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Abstract 
In this paper, we used an interpolation function with strong trigonometric 
components to derive a numerical integrator that can be used for solving first 
order initial value problems in ordinary differential equation. This numerical 
integrator has been tested for desirable qualities like stability, convergence and 
consistency. The discrete models have been used for a numerical experiment 
which makes us conclude that the schemes are suitable for the solution of first 
order ordinary differential equation. 
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1. Introduction 
1.1. Formulation of the Interpolating Function 

Finite difference schemes have been in the forefront of the methods of using dis-
crete models to approximate the solution of ordinary differential equations. Among 
the techniques used in building finite difference, scheme is the use of interpola-
tion which requires the design of a basis function that is adequately differentia-
ble in the domain of the numerical integration. Such basis function is then used 
to create a discrete version of the differential equation involved. This method has 
been used in the works of [1]-[6], etc. Notable among latest works on interpo-
lating with trigonometric function includes [7], who constructed a new piece-
wise rational quadratic trigonometric spline with four local positive shape para-
meters in each subinterval is to visualize some given planar data. The order of 
approximation of the developed interpolating function was found to ( )30 h . 
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[8] developed a new method for smooth rational cubic trigonometric interpo-
lation based on values of function which is being interpolated. This rational cu-
bic trigonometric spline is used to constrain the shape of the interpolant in such 
a way that the uniqueness of the interpolating function for the given data would 
be replaced by uniqueness of the interpolating curve for the given data. 

[9] constructed a new quadratic trigonometric B-spline with control parame-
ters to address the problems related to two dimensional digital image interpola-
tion. The newly constructed spline is then used to design an image interpolation 
scheme. Most of these works concentrated on application of trigonometric splines 
to digital imaging. We are interested in a general use of trigonometric interpola-
tion functions for creating discrete models for the solution of ordinary differen-
tial Equation. 

1.2. Nonstandard Modeling Techniques 

The need for the nonstandard method came up due to some shortcomings of the 
standard method, in which the qualitative properties of the exact solutions are 
not usually transferred to the numerical solution. These shortcomings may create 
a lot of problems, which may affect the stability properties of the standard ap-
proach [10]. 

The concept of numerical instability and its proof by [10] [11], has led to the 
establishment of five major modeling rules proposed for the construction of dif-
ference schemes that will exhibit numerical stability. He also used these tech-
niques to derive numerical models that are exact schemes for some classes of or-
dinary differential equations.  

A finite difference scheme is called nonstandard finite difference method, if at 
least one of the following conditions is met [12]:  

a) In the discrete derivative, the traditional denominator is replaced by a 
non-negative function ϕ  such that, ( ) ( )20h h hϕ = +  as 0h → ; 

b) Non-linear terms that occur in the differential equation are approximated 
in a non-local way, i.e. by a suitable function of several points of the mesh. The 
concept of nonstandard finite difference schemes was proposed by [10] as a 
solution to the numerical instability that exist in the use of finite difference sche- 
mes. 

Since the discovery of this method, researchers like [5] [12] among others have 
suggested ways of building numerically reliable schemes using the nonstandard 
modeling rules. In this work we will create a scheme using the both of these two 
techniques above.  

2. Derivation of the Scheme 

Let assume that a solution of a differential equation can be represented by a func-
tion  

( ) cos e xF x A x B Qx−∝= + −                    (1) 
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where − ∝  and Q are simulation parameters and A and B are arbitrary con-
stants. 

Let a first order ordinary differential equation possess a real valued solution 
and be differentiable in its domain several times, then from (1) we can write: 

cos e xy A x B Qx−∝= + −  

sin e xy A x B Q−∝′ = − − ∝ −                     (2) 
2cos e xy A x B −∝′′ = − + ∝                      (3) 
3sin e xy A x B −∝′′′ = + − ∝                      (4) 

4cos eiv xy A x B −∝= + ∝                      (5) 

From (3) and (5) we have 

( )4 2 eiv xy y B −∝′′ + = ∝ + ∝  

( )
( )4 2

 
e

iv

x

y y
B

−∝

′′ +
=

∝ + ∝
                       (6) 

From (2) and (4) we have 

( )3 e ?xy y B −∝′ ′′′+ = − ∝ + ∝  

( )32 sin e xy y A x B −∝′′′ ′− = + ∝ − ∝  

( ) ( )3 e
 

2sin

xy y B
A

x

−∝′′′ ′− − ∝ − ∝
=                   (7) 

Also from (3) and (5) we have 

( )4 22 cos eiv xy y A x B −∝′′− = + ∝ − ∝  

( ) ( )4 2 e

2cos

iv xy y B
A

x

−∝′′− − ∝ − ∝
=                  (8) 

For the discrete representation 

cos e xy A x B Qx−∝= + −  

( ) cos e xy x A x B Qx−∝= + −  

( ) cos e nx
n n ny x A x B Qx−∝= + −                   (9) 

( ) 1
1 1 1cos e nx

n n ny x A x B Qx+−∝
+ + += + −               (10) 

( )1 1n ny x y+ +≡  and ( )n ny x y≡  

( ) ( )1 1n n n ny x y x y y+ +− ≡ −  

( )1e e e e 1n n nx x x h+∝ ∝ ∝ ∝− = −
 

( )e 1hM ∝= −  

1 2 sin sin e
2 2

nx
n n n

h hy y A x BM Qh−∝
+

 = − + + − 
 

          (11) 
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From (7), (8) and (11) 

( ) ( )

( )
( ) ( )

4 2

1

4 2

e
2 sin sin

2cos 2 2

e 1 e
e

n

n

n

xiv

n n n

iv
xh

x

y y B h hy y x
x

y y
Qh

−∝

+

−∝∝
−∝

 ′′− − ∝ − ∝     = − +     
     

 ′′ + + − − 
∝ + ∝  

    (12) 

Or 

( ) ( )

( )
( ) ( )

3

1

4 2

e
2 sin sin

2sin 2 2

e 1 e
e

n

n

x

n n n
n

iv
xh

x

y y B h hy y x
x

y y
Qh

−∝

+

−∝∝
−∝

 ′′′ ′− − ∝ − ∝     = − +     
     

 ′′ + + − − 
∝ + ∝  

     (13) 

Let   nf y′= , 1
nf y′′− , 2

nf y′′′= , 3  iv
nf y=  

Then 

( ) ( )

( )( )
( )

4 2
3 1 3 1

1 4 2

3 1

4 2

sin sin
2 22

2cos

e 1

n

n n n n n n
n

h
n n

h hx
y y f f f f

x

f f
Qh

+

∝

    +     ∝ − ∝    = − − − +   
∝ + ∝  

  
 − + + − 

∝ + ∝  

  (14) 

Or 

( ) ( )

( )( )
( )

3
2 3 1

1 4 2

3 1

4 2

sin sin
2 22

2sin

e 1

n

n n n n n n
n

h
n n

h hx
y y f f f f

x

f f
Qh

+

∝

    +     ∝ − ∝    = − − − +   
∝ + ∝  

  
 − + + − 

∝ + ∝  

  (15) 

sin sin
2 2 

2cos

n

n

h hx
E

x

   +   
   = , 

4 2

4 2F ∝ − ∝
=
∝ + ∝

, 

4 2

e 1h

G
∝ −

=
∝ + ∝

, 
3

4 2H ∝ − ∝
=
∝ + ∝

 and 
sin sin

2 2
2sin

n

n

h hx
I

x

   +   
   =       (16) 

( ) ( ){ } ( ){ }3 1 3 1 3 1
1 2n n n n n n n ny y E f f F f f G f f Qh+ = − − − + + + − , cos 0nx ≠  

( ) ( ){ } ( ){ }2 3 1 3 1
1 2n n n n n n n ny y I f f H f f G f f Qh+ = − − − + + + − , sin 0nx ≠  

( ) ( )3 1
1 2 2 2 2n n n ny y F E G f E F G f Qh+ = + − + + + + − , cos 0nx ≠    (17) 

( ) ( ) ( ) ( )3 2 1
1 2 2 2 2n n n n n ny y H G f I f H G f I f Qh+ = + + − + + + − , sin 0nx ≠ (18) 

Let  
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( )2 2R F E G= − + , ( )2 2S E F G= + + , 

( )2U H G= + , ( )2T I= − , ( )2M I=               (19) 

Substitute (19) into (17) and (18), we have the integrator in the form (20) and 
(21) respectively 

3 1
1n n n ny y Rf Sf Qh+ = + + −                    (20) 

3 2 1
1n n n n n ny y Uf Tf Uf Mf Qh+ = + + + + −              (21) 

3. Properties of the Integration Method 
3.1. Definition [13] 

Any algorithm for solving a differential equation in which the approximation 

1ny +  to the solution at 1nx +  can be calculated iff ,n nx y  and h are known is 
called a one step method. It is a common practice to write the functional depen-
dence 1ny +  on the quantities ,n nx y  and h in the form  

( )1 , ,n n n ny y x y hφ+ = +  

where ( ), ,n nx y hφ  is the incremental function. 

3.2. Definition [1] 

A numerical scheme with an incremental ( ), ,n nx y hφ  is said to be consistent 
with the initial value problem ( ) ( )0 0, ,y f x y y x y′ = =  if the incremental func-
tion is identically zero at 0t  when 0h = . 

3.3. Theorem [13] 

Let the incremental function of the scheme defined in the one step scheme above 
be continuous and jointly as a function of its arguments in the region defined by  

[ ],x a b∈  and ( ),y∈ −∞ ∞ , 00 h h≤ ≤  

where 0 0h >  and let there exists a constant L such that  
( ) ( )* *, , , ,n n n n n nx y h x y h L y yφ φ −− ≤  for all ( ), ,n nx y h  and ( )*, ,n nx y h  in the 

region just defined then the relation ( ) ( )*, ,0 ,n n n nx y x y=  is a necessary condi-
tion for the convergence of the new scheme. 

3.4. Theorem [1] 

Let ( )n ny y x=  and ( )n np p x=  denote two different numerical solution of the 
differential equation with the initial condition specified a ( )0 0y y x ξ= =  and 

( ) *
0 0p p x ξ==  respectively such that *ξ ξ ε− < , 0ε > . 
If the two numerical estimates are generated by the integration scheme, we 

have  

( )1 , ,n n n nhy y x y hφ+ = +  

( )1 , ,n n n nhp p x p hφ+ = +  

The condition that *
1 1n ny p K ξ ξ+ +− ≤ −  is the necessary and sufficient 

condition for the stability and convergence of the schemes. 
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3.5. Proof of Convergence of the Integration Method 

The increment function ( ), ;n nx y h∅  can be written in the form 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 2 3

, ;

, , , ,

n n

n n n n n n n n

x y h

Mf x y Uf x y Tf x y Uf x y Qh

∅

= + + + −
    (22) 

Consider Equation (19), we can also write 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 2 3* * * * *, ; , , , ,n n n n n n n n n nx y h Mf x y Lf x y Tf x y Uf x y Qh∅ = + + + −  

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

*

1 1* *

2 2 3 3* *

, ; , ;

, , , ,

, , , ,

n n n n

n n n n n n n n

n n n n n n n n

x y h x y h

M f x y f x y U f x y f x y

T f x y f x y U f x y f x y Qh Qh

∅ −∅

  = − + −   
   + − + − − +   

(23) 

Let y  be defined as a point in the interior of the interval whose points are y 

and *y , applying mean value theorem, we have 

( ) ( ) ( ) ( )* *,
, , n

n n n n n n
n

f x
f x y f x y

y
y y

y
∂

− = −
∂

 

( ) ( ) ( ) ( )
( ) ( ) ( )
1

1 1* *,
, , n

n n n n n n
n

f x
f x y f x

y
y y y

y
∂

− = −
∂

 

( ) ( ) ( ) ( )
( ) ( ) ( )
2

2 2* *,
, , n

n n n n n n
n

f x
f x y f x

y
y y y

y
∂

− = −
∂

 

( ) ( ) ( ) ( )
( ) ( ) ( )
3

3 3* *,
, , n

n n n n n n
n

f x
f x y f x

y
y y y

y
∂

− = −
∂

 

We define 

( )
( )

,

,
sup

n n

n n
x y D

n

f x y
L

y∈

∂
=

∂
, ( )

( ) ( )1

1 ,

,
sup

n n

n n
x y D

n

f x y
L

y∈

∂
=

∂
 

( )

( ) ( )2

2 ,

,
sup

n n

n n
x y D

n

f x y
L

y∈

∂
=

∂
, ( )

( )0

3 ,

,
sup

n n

n n
x y D

n

f x y
L

y∈

∂
=

∂
 

Therefore 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

*

1 1* *

2 2 3 3* *

* * * *
1 2 3

, ; , ;

, , , ,

, , , ,

n n n n

n n n n n n n n

n n n n n n n n

n n n n n n n n

x y h x y h

M f x y f x y U f x y f x y

T f x y f x y U f x y f x y

ML y y UL y y TL y y UL y y

∅ −∅

  = − + −   
   + − + −   

= − + − + − + −

   (24) 

Taking the absolute value of both sides 

( ) ( )

( ) ( ) ( ) ( )

*

* * * *
1 2 3

*
1 2 3

, ; , ;n n n n

n n n n n n n n

x y h x y h

ML y y UL y y TL y y UL y y

ML UL TL UL y y

∅ −∅

≤ − + − + − + −

≤ + + + −

    (25) 

If we let 1 2 3K ML UL TL UL= + + +  
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then our Equation (23) turns to 

( ) ( )* *, ; , ;n n n nx y h x y h K y y∅ −∅ ≤ −              (26) 

which is the condition for convergence. 

3.6. Consistence of the Integration Method 

Consider an initial value problem of the form 

( ) ( ), , o oy f x y y x y′ = =                    (27) 

Having an integrator of the form 

( )1 , ,n n n ny y x y hφ+ = +  

which can be obtained using (17) and (18) above and applying the rule in Sec-
tion 1.2 a). 

The renormalized nonstandard form of the schemes will be 

{ }3 1
1n n n ny y Rf Sf Qhϕ+ = + + − , cos 0nx ≠              (28) 

{ }3 2 1
1n n n n n ny y Uf Tf Uf Mf Qhϕ+ = + + + + − , sin 0nx ≠         (29) 

where ( )1 , ;n n n ny y x y hϕ+ = + , ( )sin hϕ = ∝  then 

If 0h = , 0E = , 
4 2

4 2F ∝ − ∝
=
∝ + ∝

, 0G =  and 
3

4 2H ∝ − ∝
=
∝ + ∝

, 0I =  and 

0ϕ =  then (28) and (29) reduced to 1n ny y+ =  

( ), ;0 0n nx yϕ⇒ =                      (30) 

It is a known fact that a consistent method has order of at least one. Therefore, 
the new numerical integrator is consistent since Equations (28) and (29) can be 
reduced to (30) when 0h = .  

3.7. Stability Analysis of the Integration Method  

We shall establish the stability analysis of the integrator by considering the theo-
rem established by [14]. 

Let ( )n ny y x=  and ( )n nP P x=  denote two different numerical solutions 
of initial value problem of ordinary differential Equation (25) with the initial 
conditions specified as ( )oy x η=  and ( ) *

op x η=  respectively, such that  
*η η ε− < , 0ε > . If the two numerical estimates are generated by the integra-

tor (19). From the increment function (26), we have 

( )1 , ;n n n ny y x y hϕ+ = + ∅                     (31) 

( )1 , ;n n n nP P x p hϕ+ = + ∅                     (32) 

The condition that 
*

1 1n ny P K η η+ +− ≤ −                      (33) 

is the necessary and sufficient condition that our new method (19) be stable and 
convergent. 
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Proof 
From (29) we have 

( ) ( ) ( ) ( )3 2 1
1 2 2 2 2n n n n n ny y H G f I f H G f I f Qhϕ ϕ ϕ ϕ ϕ+ = + + − + + + −  

{ }3 2 1
1n n n n n ny y Uf Tf Uf Mf Qhϕ+ = + + + + −               (34) 

Then let 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 2 3
1 , , , ,n n n n n n n n n ny y Mf x y Uf x y Tf x y Uf x y Qhϕ+ = + + + + − (35) 

and 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 2 3
1 , , , ,n n n n n n n n n np p Mf x p Uf x p Tf x p Uf x p Qhϕ+ = + + + + − (36) 

Therefore, 

( ) ( ){ ( ) ( )

( ) ( ) ( ) ( ) }

1 1

1 1

2 2 3 3

, , , ,

, , , ,

n n

n n n n n n n n n n

n n n n n n n n

y p

y p M f x y f x p U f x y f x p

T f x y f x p U f x y f x p

ϕ
+ +−

 = − + − + −    

   + − + −   

 (37) 

Applying the mean value theorem as before, we have 

( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1

1 2

3

,

, ,

,

n n
n n n n n n

n

n n n n
n n n n

n n

n n
n n

n

f x p
y p y p M y p

y

f x p f x p
U y p T y p

y y

f x p
U y p

y

ϕ

ϕ

+ +

 ∂  − = − + −  ∂   
    ∂ ∂+ − + −    ∂ ∂       

 ∂ + − ∂  

(38) 

We define 

( )
( )

,

,
sup

n n

n n
x y D

n

yf x
L

y∈

∂
=

∂
, ( )

( ) ( )1

1 ,

,
sup

n n

n
x y D

n

f x
L

y
y

∈

∂
=

∂
 

( )

( ) ( )2

2 ,

,
sup

n n

n
x y D

n

f x
L

y
y

∈

∂
=

∂
, ( )

( )3

3 ,

,
sup

n n

n
x y D

n

f x
L

y
y

∈

∂
=

∂
 

Therefore 

( ) ( )
( ) ( )

1 1 1

2 3

n n n n n n

n n n n

y p ML y p UL y p

TL y p UL y p

ϕ ϕ

ϕ ϕ
+ +− = − + −

+ − + −
           (39) 

Taking the absolute value of both sides 

( ) ( )
( ) ( ) ( ) ( )

*

1 2 3

1 2 3

, ; , ;n n n n

n n n n n n n n

n n

x y h x y h

ML y p UL y p TL y p UL y p

ML UL TL UL y p

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

∅ −∅

≤ − + − + − + −

≤ + + + −

 (40) 

If we let 1 2 3K ML UL TL ULϕ ϕ ϕ ϕ= + + +  
then our Equation (34) turns to 

( ) ( ), ; , ;n n n n n nx y h x p h K y p∅ −∅ ≤ −             (41) 

which is the condition for convergence. 
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and ( )oy x η= , ( ) *
oP x η= , given 0ε > , then 

1 1n n n ny p N y p+ +− ≤ −                    (42) 

and 
*

1 1n ny p N η η ε+ +− ≤ − < , for every 0ε >            (43) 

Then we conclude that our method (29) is stable and convergent. 
Note: Similar arguments can be used to proof the stability, convergence and 

consistency of the scheme { }3 1
1n n n ny y Rf Sf Qhϕ+ = + + − . 

4. The Implementation of the Integration Method 
4.1. Application of the Finite Difference Schemes to a Deferential  

Equation I 

We derive a scheme for the first equation thus  

( ) ( )225 , 0 0, 5tan 5y y y y x′ = + = =               (44) 

( )2 32 2 25 50 2y yy y y y y′′ ′= = + = +               (45) 

2 2 4 2 4100 50 150 6 100 200 6y y y y y y′′′ = + + + += +         (46) 
3 55000 800 24ivy y y= + +                    (47) 

Since we are integrating from zero and cos 0nx ≠  

{ }3 1
1n n n ny y Rf Sf Qhϕ+ = + + −  

where nf y′= , 1
nf y′′− , 2

nf y′′′= , 3 iv
nf y= . 

4.2. Application of the Finite Difference Schemes to Logistic Model 

We now derive a scheme for the first model  

( ) ( )2 0

0 0

, , 0 0.5
1 et
yy y y y y

y y
′ = − = =

+ −
            (48) 

2y y yy′′ ′ ′= −  
2 33 2y y y y′′ = − +                       (49) 

2 3 2 3 46 6 6 6y y y y y y y′′′ = − + − + −                (50) 
2 3 4 515 50 60 24ivy y y y y y= − + − +                (51) 

Since we are integrating from zero we will use 

{ }3 1
1n n n ny y Rf Sf Qhϕ+ = + + − , 

where nf y′= , 1
nf y′′= , 2

nf y′′′= , 3 iv
nf y= . 

4.3. The Hybrid Nonstandard Schemes 

The new scheme will be obtained by substituting the derivatives and applying it 
to our scheme 

{ }1n ny y Ry Sy Qhϕ+ ′′ ′′= + + −                  (52) 
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The new standard scheme will be named (New SCH STD) with  

1ϕ = , h h=                         (53) 

For each of the examples the hybrid schemes will be obtained by applying the 
renormalization techniques. 

The hybrid scheme (NEW SCH h) is obtained by using ( )sin hϕ = ∝ , step size  

h h=                            (54) 

The hybrid scheme (NEW SCH SIN) by using ( )sin hϕ = ∝ , step size  

( )sinh rh= , r R∈                      (55) 

The hybrid scheme (NEW SCH EXP) by using ( )sin hϕ = ∝ , step size  

( )e 1h

h
λ

λ

−
= , Rλ ∈                     (56) 

The choice of this denominator function as step size is informed by the works 
of [5] [12]. 

4.4. Experimentation and Result 

The following are the 3D graphs obtained from the schemes when applied to the 
two models (Figures 1-14). We have used same parameters, step size, denomi-
nator functions and simulation parameters ∝ and Q to test the two differential 
equation models.  

4.4.1. The Graph for the Method of Differential Equation Model I  
Graph of the Schemes with parameters: h = 0.001, ∝ = (4.25 - 14), Q = 36, 

λ = 0.26. 
 

 
Figure 1. Solution curves for the schemes of Model Ι.  

 

 

Figure 2. Graph of absolute error for the schemes in Figure 1. 
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Graph of the Schemes with parameters: h = 0.0001, ∝ = (4.25 - 14), Q = 36, 
λ = 0.26. 

 

 
Figure 3. Solution curves for the schemes of model ΙΙ.  

 

 

Figure 4. Graph of absolute Error for schemes in Figure 3. 
 

 

Figure 5. Graph of absolute Error for schemes in Figure 3. 

4.4.2. The Graph for the Schemes of the Logistic Model II 
Graph of the Schemes with parameters: h = 0.001, ∝ = (6.39 - 7.3), Q = 36, 

λ = 0.0026. 
 

 
Figure 6. Solution curves for the schemes of Model IΙ.  
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Figure 7. Graph of absolute error for the schemes in Figure 6. 
 

 

Figure 8. Graph of absolute error for the standard scheme in Figure 6. 
 

 

Figure 9. Error curve for the standard scheme in Figure 6.  
 

Graph of the Schemes of model II with parameters: h = 0.0001, ∝ = (6.39 - 
7.3), Q = 36, λ = 0.0016. 

 

 
Figure 10. Solution curves for the schemes of model ΙΙ.  

 

 

Figure 11. Solution curves for the standard schemes of model ΙΙ.  
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Figure 12. Graph of absolute Error for the hybrid Nonstandard schemes in 
Figure 10. 

 

 

Figure 13. Graph of absolute Error for the Standard schemes in Figure 11. 
 

 

Figure 14. Graph of absolute Error for the Standard schemes in Figure 11. 

5. Discussion and Conclusion 

The derived simulation models have been tested with the control parameters ∝ 
and Q. We also applied the Nonstandard method by modifying denominator func-
tion φ, which also provides for parameters λ and r that can be chosen to obtain 
iteratively assigned step size as denominator. The discrete model worked for the 
tested differential equation. The solution curves of the hybrid schemes follow the 
analytical solutions of the respective equations monotonically are shown in Fig-
ure 1, Figure 3, Figure 5, Figure 10 and Figure 12. The numerical properties of 
the schemes like linear stability, convergence and consistency have been proved 
analytically. During the course of simulating the equations, we varied these con-
trol parameters to obtain family of curves that are very close to the analytic solu-
tion. The scheme NEW SCH h and NEW SCH STD are the standard schemes 
because we maintain the h h=  as step size in both cases. The result showed 
that the two schemes do not possess smooth monotonicity properties (see Fig-
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ure 6 and Figure 11) and diverge if 1ϕ =  (see Figure 14). These two schemes 
possess the highest absolute error of deviation from the analytic solution (see Fig-
ure 8, Figure 9, Figure 13 and Figure 14). These results confirm the good qual-
ities of Nonstandard modeling techniques [15]. The choice of appropriate values 
for variables λ and r can be determined using the conditions set by [5] [12]. The 
graph of Absolute error in Figure 4, Figure 7 and Figure 12 has demonstrated 
these qualities. The Nonstandard schemes of Model II produced absolute errors 
that are very close to zero. It is also observed that these two hybrid schemes are 
exact schemes for the logistic equation when 0.0001h ≤  because the result of 
the schemes is the same with the analytic solution (see Figure 12). This work 
can be extended by add higher degree polynomial to the basis function for a 
possible improved performance [14] [16]. We can conclude that the discrete 
model is suitable for the solution of first order ordinary differential equation as 
proposed. 
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