

Received: September 17, 2019
Accepted: November 2, 2019
Published: November 5, 2019

Copyright © 2019 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2019.711176
https://www.scirp.org/
https://doi.org/10.4236/jamp.2019.711176
http://creativecommons.org/licenses/by/4.0/

C. Gallo, V. Capozzi

DOI: 10.4236/jamp.2019.711176 2580 Journal of Applied Mathematics and Physics

parallel (if it can perform all the operations indifferently). In the case of parallel
machines we speak of machines: identical, if they process the operations with the
same speed; uniform, if the speed of the machines is different but constant and
independent of the operations; uncorrelated, if the speed depends on the opera-
tions to be carried out.

The state of the art of the job scheduling problem is illustrated in [2] [3] [4].

1.1. Definitions

We can define the following entities in a scheduling problem:
Processing time ijp : Time needed by machine i to perform operation j;
Weight or priority jw : Represents a priority level of operation j;
Release time jr : Time from which operation j can be processed;
Start time js : Time at which operation j is started (j js r≥);
Completion time jC : Time when operation j ends;
Expiry time (due date) jd : The interval within which operation j should be

completed;
Deadline je : The latest time by which operation j should be completed;
Flow time j j jF C r= − : Difference between the completion time and the re-

lease time; it is the turnaround time of the operation j;
Lateness j j jL C d= − : Difference between the completion time and the ex-

piry time; if 0jL > the operation was completed late; if 0jL < , it was com-
pleted early;

Tardiness { }max ,0j jT L= : Only takes into account delays with respect to
completion times;

Slack (scroll) j j j jsl d r p= − − : The possible sliding for the execution of the
operation.

Examples of possible operation scheduling based on the previous definitions
are shown in Figure 1.

1.2. Objectives of a Scheduling Problem

The objectives of a scheduling problem can be summarised as follows:
1) Maximum completion time (makespan): { }max max jC C= ;

2) Weighted sum of the completion times: j jw C∑ ;

(a) (b)

Figure 1. Examples of early (a) and late (b) operation scheduling.

https://doi.org/10.4236/jamp.2019.711176

C. Gallo, V. Capozzi

DOI: 10.4236/jamp.2019.711176 2581 Journal of Applied Mathematics and Physics

3) Weighted sum of flow times: j jw F∑ ;

4) Weighted sum of the delays: j jw L∑ ;

5) Maximum delay: { }max max jL L= ;

6) Maximum tardiness: { }max max jT T=

7) Number of delayed operations: ()jLδ∑ 1

8) Weighted number of delayed operations: ()j jw Lδ∑

9) Weighted sum of the tardinesses: j jw T∑
Objective (1) is oriented towards the efficient use of machines; objectives

(2-4) are user-oriented; objectives (5-9) are time-oriented. The most important
objectives are the makespan (maxC), the weighted sum of the completion times

(j jw C∑) and the maximum delay (maxL). An objective is regular if its value can-
not decrease as the processing time of any operation increases.

A scheduling problem typically involves the following constraints:
• Each machine cannot process more than one operation at a time;
• Each operation must be processed at most by one machine at a time;
• An operation can be performed in the time interval ,j jr d   ;

• Any technological constraints must be satisfied.
Some examples of technological constraints may be:
1) Possibility to interrupt the execution of an operation and to resume it later

(preemptive scheduling);
2) Constraints of precedence between operations;
3) Need to wait for setup times between the completion of one operation and

the start of another on the same machine;
4) Possibility to execute groups of operations simultaneously (batch scheduling).

1.3. Classification of Scheduling Problems

Scheduling problems can be classified on the basis of: characteristics of opera-
tions; time constraints; type of information available.

Classification according to the characteristics of the operations.
According to the characteristics of the operations you can distinguish between:

one-step problems (all jobs require only one operation and, therefore, you can
talk about either job or task), multi-stage problems (each job is composed of
several operations among which there are precedence constraints).

One-step problems can, in turn, be distinguished, depending on the number
of machines, under (see Figure 2): single machine problems (with only one ma-
chine), parallel machine problems (if there is more than one machine).

Classification according to time constraints.
Taking into account time constraints, you can distinguish among:

• Static problems: If the operations are all available at the start of the schedule
(0jr = for each operation);

• Dynamic problems: If operations become available in time in a way known a
priori (0jr > known in advance);

https://doi.org/10.4236/jamp.2019.711176

C. Gallo, V. Capozzi

DOI: 10.4236/jamp.2019.711176 2582 Journal of Applied Mathematics and Physics

Figure 2. Example of single (a) and parallel (b) machine solutions for one-step scheduling
problems.

• Online problems: If operations become available over time in a way not known

a priori (0jr > not known in advance).
Classification according to the type of information available.
Considering the type of information available, scheduling problems can be:

• Deterministic, if the parameters associated with the operations (processing
times, release times, deadlines) are all deterministic;

• Stochastic, if any of the parameters associated with the operations (processing
times, release times, deadlines) are defined in random terms.

1.4. Classification of Solutions

A standard method for classifying a scheduling problem is Graham’s notation [5]
where a problem is indicated by specifying three types of information: informa-
tion on machines and phases; information related to the presence of constraints;
optimization criterion.

A solution to a scheduling problem can be (see Figure 3): without delay (if it
never happens that a machine, even though it can perform an operation, re-
mains inactive); active (if, in order to anticipate the completion of any operation,
there is a delay in the completion of other operations); inactive (if not active).

A solution without delay is also active. An active solution may be delayed. The
optimal solution to a scheduling problem is an active solution but not necessari-
ly without delay.

Figure 3. Classification of solutions for scheduling
problems: (a) without delay; (b) active; (c) inactive.

https://doi.org/10.4236/jamp.2019.711176

C. Gallo, V. Capozzi

DOI: 10.4236/jamp.2019.711176 2583 Journal of Applied Mathematics and Physics

1.5. Solution Methods

Like all optimization problems, a scheduling problem can be solved with exact or
heuristic methods depending on its complexity [6] [7] [8].

A widely used construction method for solving scheduling problems is the
“dispatching rules” method. It is a construction method that, in the initialisation
phase, orders operations on the basis of rules or priority indexes, and then builds
the solution by assigning them, in this order, to the available machines.

Priority rules are static if the value of the index does not depend on the start
time of the operation, otherwise dynamic. For some problems, when the priority
rule is properly chosen, the method obtains the best solution. The most com-
monly used static priority rules are:

FCFS (First Come First Served): Increasing release time;
WSPT (Weighted Shortest Processing Time): Decreasing ratio j jw p or, if

1jw j= ∀ , increasing processing time;

LPT (Longest Processing Time): Decreasing processing time;
EDD (Earliest Due Date): Increasing expiry time;
MST (Minimum Slack Time): Increasing value of slack j j j jsl d r p= − − (dy-

namic).
CR (Critical Ratio) ()j j jd r p− : Increasing value of the ratio ()j j jd r p−

(dynamic).
The following section illustrates the scheduling problem applied to a typical

CPU processing environment; then the Simulated Annealing technique is pre-
sented, followed by two mathematical models formalising the scheduling prob-
lem in terms of objective function and related constraints. The final sections deal
with the algorithm derived from the application of SA to the CPU scheduling
problem, the related computational tests and conclusions.

2. The Scheduling Problem in the Processing Environment

With reference to the management of the Central Processing Unit, it is funda-
mental to have an algorithm that specifies the sequence according to which the
processing service is assigned to a specific job. This algorithm is called scheduler
and implements some computing methodologies which can be very time-con-
suming [9] [10]. For example, it may be more expensive to run the scheduler job
than the entire sequence to process.

It is therefore important to indicate a “cost” function with which the weight of
each possible sequence can be measured: based on this, it is necessary to find a
sequence order that allows the minimisation of the cost function. It is therefore
clear that scheduling issues are intimately linked to decisions about what needs
to be done and how it needs to be done.

Given a problem, we will say that we can extract the sequence requests asso-
ciated with this problem when the following assumptions are met:

1) The jobs to be executed are fully known, and may not be announced to the
scheduling process simultaneously but sequentially over time;

https://doi.org/10.4236/jamp.2019.711176

C. Gallo, V. Capozzi

DOI: 10.4236/jamp.2019.711176 2584 Journal of Applied Mathematics and Physics

2) The resources that can be used in the execution of the work are fully speci-
fied;

3) The sequence of core tasks required to perform each of the jobs is known.
The scheduling problem can be solved in several ways [11] [12]. A first way is

to enumerate all the possible sequences, calculating the value of the objective
function, to choose the sequence which corresponds to the lowest value of the
objective function. For example if we have 10 jobs on 4 machines, we have to
calculate the value of the objective function for each of the 10! possible permuta-
tions. This method then becomes not available for medium and large scheduling
problems.

Other classic methods that solve the problem exactly consist of algorithms for
branch-and-bound [13], truncated branch-and-bound [14], dynamic program-
ming [15]. In the following we will examine the solution approach known as
Simulated Annealing, an approach which derives from the controlled lowering
of temperature in physical systems.

3. Simulated Annealing

Simulated annealing (SA) [16] [17] [18] [19] [20] is an approach based on statis-
tical mechanics concepts, and it is motivated by an analogy with the behaviour
of physical systems during the cooling process. This is a heuristic method for
global optimization which requires no particular assumption on the objective
function (e.g. convexity).

This analogy is best illustrated in terms of the physics of single crystal forma-
tion starting from a melting phase. The temperature of this “molten crystal” is
then very slowly reduced until the crystal structure is formed. If cooling is car-
ried out very quickly, undesirable phenomena occur as dislocations and poly-
crystalline phases. In particular, very large irregularities are enclosed in the
structure of the crystal and the level of potential energy incorporated is much
higher than that which would exist in a perfect single crystal.

This “quick cooling” process can be seen as similar to local optimization
(Table 1). The states of the physical system correspond to the solutions of a
combinatorial optimization problem; the energy of a state corresponds to the
cost of a solution and the minimum energy, or fundamental state, corresponds
to an optimal solution.

Table 1. The analogy between the physical system and the discrete optimization problem.

Physical System Optimization Problem

State Feasible solution

Energy Cost

Fundamental state Optimal solution

Quick cooling Local search

Accurate annealing Simulated annealing

https://doi.org/10.4236/jamp.2019.711176

C. Gallo, V. Capozzi

DOI: 10.4236/jamp.2019.711176 2585 Journal of Applied Mathematics and Physics

When the temperature is, theoretically, at absolute zero Kelvin no state transi-
tion can lead to a higher energy state. Therefore, as in local optimization, upward
movements are forbidden and the consequences of this may be undesirable.

When crystals begin to form, the risk of undesirable local states is avoided by
lowering the temperature very slowly, with a process called accurate annealing.
In this process the temperature drops very slowly through a series of levels, each
maintained long enough to allow the search for equilibrium—at that tempera-
ture—for the crystal. As long as the temperature is larger than zero Kelvin, up-
ward movements are always possible. By not allowing the temperature to deviate
from that one compatible with the energy level of the current equilibrium, we
can hope to avoid local optima until we are relatively close to the basic state.

SA is the algorithmic counterpart of this physical annealing process. Its name
refers to the technique of simulation of the physical annealing process in con-
junction with an annealing schedule of temperature decrease. It can be seen as
an extension of the local optimization technique [21] [22] [23] [24], where the
initial solution is repeatedly improved by small local perturbations until none of
these perturbations improves the solution. SA randomizes this procedure in
such a way as to occasionally allow upward movements, i.e. perturbations that
worsen the solution, and this in an attempt to reduce the probability of blocking
in a locally optimal but overall poor solution.

This technique was proposed by [25] and used in the field of statistical physics
to determine the properties of metal alloys at a given temperature. The possibili-
ty of solving combinatorial optimization problems have been demonstrated in-
dependently by [26] and [27]. Further applications have been carried out with
great success, as shown in [28] [29] [30] [31].

A simple scheme of simulated annealing is as follows:
1) Consider an initial solution S
2) Until you have a freeze
a) For : 0w = up to the number of neighbors considered
i) Let S’ an unexamined neighbor of S
ii) If Cost(S’) < Cost(S) then :S S ′=
else set :S S ′= with a certain probability
b) Cool the temperature
3) Return S
From what reported above it is clear that the fundamental parameters for the

SA phase are:
Freezing. This consists of establishing the criteria for stopping the algorithm.
Temperature. This is a value on which the probability of accepting upward

movements depends. At each iteration this temperature is reduced by a constant
rate called cooling.

Number of neighbors to explore. Each iteration considers a (fixed) number
of sequences close to the one considered.

SA is widely applicable in local optimization problems. It seems to produce
better solutions than other local optimization techniques, as it permits you to get

https://doi.org/10.4236/jamp.2019.711176

C. Gallo, V. Capozzi

DOI: 10.4236/jamp.2019.711176 2586 Journal of Applied Mathematics and Physics

out of locally excellent but globally poor solutions by allowing upward move-
ments with a certain probability.

4. Mathematical Models
In Subection 1.1, we indicated with the term completion time (jC) a value that

depends on the particular scheduling sequence. If a job is in position j in the se-
quence, its completion time is the completion time of the job at position 1j −
plus its processing time. We will denote with the term total completion time the
sum of the completion times of each individual job.

The sequencing problems that we will deal with are called non preemptive: the
job that is in the processing state cannot be interrupted for any reason.

For the solution of scheduling problems we describe two mathematical mod-
els [32] that formalise it. The first model formulates the problem of scheduling n
jobs on m machines that minimises the total completion time. We indicate with

k
ijx the variable that is equal to 1 if job j is the k-th job executed on the machine

i, 0 otherwise. We also indicated ijp the processing time of job j on machine i.

The model is therefore as follows:

()

()

{ } ()

1 1 1

1 1

1

Minimize subject to :

1 1, ,

1 1, , ; 1, ,

0,1 1, , ; , 1, ,

m n n
k

ij ij
i j k

n m
k
ij

k i
n

k
ij

j

k
ij

p x

x j n

x k n i m

x i m j k n

= = =

= =

=

= =

≤ = =

∈ = =

∑∑∑

∑∑

∑



 

 

where the first constraint binds the j-th job to run as k-th on the i-th machine
for some i and j.

The second model concerns the scheduling of n jobs on m machines that mi-
nimizes the sum of the single completion times. By specifying with

1

k
k l
ij ij ij

l
C p x

=

= ∑ the completion time of job j scheduled as k-th on machine i, the

related mathematical model is therefore:

()

()

{ } ()

1 1 1

1 1

1

Minimize subject to :

1 1, ,

1 1, , ; 1, ,

0,1 1, , ; , 1, ,

m n n
k
ij

i j k

n m
k
ij

k i
n

k
ij

j

k
ij

C

x j n

x k n i m

x i m j k n

= = =

= =

=

= =

≤ = =

∈ = =

∑∑∑

∑∑

∑



 

 

5. The Simulated Annealing Algorithm

The problem that we are going to solve with the simulated annealing technique
can be summarized as follows [33] [34] [35]: To schedule a sequence of n jobs on

https://doi.org/10.4236/jamp.2019.711176

C. Gallo, V. Capozzi

DOI: 10.4236/jamp.2019.711176 2587 Journal of Applied Mathematics and Physics

m machines establishing that the order of the n jobs is the same on each of the m
machines.

5.1. Basic Parameters

Basic parameters for the phase of simulated annealing are:
Initialization. Choice of an initial solution. In theory the choice of an initial

solution has no effect on the quality of the final solution, i.e. the solution con-
verges to the overall optimum independently of the initial solution [36]. There
are, however, experimentally verified exceptions to this theory, in which it has
been shown that sometimes the process of convergence to the optimal solution is
more rapid if one takes as the initial solution a solution obtained by means of a
good heuristic [37]. However, the overall computational time for an approx-
imate solution starting from a “good” initial solution is often higher than the
computational time needed to obtain an approximate solution starting from any
initial solution. The reason for this approach is to be found in the peculiarity of
the mechanism that generates the perturbations.

Selection of a mechanism that generates small perturbations, to pass from
one configuration to another one. The perturbation pattern is a crucial element
to obtain good performances. The chosen perturbation scheme consists in con-
sidering two randomly generated numbers and exchanging places for the jobs
that in the scheduling queue occupy the positions relative to the random num-
bers chosen.

5.2. Data Structure

The data structure chosen for the representation of the j-th job (with
0 1j n< ≤ −) implements the most important definitions of Subsection 1.1 as

follows:

() , 0 1p i i m∀ ≤ ≤ −

It is a vector that stores the job’s processing time on the i-th processor (ma-
chine). These data are read from the input stream.

totp
This is the total processing time of the job, obtained by summing the processing

time of the job on all processors = ()
1

m

i
p i

=
∑ .

d
Job due date. This data is read from the input stream and is calculated by the

generator in the following way:

()input percentage ofp pd tot tot= +

c
This is the completion time of the job; its value depends on the particular

permutation of the scheduling queue. If the job is in the j-th position in the
scheduling queue, then its completion time is given by the value of the com-

https://doi.org/10.4236/jamp.2019.711176

C. Gallo, V. Capozzi

DOI: 10.4236/jamp.2019.711176 2588 Journal of Applied Mathematics and Physics

pletion time of the job that precedes it in the scheduling queue plus its own
processing time.

late
This is the late work [12] value of the job. It is computed as follows:

• If 0c d− ≤ then 0late =
• If 0 pc d tot< − ≤ then late c d= −
• If pc d tot− > then plate tot=

Other useful information for understanding the algorithm are:
Actual order
This is the scheduling order of the jobs currently considered. The order fol-

lowing the reading of the data from the input stream is assumed to be
0,1,2, , 1n − .

Best order
It is the job scheduling order that obtains the minimum from the objective

function. This minimum value is stored in the variable BOF (Best Objective Func-
tion).

Parameters chosen for the simulated annealing phase are:
Freezing criterion
A freeze occurs when the algorithm, for MAXITERATIONS times, does not

perform neither a downhill nor an uphill movement.
Temperature
The initial temperature for the simulated annealing phase is set in the temper-

ature parameter.
Cooling
At each iteration, the temperature is cooled by this parameter.
L
Number of neighbors to visit at each iteration.

5.3. The Proposed Algorithm

The proposed algorithm consists of two nested cycles. Basically, it chooses two
integer random numbers (i and j) in the range { }0,1, , 1n − ; then exchanges
job i and job j in the scheduling queue; finally it calculates the value of the objec-
tive function. If this value is lower than the value stored in BOF, the scheduling
order is stored and the variable BOF is updated. Otherwise, if the value worsens
the objective function, a probability is computed on the basis of which the wor-
sening of the objective function is accepted.

The detailed algorithm is shown in Figure 4. Its strength lies in computing the
value of the objective function without having to physically exchange jobs i and j.

5.4. Application Example

Let’s take an example of how the algorithm works. Let’s suppose we have the
situation represented in Table 2, and we have chosen the random indexes 2 and
4. The queue resulting by exchanging the jobs that occupy these positions in the
actual order queue is shown in Table 3.

https://doi.org/10.4236/jamp.2019.711176

C. Gallo, V. Capozzi

DOI: 10.4236/jamp.2019.711176 2589 Journal of Applied Mathematics and Physics

Figure 4. The proposed algorithm.

Table 2. Initial job sequence.

actual order 0 1 2 3 4 5 6

Machine 0 10 40 80 30 50 15 70

Machine 1 8 45 87 22 52 13 75

Machine 2 12 30 85 20 50 18 48

totp 30 115 252 72 152 46 193

d 33 126.5 277.2 79.2 167.2 50.6 212.3

c 30 145 397 469 621 667 860

late 0 18.5 119.8 72 152 46 193

best order 0 1 2 3 4 5 6

Table 3. Permuted job sequence.

actual order 0 1 4 3 2 5 6

Machine 0 10 40 50 30 80 15 70

Machine 1 8 45 52 22 87 13 75

Machine 2 12 30 50 20 85 18 48

totp 30 115 152 72 252 46 193

d 33 126.5 167.2 79.2 277.2 50.6 212.3

c 30 145 297 369 621 667 860

late 0 18.5 129.8 72 252 46 193

best order 0 1 2 3 4 5 6

https://doi.org/10.4236/jamp.2019.711176

C. Gallo, V. Capozzi

DOI: 10.4236/jamp.2019.711176 2590 Journal of Applied Mathematics and Physics

In this case we have worsened the value of the objective function (the late
work values for jobs 2 and 4 increased). In fact the best order queue is unchanged,
but it remains evident that the completion time values:
• for the first two positions (job 0 and job 1) remained unchanged (respectively

30 and 145, being their positions unaltered);
• for positions 2 (now job 4) and 3 (job 3, unchanged) have been decreased by

the same amount (100); this decrease is precisely equal to the difference
() ()4 2p pdiff tot tot= − of the initial scheme;

• for the jobs at positions 4 (now job 2), 5 (job 5, unchanged) and 6 (job 6, un-
changed) remained the same.

For late work values (see 5.2) we have instead:
• late has not changed for jobs 0 and 1 in the new scheduling queue;
• for job 4 (that occupies position 2 in the new queue) we have

0 297 167.2 129.8 152 129.8pc d tot late c d< − = − = ≤ = ⇒ = − = ;
• for job 3 we have 369 79.2 289.8 72 72p pc d tot late tot− = − = > = ⇒ = = ;
• for job 2 (at position 4 in the new scheduling queue) we have

621 277.2 343.8 252 152p pc d tot late tot− = − = > = ⇒ = = ;

• for jobs 5 and 6 the late values are unchanged.
In general, if we intend to exchange job i with job j (i j<):

• the values of late work will be unchanged for jobs in positions { }0,1, , 1i − ;
• the following value is computed: () ()p pdiff tot j tot i= − ;

• for job in position i, the new late work value is calculated by comparing the
quantity: () ()diff c i d j+ − with the due date value of process j;

• for jobs in position { }1, 2, , 1i i j+ + − the late work value is computed by
comparing the quantity: () ()diff c k d k+ − with the due date value of process
k, where { }1, 2, , 1k i i j∈ + + − ;

• for job in position j the new late work value is computed by comparing the
quantity: () ()diff c j d i+ − with the due date value of process i;

• for jobs in position { }1, 2, , 1j j n+ + − the late work values are un-
changed.

We can therefore compute the value of the objective function without having
to build the tables for the new schedule queue, but simply by processing infor-
mation that is already available without using memory quantities.

6. Computational Tests
Before analyzing the computational tests, let us consider the (random) generator
of the numbers that form the processing time values. For each job on each ma-
chine a random integer number is generated in the range []0,100  which
represents the processing time value of the job on the processor.

The seed of the random number generator is initialized to a different number
depending on the system time. The due date time is instead calculated by adding
the sum of the values of the processing time of the job on all the available ma-
chines, increased by a percentage given by input.

https://doi.org/10.4236/jamp.2019.711176

C. Gallo, V. Capozzi

DOI: 10.4236/jamp.2019.711176 2591 Journal of Applied Mathematics and Physics

Data to be considered common to all tests are:
• increase percentage for the due date values: 10;
• number of neighbors to be explored: 10;
• number of iterations per problem: 15.

With regard to the number of neighbors to be explored, the above value was
chosen because from an experimental check it was noted that for a smaller
number (of neighbors) you get results close to the optimal one, while for a larger
number you will keep (in the cases we tested) values that often coincide with the
optimal one but, being computationally severe, they negatively affect the execu-
tion time of the approximation algorithm.

Some test cases are presented to verify the computational weight on the basis
of the hypotheses made.

Guidance for understanding computational testing.
Table 4 summarises the tests performed. The indications at the top of the

columns indicate:
n: number of jobs to be scheduled;
m: number of machines used;
OF: optimum value of the objective function;
OF = SA: number of times that the result obtained with the approximated al-

gorithm of simulated annealing coincides with the optimal one;
Tmin: minimum time (in seconds) taken by the simulated annealing algorithm

to find a result that coincided with the optimum;
Tmax: maximum time (in seconds) taken by the simulated annealing algorithm

to find a result that coincided with the optimum;
OF ≠ SA: number of times the result obtained by the approximated simulated

annealing algorithm differs from the optimum one;
min: minimum value used by the simulated annealing algorithm to obtain a

result that does not coincide with the optimum;
T: time (in seconds) taken by the simulated annealing algorithm to obtain a

result that does not coincide with the optimum;
Δ%: average percentage difference.

Table 4. Computational tests.

n m OF OF = SA Tmin (sec.) Tmax (sec.) OF ≠ SA min T (sec.) Δ% max T (sec.) Δ%

10 3 1112.200 15 0.04 0.35 0 -- -- -- -- -- --

10 4 1312.600 13 0.06 0.33 2 1338.6 0.03 1.94 1353.6 0.01 3.02

10 5 2393.210 15 0.06 0.33 0 -- -- -- -- -- --

11 3 1170.000 13 0.05 0.64 2 1195.0 0.02 2.09 1195.0 0.08 2.09

11 4 1819.800 15 0.03 0.34 0 -- -- -- -- -- --

11 5 2433.900 15 0.05 0.31 0 -- -- -- -- -- --

https://doi.org/10.4236/jamp.2019.711176

C. Gallo, V. Capozzi

DOI: 10.4236/jamp.2019.711176 2592 Journal of Applied Mathematics and Physics

7. Conclusions

In this paper we present a randomised algorithm using the heuristic technique of
Simulated Annealing (SA)—which proved its positive result as a single-state op-
timization search algorithm for both discrete and continuous problems—for
solving scheduling problems. The main goal behind our randomisation is to im-
prove the solutions generated by classical job scheduling algorithms using SA to
explore the search space in an efficient manner. The proposed hybrid algorithm
were evaluated, and the experimental results show that it provides a perfor-
mance enhancement in terms of best solutions and running time when com-
pared to job scheduling and SA as stand-alone algorithms.

The followed solution method is of a non-deterministic type. It is based on the
probability of obtaining an optimal solution in relation to the current situation
of the objective function and the possible improvement due to a controlled move-
ment in the space of the feasible solutions—linked to the concept of “tempera-
ture” of the algorithm—until it reaches the freezing point, that is an optimal ac-
ceptable one.

The choice made in our method prescinds from the initial solution and it ra-
ther takes into account the total computing time required, since it is more im-
portant to obtain an “almost” optimal feasible solution in a reasonable time rather
than trying to arrive at the optimal solution in a theoretically unlimited time.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Kan, A.R. (2012) Machine Scheduling Problems: Classification, Complexity and

Computations. Springer Science & Business Media, New York.

[2] Horn, W.A. (1974) Some Simple Scheduling Algorithms. Naval Research Logistics
Quarterly, 21, 177-185. https://doi.org/10.1002/nav.3800210113

[3] Błażewicz, J. (1987) Selected Topics in Scheduling Theory. North-Holland Mathe-
matics Studies, 132, 1-59. https://doi.org/10.1016/S0304-0208(08)73231-6

[4] Jain, A.S. and Meeran, S. (1998) A State-of-the-Art Review of Job-Shop Scheduling
Techniques. Technical Report, Department of Applied Physics, Electronic and Me-
chanical Engineering, University of Dundee, Dundee, Scotland.

[5] Mason, E.A. and Kronstadt, B. (1967) Graham’s Laws of Diffusion and Effusion.
Journal of Chemical Education, 44, 740. https://doi.org/10.1021/ed044p740

[6] Abraham, A., Buyya, R. and Nath, B. (2000) Nature’s Heuristics for Scheduling Jobs
on Computational Grids. The 8th IEEE International Conference on Advanced
Computing and Communications (ADCOM 2000), 45-52.

[7] Kaplanoğlu, V. (2016) An Object-Oriented Approach for Multi-Objective Flexible
Job-Shop Scheduling Problem. Expert Systems with Applications, 45, 71-84.
https://doi.org/10.1016/j.eswa.2015.09.050

[8] Błażewicz, J., Domschke, W. and Pesch, E. (1996) The Job Shop Scheduling Prob-

https://doi.org/10.4236/jamp.2019.711176
https://doi.org/10.1002/nav.3800210113
https://doi.org/10.1016/S0304-0208(08)73231-6
https://doi.org/10.1021/ed044p740
https://doi.org/10.1016/j.eswa.2015.09.050

C. Gallo, V. Capozzi

DOI: 10.4236/jamp.2019.711176 2593 Journal of Applied Mathematics and Physics

lem: Conventional and New Solution Techniques. European Journal of Operational
Research, 93, 1-33. https://doi.org/10.1016/0377-2217(95)00362-2

[9] Çaliş, B. and Bulkan, S. (2015) A Research Survey: Review of AI Solution Strategies
of Job Shop Scheduling Problem. Journal of Intelligent Manufacturing, 26, 961-973.
https://doi.org/10.1007/s10845-013-0837-8

[10] Jamali, S., Alizadeh, F. and Sadeqi, S. (2016) Task Scheduling in Cloud Computing
Using Particle Swarm Optimization. The Book of Extended Abstracts, 192.

[11] Gonzalez, T.F. (2007) Handbook of Approximation Algorithms and Metaheuristics.
Chapman and Hall/CRC, New York.

[12] Potts, C.N. and Van Wassenhove, L.N. (1992) Approximation Algorithms for
Scheduling a Single Machine to Minimize Total Late Work. Operations Research
Letters, 11, 261-266. https://doi.org/10.1016/0167-6377(92)90001-J

[13] Morrison, D.R., Jacobson, S.H., Sauppe, J.J. and Sewell, E.C. (2016) Branch-and-
Bound Algorithms: A Survey of Recent Advances in Searching, Branching, and
Pruning. Discrete Optimization, 19, 79-102.
https://doi.org/10.1016/j.disopt.2016.01.005

[14] Sels, V., Coelho, J., Dias, A.M. and Vanhoucke, M. (2015) Hybrid Tabu Search and
a Truncated Branch-and-Bound for the Unrelated Parallel Machine Scheduling
Problem. Computers & Operations Research, 53, 107-117.
https://doi.org/10.1016/j.cor.2014.08.002

[15] Bellman, R.E. and Dreyfus, S.E. (2015) Applied Dynamic Programming. Volume
2050, Princeton University Press, Princeton, NJ.

[16] Krishnaraj, J., Pugazhendhi, S., Rajendran, C. and Thiagarajan, S. (2019) Simulated
Annealing Algorithms to Minimise the Completion Time Variance of Jobs in Per-
mutation Flowshops. International Journal of Industrial and Systems Engineering,
31, 425-451. https://doi.org/10.1504/IJISE.2019.099188

[17] Ogbu, F.A. and Smith, D.K. (1990) The Application of the Simulated Annealing
Algorithm to the Solution of the n/m/Cmax Flowshop Problem. Computers & Op-
erations Research, 17, 243-253. https://doi.org/10.1016/0305-0548(90)90001-N

[18] Chakraborty, S. and Bhowmik, S. (2015) An Efficient Approach to Job Shop Sche-
duling Problem Using Simulated Annealing. International Journal of Hybrid In-
formation Technology, 8, 273-284. https://doi.org/10.14257/ijhit.2015.8.11.23

[19] Cruz-Chávez, M.A., Martínez-Rangel, M.G. and Cruz-Rosales, M.H. (2017) Accele-
rated Simulated Annealing Algorithm Applied to the Flexible Job Shop Scheduling
Problem. International Transactions in Operational Research, 24, 1119-1137.
https://doi.org/10.1111/itor.12195

[20] Sel, C. and Hamzadayi, A. (2015) A Simulated Annealing Approach Based Simula-
tion-Optimization to the Dynamic Job-Shop Scheduling Problem. Pamukkale Uni-
versity Journal of Engineering Sciences, 24, 665-674.

[21] Akram, K., Kamal, K. and Zeb, A. (2016) Fast Simulated Annealing Hybridized with
Quenching for Solving Job Shop Scheduling Problem. Applied Soft Computing, 49,
510-523. https://doi.org/10.1016/j.asoc.2016.08.037

[22] Bissoli, D.C., Altoe, W.A.S., Mauri, G.R. and Amaral, A.R.S. (2018) A Simulated
Annealing Metaheuristic for the Bi-Objective Flexible Job Shop Scheduling Prob-
lem. 2018 International Conference on Research in Intelligent and Computing in
Engineering, San Salvador, El Salvador, 22-24 August 2018, 1-6.
https://doi.org/10.1109/RICE.2018.8627907

[23] Kadhim, A.-Z.M., Ali, S.K. and Kassim, M.M. (2018) Solving Machine Scheduling

https://doi.org/10.4236/jamp.2019.711176
https://doi.org/10.1016/0377-2217(95)00362-2
https://doi.org/10.1007/s10845-013-0837-8
https://doi.org/10.1016/0167-6377(92)90001-J
https://doi.org/10.1016/j.disopt.2016.01.005
https://doi.org/10.1016/j.cor.2014.08.002
https://doi.org/10.1504/IJISE.2019.099188
https://doi.org/10.1016/0305-0548(90)90001-N
https://doi.org/10.14257/ijhit.2015.8.11.23
https://doi.org/10.1111/itor.12195
https://doi.org/10.1016/j.asoc.2016.08.037
https://doi.org/10.1109/RICE.2018.8627907

C. Gallo, V. Capozzi

DOI: 10.4236/jamp.2019.711176 2594 Journal of Applied Mathematics and Physics

Problem under Fuzzy Processing Time Using the Simulated Annealing Method.
Journal of Progressive Research in Mathematics, 14, 2308-2317.

[24] Shivasankaran, N., Kumar, P.S. and Raja, K.V. (2015) Hybrid Sorting Immune Si-
mulated Annealing Algorithm for Flexible Job Shop Scheduling. International
Journal of Computational Intelligence Systems, 8, 455-466.
https://doi.org/10.1080/18756891.2015.1017383

[25] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. and Teller, E.
(1953) Equation of State Calculations by Fast Computing Machines. The Journal of
Chemical Physics, 21, 1087-1092. https://doi.org/10.1063/1.1699114

[26] Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983) Optimization by Simulated
Annealing. Science, 220, 671-680. https://doi.org/10.1126/science.220.4598.671

[27] Černy, V. (1985) Thermodynamical Approach to the Traveling Salesman Problem:
An Efficient Simulation Algorithm. Journal of Optimization Theory and Applica-
tions, 45, 41-51. https://doi.org/10.1007/BF00940812

[28] Aarts, E.H.L. and Van Laarhoven, P.J.M. (1985) Statistical Cooling: A General Ap-
proach to Combinatorial Optimization Problems. Philips Journal of Research, 40,
193-226.

[29] Heynderickx, I., De Raedt, H. and Schoemaker, D. (1986) Simulated Anneal Me-
thod for the Determination of Spin Hamiltonian Parameters from ESR Data. Jour-
nal of Magnetic Resonance, 70, 134-139.
https://doi.org/10.1016/0022-2364(86)90367-7

[30] Lundy, M. (2015) Applications of the Annealing Algorithm to Combinatorial Prob-
lems in Statistics. Biometrika, 72, 191-198.

[31] Vecchi, M.P. and Kirkpatrick, S. (1983) Global Wiring by Simulated Annealing.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
2, 215-222. https://doi.org/10.1109/TCAD.1983.1270039

[32] Błażewicz, J., Dror, M. and Weglarz, J. (1991) Mathematical Programming Formu-
lations for Machine Scheduling: A Survey. European Journal of Operational Re-
search, 51, 283-300. https://doi.org/10.1016/0377-2217(91)90304-E

[33] Kolonko, M. (1999) Some New Results on Simulated Annealing Applied to the Job
Shop Scheduling Problem. European Journal of Operational Research, 113, 123-136.
https://doi.org/10.1016/S0377-2217(97)00420-7

[34] Osman, I.H. and Potts, C.N. (1989) Simulated Annealing for Permutation Flow-Shop
Scheduling. Omega, 17, 551-557.
https://doi.org/10.1016/0305-0483(89)90059-5

[35] Van Laarhoven, P.J.M., Aarts, E.H.L. and Lenstra, J.K. (1992) Job Shop Scheduling
by Simulated Annealing. Operations Research, 40, 113-125.
https://doi.org/10.1287/opre.40.1.113

[36] Lundy, M. and Mees, A. (1986) Convergence of an Annealing Algorithm. Mathe-
matical Programming, 34, 111-124. https://doi.org/10.1007/BF01582166

[37] Eusuff, M., Lansey, K. and Pasha, F. (2006) Shuffled Frog-Leaping Algorithm: A
Memetic Meta-Heuristic for Discrete Optimization. Engineering Optimization, 38,
129-154. https://doi.org/10.1080/03052150500384759

https://doi.org/10.4236/jamp.2019.711176
https://doi.org/10.1080/18756891.2015.1017383
https://doi.org/10.1063/1.1699114
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1007/BF00940812
https://doi.org/10.1016/0022-2364(86)90367-7
https://doi.org/10.1109/TCAD.1983.1270039
https://doi.org/10.1016/0377-2217(91)90304-E
https://doi.org/10.1016/S0377-2217(97)00420-7
https://doi.org/10.1016/0305-0483(89)90059-5
https://doi.org/10.1287/opre.40.1.113
https://doi.org/10.1007/BF01582166
https://doi.org/10.1080/03052150500384759

	A Simulated Annealing Algorithm for Scheduling Problems
	Abstract
	Keywords
	1. Introduction
	1.1. Definitions
	1.2. Objectives of a Scheduling Problem
	1.3. Classification of Scheduling Problems
	1.4. Classification of Solutions
	1.5. Solution Methods

	2. The Scheduling Problem in the Processing Environment
	3. Simulated Annealing
	4. Mathematical Models
	5. The Simulated Annealing Algorithm
	5.1. Basic Parameters
	5.2. Data Structure
	5.3. The Proposed Algorithm
	5.4. Application Example

	6. Computational Tests
	7. Conclusions
	Conflicts of Interest
	References

