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Abstract 
In this paper, let G be a Polish locally compact group acting on a Polish space 
X with a G-invariant probability measures j

j µ∑ . Factorize the integral 

with respect to j
j µ∑  in terms of the integrals with respect to the ergodic 

measures on X, and showed that ( ) ( ) ( )1 , , 0j
jL X µ+ ≤ < ∞∑   are G-equivar- 

iantly isometric ally lattice isomorphic to an ( )1L + -direct integral of the 

spaces ( ) ( )1 , jL X λ+ , where jλ  ranges over the ergodic measures on X. This 

yields a disintegration of the canonical representation of G as isometric lattice 

auto orphisms of ( ) ( )1 , j
jL X µ+ ∑  as an ( )1L + -direct integral of order in-

decomposable representations. If ( ), j
jX µ′ ′∑  are probability space, and, 

for some 0 ≤ < ∞ , G acts in a strongly continuous manner on  
( ) ( )1 , j

jL X µ+ ′ ′∑  as isometric lattice auto orphisms that leave the constants 

fixed, then G acts on ( ) ( )1 , j
jL X µ+ ′ ′∑  in a similar fashion for all 0 ≤ < ∞ . 

Moreover, there exists an alternative model in which these representations 
originate from a continuous action of G on a compact Hausdorff space. If 

( ), j
jX µ′ ′∑  are separable, the representation of G on ( ) ( )1 , j

jL X µ+ ′ ′∑  

can then be disintegrated into order indecomposable representations. The 

notions of ( )1L + -direct integrals of Banach spaces and representation is de-
veloped for extend those in the literature. 

How to cite this paper: Joseph, S., Saeed, 
F., Suoliman, N., Khanfoor, M. and Ellah, 
A.E.A. (2019) Disintegration of Group Repre-
sentations on Direct Integrals of Banach 
Spaces. Advances in Pure Mathematics, 9, 
879-924. 
https://doi.org/10.4236/apm.2019.911044 
 
Received: July 11, 2019 
Accepted: November 1, 2019 
Published: November 4, 2019 
 
Copyright © 2019 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution-NonCommercial 
International License (CC BY-NC 4.0). 
http://creativecommons.org/licenses/by-nc/4.0/ 

  
Open AccessRETRACTED

https://www.scirp.org/journal/apm
https://doi.org/10.4236/apm.2019.911044
http://www.scirp.org
https://www.scirp.org/
https://doi.org/10.4236/apm.2019.911044
http://creativecommons.org/licenses/by-nc/4.0/


S. Joseph et al. 
 

 

DOI: 10.4236/apm.2019.911044 880 Advances in Pure Mathematics 
 

Keywords 

Positive Representation pL -Space, Order Indecomposable Representation, 
Direct Integral of Banach Lattice 

 

1. Introduction and Overview 

There is unitary group representation. Apart from an intrinsic interest and ma-
thematical relevance, the wish to understand such representations originates 
from quantum theory, where the unitary representations of the symmetry group 
of a physical system have a natural role. However, whereas symmetry yields a 
unitary representation of the pertinent symmetry group, there is also a family of 
canonical representations on Banach lattices in [1]. The rotation group of 3  
acts on the 2-sphere in a measures-preserving fashion, yielding a canonical uni-
tary representation on ( )2 2 , jL S dσ , but there are, in fact, canonical strongly 
continuous representations as isometric lattice automorphisms of the Banach 
lattice ( ) ( )1 2 , jL S dσ+  for all 0 ≤ < ∞ . 

Likewise, for all 0 ≤ < ∞ , the motion group of ( )1+   acts in a strongly 
continuous fashion as isometric lattice automorphisms on the Banach lattice 

( ) ( )( )1 1 ,L dx+ +  . Representations of groups as isometric lattice automorphisms 
of Banach lattices are quite common. In spite of this, not much is known about 
such representation or, for that matter, about the related positive representation 
of ordered Banach algebra and Banach lattice algebra in Banach lattice; the ma-
terial in [2] [3] [4] [5] is a modest start at best. Nevertheless, it seems quite nat-
ural to investigate such representations. Moreover, given the long-term success, 
in a Hilbert space context, of the passage from single operator theory to groups 
and algebras and their representations—a development that was initially also 
stimulated and guided by the wish to understand unitary group representa-
tions—it seems promising to develop a similar theory for representations in Ba-
nach lattices. 

One of the highlights in abstract representation theory in Hilbert spaces is the 
insight that every strongly continuous unitary representation of a separable lo-
cally compact Hausdorff group on a separable Hilbert space can be disintegrated 
into irreducible unitary representations. This follows from a similar theorem for 
C*-algebras and the standard relation between the unitary representations of a 
group and the non-degenerate representations of its group C*-algebra; every re-
presentation is thus built from irreducible ones. Is something analogous possible 
for strongly continuous actions of a locally compact Hausdorff group as isome-
tric lattice automorphisms of Banach lattices? This seems a natural guiding 
question when studying representations in an ordered context. It is still very far 
from having been answered in general, and presumably one will have to restrict 
oneself to a class of suitable Banach lattices. After all, the unitary theory works 
particularly well in just one space, namely 2

 , and it seems doubtful that there 
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can be a uniform answer for the existing diversity of Banach lattices. 
What, exactly, should “irreducible” mean in an ordered context? When 

searching for the parallel with unitary representations it is actually more conve-
nient to think of irreducible unitary representations as indecomposable unitary 
representations, which happens to be the same notion, and look for the analogue 
of the latter. Given a representation of a group G as lattice automorphisms of 
two vector lattices 1E  and 2E , there is a natural representation of G as lattice 
automorphisms of the vector lattice 1 2E E E= ⊕ . If a representation of G as lat-
tice automorphisms of a given vector lattice E is not such an order direct sum of 
two non-trivial subrepresentations, then one will want to call it for order inde-
composable. Actually, if 1 2E E E= ⊕  is an order direct sum of vector lattice, 
then more is true than one would perhaps expect. 1E  and 2E  are automatical-
ly projection bands, and they are each other’s disjoint complement; this is a spe-
cial case of [[6], Theorem 11.3]. 

Coming from the other side, if a projection band in E is invariant under a 
group of lattice automorphisms, then so is its disjoint complement, and hence 
there is a corresponding decomposition of the representation into two sub-rep- 
resentations as lattice automorphisms. All in all, we have the following natural 
definition. 

Definition 1.1. Let E be a vector lattice, and let ρ  be a homomorphism 
from G into the group of lattice automorphisms of E. Then the representation 
ρ  is order indecomposable if {0} and E are the only G-invariant projection 
bands in E. 

Note that G acts on E as lattice automorphisms precisely when it acts as 
positive sequence of operators; hence one can also refer to such a representation 
as a positive representation of G on E. 

It is a non-trivial fact that an order indecomposable positive representation of 
a finite group on a Dedekind complete vector lattice is finite dimensional; this 
follows from [[7, Theorem 3.14]. It is also possible to show that every finite 
dimensional positive representation of a finite group on an Archimedean vector 
lattice is an order direct sum of order indecomposable positive representations, 
where the latter can be classified [[7], Theorem 4.10 and Corollary 4.11]. This 
answers the question about disintegrating finite dimensional positive represen-
tations of finite groups. The matter is still open for infinite dimensional positive 
representations of finite groups. 

For positive representations of an abstract group G on a normalized Banach 
sequence space E, it is true that the representation is order direct sum of order 
indecomposable positive representations; see [[8], Theorem 5.7]. If the group 
has compact image in the strong sequence of operators topology, and E has or-
der continuous norm (this includes the spaces ( )1+



  for 0 ≤ < ∞ ), then these 
order indecomposable positive representations are all finite dimensional. This is 
an analogue of the well-known theorem for unitary representations of compact 
Hausdorff groups. 
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This first main step—omit the necessary conditions for the sake of clari-
ty—consists of a disintegration into order indecomposable representations of the 
representations of a locally compact Hausdorff group G as isometric lattice au-
tomorphisms of ( )1L + -spaces, as canonically associated with an action of G on a 
Bore probability space ( ), j

jX µ∑  with invariant measure j
j µ∑ . Such a re-

presentation is order indecomposable precisely when j
j µ∑  is ergodic. One 

might therefore hope that, somehow, a disintegration of j
j µ∑  into ergodic 

measures jλ  will yield a disintegration of the canonical positive representation  
on ( ) ( )1 , j

jL X µ+ ∑  in terms of the order indecomposable canonical represen-

tations on ( ) ( )1 , jL X λ+  for ergodic jλ . This can be done, and Theorem 4.9 

clarifies what is here: in a G-equivariant fashion, the Banach lattice 
( ) ( )1 , j

jL X µ+ ∑  is an ( )1L + -direct integral of the Banach lattices ( ) ( )1 , jL X λ+  

for ergodic jλ , where the ( )1L + -direct integral is with respect to a Borel  
probability measure on the set of ergodic measures. Apart from the framework 
of direct integrals of Banach spaces as such, which could also have representa-
tion theoretical applications in other contexts, the principal ingredient for the 
proof of this result is a factorization of the integral over X with respect to 

j
j µ∑  in terms of those with respect to the ergodic measures; see Theorem 4.5. 

In spite of its aesthetic appeal, not aware of a reference for the pertinent formula 
in this Tonelli-Fubini-type theorem, which itself is based on the aforementioned 
disintegration of j

j µ∑  into ergodic measures. 
Aside, let us briefly mention that there is no uniqueness statement concerning 

the isomorphism classes occurring in the disintegration Theorem 4.9. Given the 
subtleties necessary in the study of Type I groups and C*-algebras in the Hilbert 
space context, it does not seem to be realistic to strive for such a result at this 
moment. 

The second main step consists of removing the hypothesis that the given re-
presentation of G on ( ) ( )1 , j

jL X µ+ ∑  originate from an action on the under-

lying probability space ( ), j
jX µ∑ . Under mild conditions, it can be shown 

that an action of G on ( ) ( )1 , j
jL X µ+ ∑  as isometric lattice automorphisms  

that leave the constants fixed, can be transferred to another model where there is 
such an underlying action; see Theorem 5.14. Then back in the ergodic theoreti-
cal context, and combination with the result from the first main step yields a 
disintegration result for these representations into order indecomposable repre-
sentations as well. The pertinent Theorem 5.15 should be thought of as an or-
dered relative of the general unitary disintegration result. The key transfer 
Theorem 5.14 for this step is strongly inspired by the material in [9]. 

It seems that, for practical purposes, the main results have a rather broad 
range of validity; we will make a few technical remarks to support this statement. 

One of the re-occurring hypotheses is that a space is Polish. For a locally 
compact Hausdorff space, being Polish is equivalent to be second countable; see 
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[[10], Theorem 5.3]. 
Thus all Lie groups are Polish see [[11], Section 1.3]), and, more generally, so 

are all differentiable manifolds. Therefore, the factorization Theorem 4.5 and the 
disintegration Theorem 4.9—for which the underlying Polish space X need not 
even be locally compact—are applicable to all actions of Lie groups on differen-
tiable manifolds. In a similar vein, note that it follows from the combination of  
[[12], Vol. I, Exercise 1.12.102] and [[12], Vol. II, Example 6.5.2] that the meas-
ure space ( ), j

jX µ∑  is always separable whenever X is a separable metric 
space and j

j µ∑  is a Borel probability measure on X. Therefore, the disinte-
gration Theorem 5.15, where this separ ability is assumed, covers several com-
monly occurring situations as well. 

This paper is organized as follows: 
In Sec 2, introduce some terminology and notation, and establish a few pre-

liminary results on order in decomposability and strong continuity of canonical 
representations of groups on ( )1L + -spaces. 

The first part of Sect.3 is concerned with an extension of part of the theory of 
direct integrals of Banach spaces and Banach lattices. The measurable families of 
norms figuring in [13] are not sufficient for the context, where a measurable 
family of semi-norms occurs naturally. Moreover, the measures need not be 
complete. Generalize the theory accordingly. After that, ( )1L + -direct integrals of 
representations are introduced, and possible perspectives in representation 
theory are briefly discussed. The usual direct integrals of representations on 
separable Hilbert spaces are shown to be special cases of the general formal-
ism. 

Section 4 contains the results of the first main step, i.e. the factorization 
Theorem 4.5 and the disintegration Theorem 4.9 in the case of an action on the 
underlying measure space. As a worked example, give a concrete disintegration 
of the representations of the unit circle on the ( )1L + -spaces of the closed unit 
disk, as these are canonically associated with the action of the circle on this disk 
as rotations. 

Section 5 is concerned with disintegrating representations when there is no 
action on an underlying measure space. Its main result, the disintegration Theo-
rem 5.15, is the ordered relative of the general unitary disintegration. 

Section 6 contains some remarks on the current status of the theory and on 
possible further developments. Even though this paper was motivated by a re-
presentation theoretical question in an ordered context, the interpretation of 
the main results as answers to this question is almost just an afterthought. 
The reader can find definitions and terminology concerning vector lattices, 
but, if so desired, the limited number of occurrences of this terminology in 
the sequel that stand beyond the notions of a vector lattice and a lattice ho-
momorphism can also safely be ignored. Then be read from a primarily er-
godic theoretical, functional analytical, or general representation theoretical 
perspective. 
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2. Preliminaries 

In this section, fix terminology and notation, and establish a few preliminary re-
sults on group representations. 

2.1. Terminology and Notation 

All vector spaces, except the Hilbert spaces, are over the real numbers. This is no 
essential restriction, as the results extend to complex ( )1L + -spaces and (in Sect. 
3) complex Backspaces and Banach lattices in an obvious manner, but this con-
vention reduces the necessary terminology and size of the proofs. 

Topological spaces are not assumed to be Hausdorff. A topological space is called 
locally compact if every point has an open neighborhood with compact closure. 

If X is a topological space, then ( )cC X  and ( )bC X  denote the continuous 
functions on X  that have compact support and that are bounded, respectively. 

Topological groups are groups for which inversion is continuous and multip-
lications continuous in two variables simultaneously. They are not assumed to 
be Hausdorff or locally compact. 

A topological dynamical system is a pair ( ),G X , where the topological group 
G acts as homeomorphisms on the topological space X such that the map 

( ) ( ),j j x
g x g  are continuous from G X×  to X. The system is called Polish 

if both G and X are Polish. 
A measure on a jσ -algebra are jσ -additive and takes values in [ ]0,∞ . It is 

not assumed to be jσ -finite. If X is a topological space, then a Borel measure is 
a measure on the Borel jσ -algebra of X, without any further assumptions. 

For ( ), j
jX µ∑  a measure space and 0 ≤ < ∞ , ( ) ( )1 , j

jX µ+ ∑  denotes 
the semi-normed space of all ( )1+  -integrable extended functions  

{ }: ,jf X → −∞ ∞ , and ( ) ( )1 , j
jL X µ+ ∑  denotes the Banach lattice of all 

equivalence classes of extended functions ( ) ( )1 , j
j jf X µ+∈ ∑ , under j

j µ∑
-almost everywhere equality. Often work with an extended functions jf  that is 
an element of ( ) ( )1 , j

jX µ+ ∑  for different measures j
j µ∑  on X, and con-

sider the equivalence classes of jf  in ( ) ( )1 , j
jL X µ+ ∑  for these j

j µ∑ . It is 
essential to keep a clear distinction between these objects, so do not identify 
functions that are equal almost everywhere, and, when ( )1+   is fixed, denote 
the equivalence class in ( ) ( )1 , j

jL X µ+ ∑  of an element ( ) ( )1 , j
j jf L X µ+∈ ∑  

by jjj f
µ

  ∑ . 
In the same vein, if V is a vector space, jω  is an index, and jj ω

⋅∑  are 
semi-norms on V, then denote the equivalence class of x V∈  in ( )ker jV

ω
⋅  

by [ ] jj x
ω∑ . 

If Y is a subset of X, then Y1  is the characteristic function of Y on X. 
If jB  are normed space, then ( )jB  denotes the bounded linear sequence 

of operators on jB . 

2.2. Preliminaries on Group Representations 

Suppose that the abstract group G acts as measure preserving transformations 
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on the measure spaces ( ), j
jX µ∑ . Then say that j

j µ∑  are G-invariant 
measure. In this case, for every 0 ≤ < ∞ ,  

( ) ( )1:j j j
j j

j j j jj jg f x f g x
µ µ µ

ρ −

∑ ∑
   =   ∑ ∑   are well-defined representa-

tion of G as isometric lattice isomorphism of ( ) ( )1 , j
jL X µ+ ∑ . Refer to this re-

presentation as the canonical representation on ( ) ( )1 , j
jL X µ+ ∑ ; in the literature 

this is also called a Koopmans representation. 
A measurable subset Y of X is j

j µ∑ -essentially G-invariant if  

( ) 0j
jj g Y Yµ ∆ =∑  for all m, where ( ) ( ) : \j j jY g Y Y g Y Y g Y∆ =    are the 

symmetric difference of Y and jg Y . An ergodic measure on X is a G-invariant 

measures j
j µ∑  such that ( ) 0j

j Yµ =∑ . 

Or ( ) 1j
j Yµ =∑  for all j

j µ∑ -essentially G-invariant measurable subset 

Y of X. 
Investigate the relationship between the ergodicity of the measure jµ  and 

the order in decomposability of ( ) ( )( )1: ,j
j

j
jG L X

µ
ρ µ+

∑
→ ∑ . This is es-

sential for the representation theoretical interpretation of the disintegration re-
sults, but not for these results as such, so that a primarily ergodic theoretical or 
functional analytic interest can skip the next two results. The following lemma. 

Lemma 2.1. Let ( ), j
jX µ∑  be a jσ -finite measure space, and let 0 ≤ < ∞ . 

If Y X⊆  is measurable, let 

( ) ( )1 , : 0 for -almost all .j
j j

j j jY
j j j

B f L X f y y Y
µ

µ µ+
    = ∈ = ∈   
   

∑ ∑ ∑  

Then ( )j Y
B  are projection band in ( ) ( )1 , j

jL X µ+ ∑ , and all projection 

bands in ( ) ( )1 , j
jL X µ+ ∑  are of this form. If 1Y  and 2Y  are measurable 

subsets of X, then  

( ) ( )
1 2j jY

B B=  if and only if ( )1 2 0j
j Y Yµ ∆ =∑ . 

Recall that the measure algebra ( ) j
j

jA
µ∑

 of ( ), j
jX µ∑  consists of the 

equivalence classes [ ] j
j

Y
µ∑

 of measurable subsets Y of X, where 1Y  and 2Y  

are equivalent when ( )1 2 0j
j Y Yµ ∆ =∑ . Lemma 2.1 shows that there is a bisec-

tion between the elements of ( ) j
j

jA
µ∑

 and the projection bands in

( ) ( )1 , j
jL X µ+ ∑ , where an element of [ ] j

jj Y
µ∑∑  of the measure algebra 

corresponds to the well-defined bands ( )[ ] ( ):
j

j
j jj jY Y

B B
µ∑

=∑ ∑ . 

If an abstract group G′  acts as positive sequence of operators on
( ) ( )1 , j

jL X µ+ ∑ , then it permutes the projection bands in ( ) ( )1 , j
jL X µ+ ∑ . If, 

as is the case for the group G, this positive action originates canonically from an 
action as measure preserving transformations on ( ), j

jX µ∑ , then G also acts  
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canonically on ( ) j
j

jA
µ∑

: for jg G∈  and [ ] ( ) j
j

jY A
µ∑

∈ , the action 

[ ] :j j
j j

j jj jg Y g Y
µ µ∑ ∑

 =  ∑ ∑  is well-defined (see, e.g. by Marcel de Jeu, J 

Rozendaal [1]). These two actions are compatible with the maps 
[ ] [ ]j j

j j
jj jY B Y

µ µ∑ ∑∑ ∑
. This is the content of part (1) of the next result, 

and it is exploited in parts (2), (3), and (4). 
Proposition 2.2. Let G be an abstract group, acting as measure preserving 

transformations on a jσ -finite measure space ( ), j
jX µ∑ , and let 0 ≤ < ∞ . 

(1) If [ ] ( )j j
j j

jj jY A
µ µ∑ ∑
∈∑ ∑ , and ( )[ ] j

j
j Y

B
µ∑

 is the corresponding pro-

jection b and in ( ) ( )1 , j
j jL X µ+ ∑ ∑ , then 

( )( )[ ] ( ) [ ] ( )j
j jj j j

j j j jj jY g Y
g B B g G

µ µ
µ

ρ
∑∑

= ∈∑ ∑ . 

(2) for jg G∈ , the projection bands in ( ) ( )1 , j
jL X µ+ ∑  that are fixed by 

jg  correspond. 
To the fixed points of jg  in ( ) j

j
jA

µ∑
. 

(3) The G-invariant projection bands in ( ) ( )1 , j
jL X µ+ ∑  correspond to the 

fixed points of G in ( ) j
j

jA
µ∑

. 

(4) The canonical representation ( ) ( )( )1: ,j
j

j
jG L X

µ
ρ µ+

∑
→ ∑  of G as 

isometric lattice automorphisms on ( ) ( )1 , jL X µ+  is order indecomposable if 

and only if j
j µ∑  are ergodic. 

Proof. As for (1), let ( )[ ] jj
jj

j jj jf B Y
µµ ∑∑

  ∈ ∑ ∑ , so that 

{ }( )supp 0j
jj Y fµ =∑ 

. By the invariance of j
j µ∑ , have 

{ }( )supp 0j
j j jj g Y g fµ =∑ 

. Since supp suppj j j jg f g f= , see that 

{ }( )supp 0j
j j jj g Y g fµ =∑ 

, i.e.  

( ) ( ) ( ) [ ]j
jj jj j j jj

j j jj j jg Y g Y g Y
B B B

µµ
µ

ρ
∑∑

  ∑
∈ = =∑ ∑ ∑ . Hence 

( )( )[ ] ( ) [ ]j
j jjj j

j j jj jY g Y
g B B

µ µ
µ

ρ
∑ ∑

⊆∑ ∑ . 

Then also 
( ) [ ] ( )

( ) ( )[ ]1

1 1
j j

jj jj jj j

jjj j jj

j j j jj jg Y g Y

j jj jg g Y Y

g B g B

B B

µ µ

µµ

µ µ
ρ ρ

∑ ∑

−
∑∑

− −
  

  

∑
=

⊆ =

∑ ∑

∑ ∑
, so that 

( ) [ ] ( )( )[ ]j
j jjj j j

j j jj jg Y Y
B g B

µ µ
µ

ρ
∑ ∑∑

⊆∑ ∑ . 

The parts (2) and (3) are immediate from (1). 
As for (4), we know from (2) that j

j µ
ρ
∑

 are order indecomposable if and 
only if [ ] j

jj µ∑
∅∑  and [ ] j

jj X
µ∑∑  are the only points of ( ) j

j
jA

µ∑
 that 

are fixed by the G-action. The latter condition is equivalent to the ergodicity of
j

j µ∑ . 
As a further preliminary, investigate the strong continuity of canonical repre-

sentations of topological groups on spaces of continuous functions with compact 
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support and on ( )1L + -spaces, the latter being the principal point of interest. 
The matter is usually considered in the context of a locally compact Hausdorff 

group and a locally compact Hausdorff space in [14], but more can be said. 
The results clarify natural questions concerning the context, and, in view of 

possible future study of canonical group actions on ( )1L + -spaces, this seems a 
natural moment to collect a few basic facts in a sharp formulation. 

A reference for the following result would be desirable, but not aware of one 
for the statement in this generality. The left and right uniform continuity of 
compactly supported continuous functions on a locally compact Hausdorff 
group are special cases. 

Lemma 2.3. Let ( ),G X  be a topological dynamical system. Then the canon-
ical representation ρ  of G as isometric lattice automorphisms of  

( )( ),cC X
∞

⋅  is strongly continuous. 
Proof. It is sufficient to prove that ( )j j jg g fρ  are continuous at for all

( )j cf C X∈ . 

Let 0> . For all x X∈ , there exist a symmetric open neighborhood xU  of 
e in G and an open neighborhood xV  of x in X such that  

( ) ( )1 2j j jj f g y f x− − <∑   for all j xg U∈  and xy V∈ . Let 1 i

n
xi

V
=

 be a fi-
nite cover of sup, jf  and put 1 i

n
xi

U U
=

=


. 
If supp jx f∈ , say 

0ixx V∈ , and 
0ij xg U U∈ ⊆ , then 

( ) ( )

( ) ( ) ( ) ( )0 0

1

1 2 2

j j jj

j j j i j j ij j

f g x f x

f g x f x f x f x

−

−

−

≤ − + − < + =

∑

∑ ∑   
. Since U is sym-

metric, also have ( ) ( )j j jj f g x f x− <∑   for all supp jx f∈  and jg U∈ . 

Therefore, if jg U∈  and x X∈  are such that 1 suppj jg x f− ∈ , Have 

( ) ( ) ( )( ) ( )1 1 1
j j j j j j j jj jf g x f x f g g x f g x− − −− = − <∑ ∑  . 

Have shown that, for jg U∈ , ( ) ( )1
j j jj f g x f x− − <∑   whenever  

supp jx f∈  or 1 suppj jg x f− ∈ . Since ( ) ( )1 0j j jj f g x f x− − =∑  for all remain-

ing x, are done. 
Proposition 2.4. Let ( ),G X  be a topological dynamical system, and assume 

that G is locally compact. Let j
j µ∑  be a Borel measure on X that is finite on 

compact subsets of X. Then, for 0 ≤ < ∞ , the canonical representation j
j µ

ρ
∑

 
of possibly unbounded lattice automorphisms of ( ) ( )( )1,cC X

+
⋅


 is strongly 

continuous. 
If j

j µ∑  are G-invariant, then the canonical representation j
j µ

ρ
∑

 of G as 

isometric lattice Automorphisms of the closure of ( )cC X  in ( ) ( )1 , j
jL X µ+ ∑  

are strongly continuous. 
Proof. Let ( ) ( )0

,j c jf C X g G∈ ∈ , and 0>  be given. Choose an open 

neighbourhood V of e in G with compact closure. Then ( )0
suppj jg V f  are 

compact, hence has finite measure. By Lemma 2.3, there exist an open neigh- 
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bourhood U of e in G such that 

( )( ) ( ) ( )( )
( )

( )
1

1

0 0
supp j j

j j

j
j j j j jj jg V f g f g

µ µ
µ ρ ρ

+
+

∞
∑ ∑

− <∑ ∑


  for all 

( )0j jg g U∈ . Assume thatU V⊆ . Then, for ( )0j jg g U∈ , 

( ) ( )( )
( )

( )

( )( )( ) ( )( )( )
( )

( )

( )( )( ) ( )( )( )( )
( )

( )( )

( )( )( ) ( )( )( )( )
( )

( )( )

( ) ( )( )
( )

( )( )

0

0

0

1

0 1

1

0

1

supp supp 0

1

supp 0

1

s 0

d

d

d

d

j j
j j

j j
j j

j j
j jj j j j

j j
j jj j

j j
j jj

V

V

j j j
j

j
j j j jX

j j

j
j j j jg f g f

j j

j
j j j jg f

j j

j
j j j jg

j j

g f g

g f x g f x x

g f x g f x x

g f x g f x x

g f g f x

µ µ

µ µ

µ µ

µ µ

µ µ

ρ ρ

ρ ρ µ

ρ ρ µ

ρ ρ µ

ρ ρ µ

+

+

+

+

+

+

⋅

⋅
∞

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑

−

= −

= −

≤ −

≤ −

∑

∑ ∑∫

∑ ∑∫

∑ ∑∫

∑ ∑














( )1

upp
.

jf

+≤∫ 

 

The final statement follows from a 3 -argument. 
Proposition 2.4 points at the heart of the matter: under a mild condition on 

the G-invariant Borel measure j
j µ∑ , the natural representation subspace for 

G in ( ) ( )1 , j
jL X µ+ ∑  is the closure of ( )cC X . In some cases, this closure 

equals ( ) ( )1 , j
jL X µ+ ∑ , and include this well-known result for the sake of 

completeness. For this, recall that a Borel measure jµ  on a locally compact 

Hausdorff space is said to be regular if ( )j
j Kµ < ∞∑  for all compact subsets 

K of X, ( ) ( ){ }inf : , openj j
j Y V Y V Vµ µ= ⊆∑  for all Borel subsets Y of X, 

And ( ) ( ){ }su cp : a t, omp cj j
j jV K K V Kµ µ= ⊆∑ ∑  for all open subsets V 

of X. 
For such a measure, ( )cC X  is dense in ( ) ( )1 , j

jL X µ+ ∑ ; in [15]. Combi-
nation with Proposition 2.4 gives the following, generalizing the well-known fact 
that the left and right regular representations of a locally compact Hausdorff 
group G on ( ) ( )1L G+  are strongly continuous for 0 ≤ < ∞ . 

Corollary 2.5. Let ( ),G X  be a topological dynamical system, and assume 
that G is locally compact and that X is a locally compact Hausdorff space. Let 

j
j µ∑  bea G-invariant regular Borel measure on X. Then, for 0 ≤ < ∞ , the 

canonical representation j
j µ

ρ
∑

 of G as isometric lattice automorphisms of 

( ),
j

j j
jL Xµ µ∑ ∑  are strongly continuous. 

Although [[14], p. 68]—where it is assumed that G is Hausdorff—mentions 
that the above result holds, and it is likewise stated—for locally compact second 
countable Hausdorff G and X—without proof on [[16], p. 875]. 

If G and X are not both locally compact, the proof of the strong continuity in 
Corollary 2.5 breaks down. However, there is an alternative context where a sim-
ilar result can still be established along similar lines. 

Lemma 2.6. Let X be a metric space, and let j
j µ∑  be a Borel probability 
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measure on X. Then ( )bC X  is dense in ( ) ( )1 , j
jL X µ+ ∑  for 0 ≤ < ∞ . 

Proof. It is sufficient to approximate the characteristic function Y1  of an ar-
bitrary Borel subset Y of X by elements of ( )bC X . Since know that, for every 
Borel subset Y of X, ( ) ( ){ } inf ope: , nj j

j jY U Y U Uµ µ= ⊆∑ ∑ , it is suffi-
cient to approximate U1  for an arbitrary open subset U of X. Assume that 
U X≠ . In that case, let ( ) ( ) ( )( )( )min 1, , 1, 2,c

j n
f x nd x U n= = 

. Then 

( ) ( )j bn
f C X∈  and ( )0 j Un

f≤ ↑ 1 , so that ( )
( )1

0j Uj n
f

+
− →∑


1  as n →∞  

by the dominated convergence theorem. 
Proposition 2.7. Let G be a first countable group, acting as Borel measurable 

transformations on a metric space X with a G-invariant Borel probability meas-
ure j

j µ∑ . 
Suppose that, for all x X∈ , the map j jg g x  is continuous from G to X. 

Then, for 0 ≤ < ∞ , the canonical representation j
j µ

ρ
∑

 of G as isometric lat-
tice automorphisms of ( ) ( )1 , jL X µ+  are strongly continuous. 

Proof. In view of Lemma 2.6 and a 3 -argument, it is sufficient to prove that 
the map ( )j

j
j j jg g f

µ
ρ
∑

  are continuous for all ( )j bf C X∈ . Since G is 
first countable, continuity at a point jg G∈  is the same as sequential continui-
ty at jg . If ( )j jn

g g→  as n →∞ , then ( )j j j jn
g f g f→  point wise as 

n →∞ , by the continuity assumption on the G-action and the continuity of jf . 
The dominated convergence theorem then yields that  

( )( ) ( )
( )1

0j j
j j

j j j jj n
g f g f

µ µ
ρ ρ

+
∑ ∑

− →∑


 as n →∞ . 

Corollary 2.8. Let ( ),G X  be a Polish topological dynamical system, and 
suppose that j

j µ∑  are G-invariant Borel probability measure on X. Then, for 
each 0 ≤ < ∞ , the canonical representation j

j µ
ρ
∑

 of G as isometric lattice 
automorphisms of ( ) ( )1 , j

jL X µ+ ∑  are strongly continuous. 
Remark 2.9. Every Borel probability measure on a Polish space is regular; (see 

e.g. [1]). However, since local compactness of G and X are not assumed in Co-
rollary 2.8, Corollary 2.5 is still not applicable here. 

3. ( )L 1+ -Direct Integrals of Banach Spaces  
and Representations 

This section provides the framework for the disintegration Theorems 4.9 and 
5.15. Start by defining ( )1L + -direct integrals of Banach spaces and Banach lat-
tices in the spirit of [[13], Sections 6.1 and 7.2]. The idea roughly, to begin with a 
“core” vector space V that is supplied with a family of norms  jj ω

⋅∑ , de-
pending on the points jω  of a measure space ( ), jνΩ . If ( ){ }

Ω
j jjB

ω ω ∈
 are the 

corresponding family of Banach space completions of V, then one can consider 
sections from to ( )j jjB

ω ω∈Ω

. There is a natural notion of measurable section
js , and the ( ) jjj B

ω∑  are “glued together” by restricting attention to mea-
surable sections and identifying measurable sections that are jν -almost every-
where equal. For any Kothespace E associated with ( ), jνΩ , one can then re-
quire, for a measurable section js , that the functions ( )j j j

j j sω ω∑ ∑
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be in E. If E satisfies appropriate additional properties, then the equivalence 
classes of such sections form a Banach space, which is called the E-direct integral 
of the families ( ){ }j jjB

ω ω ∈Ω
. 

In Sect.3.1, this program is carried the for ( ) ( ) ( )1 , , 0jE L ν+= Ω ≤ < ∞  , but 
with two noticeable modifications as compared to [13]. The first is that the fam-
ily of norms figuring is replaced with a family of semi-norms. The need for this 
comes up quite naturally in the context, and it seems to the authors that this may 
also be the case elsewhere. The second difference is that the measure jν  need 
not be complete. Completeness of measures is the standing assumption, but the 
measure apply the formalism need not be complete One has to be extra cautious 
then, and particularly in a vector-valued context; the proof of Proposition 3.2 
may serve as evidence for this. As a consequence of this choice of presentation, 
we are also able to give a precise discussion of the relation with the Bochner 
integral and with the usual theory of direct integrals of separable Hilbert spaces 
and of decomposable sequence of operators, proving that these are particular 
cases of the general theory. 

In Sect. 3.2, define decomposable sequence of operators and the ( )1L + -direct 
integral of a decomposable family of representations of a group G, which is a re-
presentation of G on the ( )1L + -direct integral of Banach spaces from Sect.3.1. 
One way to obtain such a decomposable family of representations is when it ori-
ginates from one common “core” representation ρ  of G on the ‘core’ vector 
space V. Even though it is all fairly natural, not aware of previous similar work 
in the context of (dis)integrating representations. 

As shown in Sect.3.3, the framework in Sect. 3.2 includes the usual theory of 
direct integrals of separable Hilbert spaces. 

Finally, in Section 3.4, sketch a perspective that a more or less obvious exten-
sion of the formalism could have in representation theory. 

3.1. ( )L 1+ -Direct Integrals of Banach Spaces 

Define ( )1L + -direct integrals of a suitable family of Banach spaces. These are 
Banach spaces that generalize the Bochner ( )1L + -spaces and the direct integrals 
of separable Hilbert spaces. Let ( ), jνΩ  be a measure space, and let V be a vec-
tor space. For clarity, let us recall that the measures need not be finite (or even 

jσ -finite) or complete. Say that a collection { }j jω ω ∈Ω
⋅  are measurable family 

of semi-norms on V if   jj ω
⋅∑  is a semi-norm on V for all jω ∈Ω , and 

j
j x

ω
ω 

 are measurable function on Ω  for all x V∈ . For later use, let us 
record that this is the same as requiring that the (identical) functions  

 j
j

j j x
ω

ω∑ ∑  are measurable function on for all x V∈ , where 

[ ] j jj x
ω ω∑  are the value of the induced norm jj ω

⋅∑  on ( )ker jV
ω

⋅  at 

the equivalence class [ ] jj x
ω∑  of x in ( )ker jjV

ω
⋅∑ . 

Let ( ){ }j jjB
ω ω ∈Ω

 be collections of Banach spaces and suppose that 
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( ){ }j jjB
ω ω ∈Ω

 are measurable family of semi-norms on V such that, for all  

jω ∈Ω , ( ) jjB
ω

 are the Banach space completion of ( )ker jV
ω

⋅  with re-
spect to the induced norm jj ω

⋅∑  on ( )ker jV
ω

⋅ . Then say that 

( ){ }j jjB
ω ω ∈Ω

 are measurable family of Banach spaces over ( ), ,j VνΩ . For con-
ciseness, usually do not explicitly mention the specific measurable family of 
semi- series norms ( ){ }j jjB

ω ω ∈Ω
 on V that gives rise to ( ){ }j jjB

ω ω ∈Ω
, as this 

family will generally be clear from the context. 
Analogously, suppose that V is a vector lattice and that ( ){ }j jjB

ω ω ∈Ω
 are 

measurable family of lattice semi-norms on V such that, for all jω ∈Ω , ( ) jjB
ω

 
are the Banachlattice completion of ( )ker jV

ω
⋅  with respect to the induced 

lattice series norm jω
⋅  and the induced ordering on ( )ker jV

ω
⋅ . Then say  

that a families ( ){ }j jjB
ω ω ∈Ω

 of Banach lattices is a measurable family of Banach 

lattices over ( )Ω, ,j Vν . When using this terminology, tacitly assume that V is a 

vector lattice, and that the jω
⋅  are lattice semi-norms. 

Let ( ){ }j jjB
ω ω ∈Ω

 be a measurable family of Banach spaces over ( )Ω, ,j Vν . 
Say that a map ( ): j jjS B

ω ω∈Ω
→


 is a section of ( ){ }j jjB
ω ω ∈Ω

 if  

( ) ( ) j
j j

jj s B
ω

ω ∈∑  for all jω ∈Ω . 
A simple section is a section js  for which there exist n N∈ , 1, , nx x V∈ , 

and measurable subsets ( ) ( )1
, ,j j n

A A  of Ω  such that  

( ) ( )1 j

nj j j
k kks x

ω
ω ω

=
 =  ∑ 1  for all jω ∈Ω . Choosing the ( )j k

A  disjoint, 

have ( ) ( ) ( ) [ ]1 j jj j k

nj j j
kj k j A

s x
ω ωω

ω ω
=

=∑ ∑ ∑ 1 , so that the function 

( ) j
j j js

ω
ω ω  on Ω  is measurable for all simple section js . 

A section𝑠𝑠of ( ){ }j jjB
ω ω ∈Ω

 is said to be measurable if there exists a sequence 

( )
1

j
k k

s
∞

=
 of simple sections such that, for all jω ∈Ω , ( ) ( )j j j j

ks sω ω→  in 

( ) jjB
ω

 as k →∞ . Then clearly ( ) ( ) ( ) jj

j j j j j
j jk

s s s
ωω

ω ω= →∑ ∑  for 

all jω ∈Ω  as k →∞ , and hence, as a consequence of the measurability of the 

functions ( ) ( ) j

j j j
j j k

s
ω

ω ω∑ ∑  on, the functions  

( ) j
j j j

j j s
ω

ω ω∑ ∑  are measurable function on Ω  for all measurable 
section js . The measurable sections form a vector space, and denote the section 
that maps every jω ∈Ω  to the zero element of ( ) jjB

ω
 simply by 0. Also note 

that, if jA  are measurable subset of Ω  and js  is a simple section, then 
jA s1  

is again a simple section. It follows easily from this that the measurable sections 
area module over the measurable functions on Ω  under point wise operations. 

Define the direct integral ( ) ( )dj
j j

jj B
ω

ν ω
⊕

Ω∑ ∫  of ( ){ }j jjB
ω ω ∈Ω

 with re-

spect to jν  to be the space of all equivalence classes j js ν    of measurable 

sections js  of ( ){ }j jjB
ω ω ∈Ω

, where two measurable sections are equivalent if 
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they agree jν -almost everywhere on. Say that the ( ) jjj B
ω∑  are the fibers of 

( ) ( )dj
j j

jj B
ω

ν ω
⊕

Ω∑ ∫ , and introduce a vector space structure on  

( ) ( )dj
j j

jj B
ω

ν ω
⊕

Ω ∑∫  in the usual representative-independent way. 

If ( ){ }j jjB
ω ω ∈Ω

 are measurable family of Banach lattices over ( )Ω, ,j Vν , 
then, in addition, can meaningfully define a natural partial ordering on 

( ) ( )dj
j j

jj B
ω

ν ω
⊕

Ω ∑∫  by ( ) ( ) ( )( )1 1jj
j j j j

j js s
νν

ω ω  ≥ + ⇔ ≥ +   ∑ ∑    
for jν -almost all jω ∈Ω  for  

( ) ( ) ( ), 1 dj jj
j j j

jj j js B
ν ων

ν ω
⊕

Ω
  + ∈   ∑ ∑ ∑∫ . Then ( ) ( )dj

j j
jj B

ω
ν ω

⊕

Ω ∑∫  
are ordered vector space. In fact, it is a vector lattice. For the latter statement, 
note that the point wise supermom and infimum of two measurable sections are 
measurable again, as a consequence of the continuity of the lattice operations in 
all ( ) jjB

ω
 and the fact that the point wise supremum and infimum of two sim-

ple sections are simple sections again. It is then easily verified that, for  

( ) ( ) ( ), 1 dj jj
j j j

jj j js B
ν ων

ν ω
⊕

Ω
  + ∈   ∑ ∑ ∑∫ , ( )1 jj

j
j js

νν
  ∨ +   ∑ ∑   

exists in ( ) ( )dj
j j

jj B
ω

ν ω
⊕

Ω ∑∫ , and that, in fact,  

( ) ( )1 1jj j
j j

j j js s
νν ν

   ∨ + = ∨ +     ∑ ∑ ∑  , where  

( ) ( ) ( )1 djj
j j j

jj js B
ων

ν ω
⊕

Ω
 ∨ + ∈ ∑ ∑∫  are defined by  

( )( )( ) ( ) ( )( )( )1 : 1j j j j j j
j js sω ω ω ω∨ + = ∨ + ∈Ω∑ ∑  . The expression for 

the infimum is similar. 

For ( )0 ≤ < ∞ , let the ( )1L + -direct integral ( )( ) ( )1
d j j

j
L

ν ω
+

⊕

Ω ∑∫ 
 of 

( ){ }j jjB
ω ω ∈Ω

 with respect to jν  be the subset of ( ) ( )dj
j j

jj B
ω

ν ω
⊕

Ω ∑∫  con-

sisting of those ( ) ( )dj
j j j

jj js B
ω

ν ω
⊕

Ω
 ∈ ∑ ∑∫  such that the functions 

( ) j
j j j

j j s
ω

ω ω∑ ∑ , which know to be measurable, is in ( ) ( )1 , jν+ Ω . 

This criterion is evidently independent of the particular representatives of 
j j

j s ν  ∑ , and call j
j

j s
ν

  ∑  and its representatives ( )1+  -integrable (with 

respect to jν ). It follows from the triangle inequality for all jj ω
⋅∑  that 

( ) ( )( ) ( )1
dj

j j
jj

L
B

ω
ν ω

+

⊕

Ω ∑∫ 
 are subspace of ( ) ( )dj

j j
jj B

ω
ν ω

⊕

Ω ∑∫  and that 

( )

( ) ( ) ( )
( ) ( )

( )1

1

1
11

: d d

j

jjj

j

j

j j j j j j

j Lj
j

s

s s B

ν

ωνω
ω ν ν ω

+

+

++ ⊕

Ω Ω

  

    
 = ∈          

∑

∑ ∑∫ ∫




 
   (1) 

defines series norms 
( )1

j
j j

j js s
ν +

      ∑ ∑


 on  

( ) ( )( ) ( )1
dj

j j
jj

L
B

ω
ν ω

+

⊕

Ω ∑∫ 
. 

If V is a vector lattice and ( ){ }j jjB
ω ω ∈Ω

 is measurable family of Banach lat-
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tices over ( ), ,j VνΩ , then it is easily verified that ( ) ( )( ) ( )1
dj

j j
jj

L
B

ω
ν ω

+

⊕

Ω ∑∫ 
 

are vector sub lattice of ( ) ( )dj
j j

jj B
ω

ν ω
⊕

Ω ∑∫ , and that (1) supplies it with a 
lattice norm. 

The ( )1L + -direct integrals of Banach spaces, as defined above, are, in fact, 
Banach spaces. To show this, use that the equivalence classes of the ( )1+ 
-integrable simple sections are dense. This density, which is also a key ingredient 
of the proof of the disintegration Theorem 4.9, is established in the following 
stronger result, based on a familiar truncation argument as in e.g. [[17], proof of 
Proposition 2.16]. 

Lemma 3.1. Let ( ), jνΩ  be a measure space, let V be a vector space, and let

( )0 ≤ < ∞ . Let ( ){ }j jjB
ω ω ∈Ω

 be measurable families of Banach spaces over

( ), ,j VνΩ , and let ( ) ( )( ) ( )1
djj

j j j
jj j

L
s B

ων
ν ω

+

⊕

Ω
  ∈ ∑ ∑∫ 

. Then, for all 0> , 

there exists a sequence ( )( )
1

j

k k
s

∞

=
 of ( )1+  -integrable simple sections such 

that ( ) ( ) ( ) ( )1
jj

j j j j
j jk

s s
ωω

ω ω≤ +∑ ∑  for all k ∈  and jω ∈Ω ,  

( ) ( ) ( )j j

k

j js sω ω→  in ( ) jjB
ω

 as k →∞  for all jω ∈Ω , and  

( )
( )1

0j j

j j

kj s s
ν ν +

   − →   ∑


 as k →∞ . 

If ( ){ }j jjB
ω ω ∈Ω

 are measurable family of Banach lattices over ( ), ,j VνΩ  

and 0j
j

j s
ν

  ≥ ∑ , then the sequence ( )( )
1

j
j k k

s
∞

=
∑  can be chosen such that, 

in addition, ( ) 0
j

j

kj s
ν

  ≥ ∑  for all k N∈ . 

Proof. Let ( ) ( )( ) ( )1
djj

j j j
jj j

L
s B

ων
ν ω

+

⊕

Ω
  ∈ ∑ ∑∫ 

. Then there exists a se-

quence ( )( )
1

j

k k
ś

∞

=
 of simple sections such that, for all jω ∈Ω ,  

( ) ( ) ( )j j j j

k
ś sω ω→  in ( ) jjB

ω
 as k →∞ . For k ∈ , let  

( ) ( ) ( ) ( ) ( ){ }: : 1
jj

j j j j j
jj j jk k

A ś s
ωω

ω ω ω= ∈Ω ≤ +∑ ∑ ∑ . Then ( )j k
A  

are measurable subset of, hence the sections ( )
k

js , defined by  

( ) ( ) ( ): j
j k k

j
j j A śk

s =∑ ∑ 1 , is simple again. Furthermore,  

( ) ( ) ( ) ( )1
jj

j j j j
j jk

s s
ωω

ω ω≤ +∑ ∑  for all k and all jω ∈Ω , so that each 

( )j

k
s  is ( )1+  -integrable with respect to jν . For all jω ∈Ω , 

( ) ( ) ( )j j j j
j jk

s sω ω→∑ ∑  in ( ) jjB
ω

 as k →∞ . It then follows from the 

dominated convergence theorem that ( )  jj

j j
j jk

s s
νν

   →   ∑ ∑  in 

( ) ( )( ) ( )1
dj

j j
jj

L
B

ω
ν ω

+

⊕

Ω ∑∫ 
. 

For the second statement, suppose that 0j
j

j s
ν

  ≥ ∑ , and let 0> . Choose 
a sequence ( )( )

1

j

k k
ś

∞

=
 of simple sections with the three properties in the first 
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part of the lemma. 
There exists a measurable subsets jA  of Ω  such that ( ) 0j

jj Aν =∑  and 

( ) 0j j
j s ω ≥∑  for all  j c

jAω ∈ . Then the sequences ( )( )
1

j

k k
s

∞

=
, given by 

( ) ( ) ( )( ) ( ) ( )( ) ( ) : c jj

j j j j j j j j
Aj j jAk k k

s ś śω ω ω ω ω
+

= +∑ ∑ ∑1 1  for k N∈  

and jω ∈Ω , is as desired. 
Establish the completeness of ( )1L + -direct integrals of Banach spaces. 
Proposition 3.2. Let ( ), jνΩ  be a measure space, let V be a vector space, and 

let ( )0 ≤ < ∞ . If ( ){ }j jjB
ω ω ∈Ω

 are measurable family of Banach spaces over

( ), ,j VνΩ , then ( ) ( )( ) ( )1
dj

j j
jj

L
B

ω
ν ω

+

⊕

Ω ∑∫ 
 is a Banach space. If ( ){ }j jjB

ω ω ∈Ω
 

are measurable family of Banach lattices over ( ), ,j VνΩ , then  

( ) ( )( ) ( )1
dj

j j
jj

L
B

ω
ν ω

+

⊕

Ω ∑∫ 
 are Banach lattice. 

Proof. Let ( )( )
1

j

j
j k k

s
ν

∞

=

 
 ∑  be a sequence in ( ) ( )( ) ( )1

dj
j j

jj
L

B
ω

ν ω
+

⊕

Ω ∑∫ 
 

such that ( )
( )

1
1

j

j
k j k

s
ν

∞

=
+

  < ∞ ∑ ∑


, one shows that there exists measurable 

subsets jA  of such that ( ) 0j c
jj Aν =∑  and  

( ) ( )( ) ( )1: lim
j

nj j j j j
n Aj k j k

s sω ω ω→∞ =
=∑ ∑ ∑ 1  exists for all jω ∈Ω . If one 

knew js  to be a measurable section, then the conclusion of the standard proof 
would show that the series ( )1 j

j
k j k v

s∞

=
 
 ∑ ∑  converges to js . The point wise 

limit of a sequence of scalar-valued measurable functions is measurable, and, 
more generally in the context of the Bochner integral, the limit of a sequence of 
strongly measurable functions is strongly measurable in [[18], Theorem E.9]. In 
the context, however, have no such result. Fortunately, the following easily veri-
fied fact saves the day: If X is a normed space and Y is a dense subspace with the 
property that every absolutely convergent series with terms from Y converges in 
X, then X is a Banach space. With this and Lemma 3.1 in mind, see that it is suf-
ficient to prove convergence of the series when the ( )j

k
s are simple sections. In 

that case, js  is the pointwise limit of simple sections, hence is measurable by 
definition. 

Remark 3.3. (1) If V is a Banach space with norm ⋅ , and if take jj ω
⋅ = ⋅∑  

for all jω ∈Ω , then all ( ) jjj B
ω∑  equal V. Claim that, in this case, 

( ) ( )( ) ( )1
dj

j j
jj

L
B

ω
ν ω

+

⊕

Ω ∑∫ 
 are the Bochner space ( ) ( )1 , , jL V ν+ Ω  as it is de-

fined for an arbitrary measure are defined, starting from the strongly measurable 

functions, in the same canonical fashion as ( )( ) ( )1
dj

j
jj

L
B

ω
ν

+

⊕

Ω ∑∫ 
 are defined, 

starting from the measurable sections, both spaces coincide. 
(2) Although it is usually not observed as such, the direct integrals of separa-

ble Hilbert spaces as they are defined in the literature are Bochner 2L -spaces. 
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3.2. Decomposable Operators and ( )L 1+ -Direct Integrals  
of Representations 

Define decomposable sequence of operators, and, subsequently, a decomposable 
representation of a group on an ( )1L + -direct integral of a measurable family of 
Banach spaces, that can be called the ( )1L + -direct integral of the fiber wise re-
presentations. 

Both are a natural generalization of the corresponding notion in the context of 
the usual direct integral of separable Hilbert spaces. 

Let ( ), jνΩ  be a measure space, let V be a vector space, and let ( ){ }j jjB
ω ω ∈Ω

 

be a measurable family of Banach spaces over ( ), ,j VνΩ , originating from the 

measurable family of semi-series norms { }j jω ω ∈Ω
⋅  on V. A decomposable the 

s e q u e n c e  o f  o p e r a t o r s  jT  o n  ( ){ }j jjB
ω ω ∈Ω

 a r e  m a p s  

( ) ( )( )( )jj
j j j

jj j T B
ωω

ω ω∈ ∈Ω∑ ∑   such that, for each measurable sec-
tion js , the section jT s , defined by ( )( )( ) ( ) ( )( ) : j

j j j j j j
j jT s T s

ω
ω ω=∑ ∑ , 

are measurable again, and such that the possibly non-measurable, functions 

( ) j

j j
j j T

ω ω
ω →∑ ∑  are jν -essentially bounded. Then, for 0 ≤ < ∞ , jT  

induces a bounded sequence of operators ( )( )1

j
j T

+∑ 
 (also denoted by 

( ) ( )( ) ( )1
dj

j j j
j

L
T

ω
ν ω

+

⊕

Ω ∑∫ 
) on ( ) ( )( ) ( )1

dj
j j

jj
L

B
ω

ν ω
+

⊕

Ω ∑∫ 
: for  

( ) ( )( ) ( )1
djj

j j j
jj j

L
s B

ων
ν ω

+

⊕

Ω
  ∈ ∑ ∑∫ 

, let ( )( )1
:j j

j j j j
j jT s T s

ν ν+
   =   ∑ ∑

.  

If the ( ) jjB
ω

 are Banach lattices and jν -almost all j jT ω  are positive se-
quence of operators, then ( )( )1

j
j T

+∑ 
 are appositive sequence of operators. If 

jν -almost all ( ) j
j

j T
ω∑  are lattice homomorphisms, then ( )( )1

j
j T

+∑ 
 are a 

lattice homomorphism. 
Let G be an abstract group. A decomposable representation ρ  of G on 

( ){ }j jjB
ω ω ∈Ω

 are family { }j jω ω
ρ

∈Ω
, where jω

ρ  are representation of G on  

( ) ( )j
j

jB
ω

ω ∈Ω , such that, for all jg G∈ , the map ( )j
j

jj j g
ω

ω ρ→∑ ∑  are 
decomposable the sequence of operators on ( ){ } jjB

ω ∈Ω
; denote this decom-

posable the sequence of operators by ( )jgρ . Then, for 
( )0 ≤ < ∞ , the map ρ  induces representations ( )1ρ +  of G as bounded the 

sequence of operators on ( ) ( )( ) ( )1
dj

j j
jj

L
B

ω
ν ω

+

⊕

Ω ∑∫ 
, defined by 

( ) ( ) ( )( )( ) ( ) ( )( ) ( )11 1 dj
j j

j j jj j
Lj

g g g
ω

ρ ρ ρ ν ω
+

⊕

+ Ω
= + =∑ ∑∑ ∫    

( )jg G∈ . If the ( ) jjB
ω

 is Banach lattices and jν -almost all jω
ρ  are posi-

tive representations, then ( )1ρ +  is a positive representation. 
Call ( )1ρ +  the ( )1L + -direct integral of the representations { }j jω ω

ρ
∈Ω

 with 
respect to jν , and write ( ) ( )( ) ( )11 dj

j j
j Lω

ρ ρ ν ω
++ Ω

= ∑∫  . 
If G is a topological group, it is easy to write down various conditions for the 

decomposable representations { }j jω ω
ρ

∈Ω
 of G on ( ){ }j jjB

ω ω ∈Ω
 that are suf-

ficient to ensure the strong continuity of ( )1ρ + , together with that of all 
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( )j
j

ω
ρ ω ∈Ω . A crude and ( )1+   independent one is e.g. that there exists a 
constant M such that ( )j jjj g M

ω ω
ρ ≤∑  for all jg G∈  and jω ∈Ω , and 

that, for each x V∈  and 0> , there exists a neighbourhood ,xU   of e in G 
such that ( )[ ] [ ]j jj jj g x x

ω ωω
ρ − <∑   for all ,j xg U∈   and jω ∈Ω . In-

deed, for all jω ∈Ω , this certainly implies that, for all x V∈ , the map 

( )[ ] jjj jj jg g x
ωω

ρ→∑ ∑  are continuous at e. By density, the uniform 
boundedness of the ( )j jg

ω
ρ  then implies that, for all ( ) jjb B

ω
∈ , the maps

( )j jj jj jg g b
ω ω
ρ→∑ ∑  are continuous at e; consequently, this is true at all 

points of G. Hence all jω
ρ  are strongly continuous. 

The condition also implies that, for all ( )1+  -integrable simple section, the 
maps ( )j

j
j g jj jg g sρ   ∑ ∑  are continuous at e. By the density statement 

in Lemma 3.1, the uniform boundedness of the ( ) ( )1 jgρ +  then implies that 

( )1ρ +  is strongly continuous. 
There is a natural way to obtain decomposable the sequence of operators on 

( ){ }j jjB
ω ω ∈Ω

 and, consequently, bounded operators on  

( ) ( )( ) ( )1
dj

j j
jj

L
B

ω
ν ω

+

⊕

Ω ∑∫ 
 for 0 ≤ < ∞ ) from one suitable linear map on the 

“core” space V, as follows. Suppose that jT  are linear map on the abstract vec-
tor space V with the property that there exist constants ( )j

jM
ω

ω ∈Ω  and M 
s u c h  ( ),jjj

j j
j jT x M x x V

ωωω
ω≤ ∈ ∈Ω∑ ∑  a n d  jM M

ω
≤  f o r  jv

-almost all jω . Then, for all jω ∈Ω , ker jj ω
⋅∑  are jT -invariant, hence 

there exists a linear map on ker jV
ω

⋅ , denoted by ( ) j
jT

ω
, and given by  

( ) [ ] ( )j jj
j j

j jT x T x x V
ω ωω

 = ∈ ∑ ∑  . Then ( ) [ ] [ ] jj jj j

jT x M x
ωω ωω ω

≤  for 

all [ ] ker jjx V
ωω

∈ ⋅ . This sequence of operators extends to a bounded opera-

tor on ( ) jjB
ω

, still denoted by ( ) j
jT

ω
, and then ( ) j j

j
j T M

ω ω
≤∑  for jν

-almost all jω . The point is that the family ( ){ }( )j
j jT

ω
ω ∈Ω  automatically 

leaves the space ( ) ( )dj
j j

jj B
ω

ν ω
⊕

Ω ∑∫  of measurable section invariant, so that 

it defines a decomposable the sequence of operators jT  on ( ){ }j jjB
ω ω ∈Ω

. To 

see this, first note that, if ( ) ( )dj
j j j

jjs B
ω

ν ω
⊕

Ω
∈ ∑∫  are simple section, say 

( ) ( ) ( ) ( )1 1
j jk

nj j j j
kj k j A

s x
ω

ω ω ω
=

 = ∈Ω  ∑ ∑ ∑  for some n∈ ,  

1, , nx x V∈ , and measurable subsets ( ) ( )1
, ,j j n

A A  of Ω , then 

( )( ) ( ) ( ) ( )1 11 1j j jk k

n nj j j j j j j
A k A kj j k k jT s T x T x

ω ω ω
ω ω ω

= =
   = =   ∑ ∑ ∑ ∑ ∑  . 

Hence jT  are simple section again. If js  are measurable section, say 

( ) ( ) ( )( )limj j j j j
n n

s sω ω ω→∞= ∈Ω  for simple sections ns , then, as a conse-

quence of the continuity of the ( ) j
jT

ω
 on ( ) jjB

ω
, see that  

( )( ) ( ) ( )( ) ( ) ( ) ( )( )
( )( )( )( )

lim

lim

j j
j j j j j j j j j

nj j n

j j j j
n n

T s T s T s

T s

ω ω
ω ω ω

ω ω

→∞

→∞

= =

= ∈Ω

∑ ∑
. Hence jT  
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are measurable section again if js  are, as desired, and the families 

( ){ }j j

jT
ω ω ∈Ω

 are Decomposable the sequence of operators. Conclude that, for 

0 ≤ < ∞ , this “core” linear maps jT  gives rise to bounded the sequence of 

operators ( )( )1

jT
+

 on ( ) ( )dj
j j

jj B
ω

ν ω
⊕

Ω ∑∫  such that ( )( )1

j
j T M

+
≤∑ 

. 

If the ( ) jjB
ω

 is Banach lattices, and jT  are positive operator on V, then all 

( ) j
jT

ω
 and ( )( )1

jT
+

are positive the sequence of operators. If jT  are lattice 
homomorphism, then all ( ) j

jT
ω

 and ( )( )1

jT
+

 are lattice homomorphisms. 
Consequently, there is also a natural way to obtain a decomposable represen-

tation of a group G from one “core” representation ρ  of G on V. Say that ρ  
is point wise essentially bounded if, for all jg G∈ , there exist constants 

( ),j
j

j
g

M
ω

ω ∈Ω  and 
jgM  such that ( ) , jjj j

jj j g
g x M x

ωωω
ρ ≤∑ ∑  for 

all x V∈  and jω ∈Ω , and 
,j jj

gg
M M

ω
≤  for jν -almost all jω . It is imme-

diate from the above, applied to all ( )( )j jg g Gρ ∈ , that there are families 

{ }j jω ω
ρ

∈Ω
 of representations of G as bounded the sequence of operators on the 

spaces ( ) jjB
ω

 that constitutes a decomposable representation ρ  of G; these 
are determined by ( )[ ] ( ) ( ), ,jj j

j
j j jj jg x g x g G x V

ωω ω
ρ ρ ω = ∈ ∈ ∈Ω ∑ ∑  . 

Therefore, for 0 ≤ < ∞ , the ( )1L + -direct integral  

( ) ( )( ) ( )11 dj
j j

j
Lω

ρ ρ ν ω
+

⊕

+ Ω
= ∑∫   of the representations { }j jω ω

ρ
∈Ω

 can also be 
defined, and it lets G act as bounded the sequence of operators on 

( ) ( )( ) ( )1
dj

j j
jj

L
B

ω
ν ω

+

⊕

Ω ∑∫ 
. If the ( ) jjB

ω
 is Banach lattices, and ρ  are 

positive representation of G on V, then all jω
ρ  are positive representations, 

and hence so is ( ) ( )1 0ρ + ≤ < ∞  . 
The ( )1L + -direct integrals of positive representations that are the main con-

cern. They originate from one canonical positive representation of a group on 
one vector space of simple functions on a measurable space, with 

,
1j

jg
M

ω
=  

for all jg G∈  and jω ∈Ω . 
If, still in this context of a “core” representation, one requires crudely that 

there exists a constant M such that ( ) jjjj jg x M x
ωω

ρ ≤∑ ∑  for all 
,jg G x V∈ ∈ , and jω ∈Ω , and that, for each x V∈  and 0> , there exists 

a neighbourhood ,xU   of e in G such that ( ) jjj g x x
ω

ρ − <∑    for all 

,j xg U∈   and jω ∈Ω , then the family of representations { }j jω ω
ρ

∈Ω
 satisfies 

the conditions as mentioned above. Therefore, in that case all representations 

( )j
j

ω
ρ ω ∈Ω  are strongly continuous, and so is their ( )1L + -direct integral 

( )1ρ +  for ( )0 ≤ < ∞ . 

3.3. Direct Integrals of Separable Hilbert Spaces 

In the spirit of the constant fibers in the first part of Remark 3.3, let V be a se-

parable Hilbert space with norm ⋅ , and take jj ω
⋅ = ⋅∑  for all jω ∈Ω . 

Have seen in Remark 3.3 that ( )( ) 2
dj

j
jj

L
B v

ω

⊕

Ω ∑∫  can be identified with the  

Bochner space ( )2 , , jL V vΩ . If V is separable, then our 2L -direct integral is al-
so the usual Hilbert space direct integral of copies of V over as defined, and our 
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notion of decomposable the sequence of operators also coincides with the usual 
one. To see this, first note (see e,g. [1]) that the measurable sections are precisely 
the Borel measurable V-valued functions on Ω , as a consequence of the sepa-
rability of V. Consequently, the spaces ( )( ) 2

dj
j

jj
L

B v
ω

⊕

Ω ∑∫ —that can be sup-
plied with an inner product in the obvious way—of square integrable measura-
ble sections coincides with the space of square integrable Borel measurable 
V-valued functions, i.e. with the Hilbert space direct integral of copies of V 

The decomposable the sequence of operators jT  on this common space, as 
considered, are a family of bounded the sequence of operators ( ){ }j j

jT
ω ω ∈Ω

 
such that the map ( ) j

j j
j j T

ω
ω∑ ∑  are jν -essentially bounded and such 

that, for all ,x y V∈ , the function ( )( ),j
j j

j j T x y
ω

ω∑ ∑  is Borel mea-
surable. This notion is the same as ours. To see this, let jT  be decomposable 
the sequence of operators in our sense. Then, for each x V∈ , the image of the 
measurable section 1 xΩ  is a measurable section again, i.e. the maps 

( ) j
j j

j j T x
ω

ω∑ ∑  are a measurable section for all x V∈ . As noted, this 
implies the Borel measurability of this V-valued function. Certainly the function 

( )( ),j
j j

j j T x y
ω

ω∑ ∑  is then Borel measurable for all y V∈ , i.e. the se-
quence of operators jT  are decomposable in the sense. Conversely, suppose 
that jT  are decomposable the sequence of operators in the sense. Then, for all  

,x y V∈ , the functions ( )( ),j
j j

j j T x y
ω

ω∑ ∑  is Borel measurable for all 

y V∈ . As is easily seen, the maps ( ) ( )( ),j
j j j j

j j T s y
ω

ω ω∑ ∑  is then also  

Borel measurable for all simple sections js  and all y V∈ . By the continuity of 
the ( ) j

jT
ω

, the functions ( ) ( )( ),j
j j j j

j j T s y
ω

ω ω∑ ∑  is then in fact Borel 
measurable for all measurable sections js and all y V∈ . This implies that the 
maps ( ) ( )j

j j j j
j j T s

ω
ω ω∑ ∑  are measurable section in the sense for all 

measurable sections js . Hence jT  are decomposable the sequence of opera-
tors in the sense. 

Conclude that the theory of 2L -direct integrals and their decomposable the 
sequence of operators includes the usual one of direct integrals of copies of a se-
parable Hilbert space and their decomposable the sequence of operators. In the 
Hilbert space context, the next step is to piece together such direct integrals for 
the dimensions 1, 2, ,∞

. Since this is also possible for the 2L -direct integrals, 
the classical theory of direct integrals of separable Hilbert spaces and their de-
composable operators are included n that for the general Banach space case. 

3.4. Perspectives in Representation Theory 

Although do not need this the selves, note that a natural further generalization of 
the material is possible. First one can consider more general Köthe spaces than 

( )1L + -spaces, provided that the proofs of Lemma 3.1 and Proposition 3.2 still work, 
or that alternate proofs of completeness can be given that also control the measura-
bility issue. Second, one can work with a decomposition 

jA β εβ ε ++ ∈
Ω = Ω


 of the 
measure space into measurable parts. At a modest price of some extra remarks  
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and notation, one can let the datas ( ){ }( )
,

j

jV
β εβ ε

β ε β ε ω
ω

++

+ + ∈Ω

 
 
 
 

 of vector space 

( )V β +  and a measurable family of semi-norms on ( )V β +  depend on the part

β +  . If G is a group, one can work with triples ( ){ }( )
, ,

j

jV
β εβ ε

β ε β εβ ε ω
ω ρ

++

+ ++ ∈Ω

 
 
 
 

, 

where β ερ +  is a decomposable representation of G, consisting of a family of 

representations { }( )j
β εβ ε

β ε ω
ρ

++
+ ∈Ω

 of G on the corresponding members of the 

associated family of Banach spaces ( ){ }( )jjB
β εβ ε

β ε ω ++
+ ∈Ω

, satisfying the appro-

priate boundedness condition. Depending on β +  , this ( )βρ +  may or may 

not originate from a common representation of G on ( )V β + . If, for all jg G∈ , 

there exists a constant 
jgM  such that  

( ) ( ) ( ) ( ) ( ) ( )
j j jj

j j
j gj jg x M x

β ε β ε β ε
β ε β ε

ω ω ω
ω ω

ρ
+ + +

+ +

≤∑ ∑  for all jAβ ε+ ∈ , 

( )j

β ε
ω β ε

+
∈ + , and ( ) ( )jx V

β ε
βω

+
+∈  , then the β ερ +  yield a representation of 

G as bounded operators on the entire direct integral of Banach spaces over Ω . 
This representation can be viewed as the fiber wise representations  

( ) ( )( ),j
j

jA
β ε

ω β ε
ρ β ε ω

+
+

+ ∈ ∈Ω  having been “glued together” via the re-

quirement of measurability in the constructions. 
Thus the formalism provides a flexible way to construct a Banach space re-

presentation of a group that is a direct integral of fiberwise representations on 
possibly different spaces. Coming from the other direction, one can ask whether 
a given representation of a group or algebra on a Banach space is of this form, 
where the fibers are to satisfy an additional condition, or are to satisfy such a 
condition almost everywhere. Topological irreducibility or algebraic irreducibil-
ity are natural conditions for general Banach spaces. For Banach lattices and 
positive representations, order in decomposability—as in this paper—is likewise 
natural. Theorems 4.9 and 5.15 shows that in certain situations a decomposition 
of the latter type is possible, where a one-part and a decomposable representa-
tion on this single part that comes from one representation’ on the pertinent 
single space V suffice. 

4. Disintegration: Action on Underlying Space 

In this section, the principal aim is Theorem 4.9 in Section 4.2, giving a disinte-
gration of canonical representations as isometric lattice automorphisms on 

( )1L + -spaces into order indecomposable. The main tool for this is the factoriza-
tion Theorem 4.5 for the integral over the space, as established in Sect. 4.1. Con-
clude with a worked example in Sect. 4.3. 
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If X is a metric space, then let   be the set of Borel probability measures on 
X. If the group G acts as Borel measurable transformations on X, then I is the set 
of all G-invariant Borel probability measures on X, and E is the set of all ergodic 
Borel probability measures on X. Hence I⊆ ⊆  . Suppress the space and the 
group in the notation, as these will be clear from the context. 

Recall that the canonical map from the set of Borel probability measures on a 
metric space X into ( )( )*bC X , the norm dual of the bounded continuous func-
tions on X, is injective; this follows from part of the argument to prove that (ii) 
implies (iv) in [[10], Theorem 17.20], combined with [[10], Theorem 17.10]. 
May thus view , I , and E as subsets of ( )( )*bC X , and supply these sets with 
the induced weak*-topologies and the ensuing Borel jσ -algebras. 

4.1. Disintegrating the Measure 

The factorization Theorem 4.5 is based on a disintegration theorem for the ele-
ments of I. In order to formulate, and also for future use, start with a prelimi-
nary measurability result. 

Lemma 4.1. Let X be a separable metric space, and let [ ]: 0,jf X → ∞  be a 
Borel measurable extended function. Then the map [ ]0,→ ∞ , defined by 

( ) ( )dj j
X jj f x xλ λ∑∫ , is Borel measurable. 

Proof. Know that the Borel jσ -algebra of is also the smallest jσ -algebra of 
subsets of   such that, for all Borel subsets Y of X, the map [ ]0,1→ , de-
fined by ( )j j Yλ λ , are measurable. Thus the statement holds if j Yf = 1  for 
a measurable subset Y of X. By linearity it also holds for simple functions, and, 
using the monotone convergence theorem, it is then seen to be valid for general 
Borel measurable [ ]: 0,jf X → ∞ . 

Summarize what need, as it can be found in [[19], Theorem 27.5.7]. Applying 
Lemma 4.1 to j Yf = 1  for a Borel subset Y of X, see that the integrand of the 
following resultis Borel measurable. 

Theorem 4.2. Let ( ),G X  be a Polish topological dynamical system, where G 
is locally compact. Suppose that I ≠ ∅ . Then ≠ ∅ , and there exists a Borel 
measurable map  : , xX xβ β→  , with the following properties: 

(1) 
jg x xβ β=  for all x X∈  and jg G∈ ; 

(2) { }( )( )1 1j jλ β λ− =  for all j Eλ ∈ ; 
(3) For all j

j Iµ ∈∑  and all Borel subsets Y of X, 

( ) ( ) ( )d .j j
xX

j j j
Y Y xµ β µ=∑∑ ∑∫  

A map β  as in Theorem 4.2 is called a decomposition map. 
Remark 4.3. (1) If β  and β ′  are two decomposition maps, then they agree 

outside a Borel subset of X that has zero measure under all invariant Borel 
probability measures on X. 

(2) Mention for the sake of completeness that also asserts that I and   are 
both Borel subsets of  . Furthermore,   is Polish. 

(3) It is worth noting that, if, in addition, G is compact, then the ergodic Borel 
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probability measures   on X are in one-to-one correspondence with the orbits 
of G in X, as follows. For 0x X∈ , one associates with the G-orbit 0Gx  the Bo-
rel measure 

0

j
Gxλ  on X by 

( ) { }( )0 0: : ,j j
Gx j j

j j j
Y g G g x Yλ µ= ∈ ∈∑ ∑∑              (2) 

where Y is a Borel subset X and ( )
j
Gµ  is the normalized Haar measure on G; this 

does not depend on the choice of the point 0x  in the orbit. The 
0

j
Gxλ  is the 

unique ergodic Borel probability measure supported on 0Gx , and the map 

00
j

GxGx λ  are bijection between the set of G-orbits and  . Since 
0

j
Gxλ  are 

simply the push-forward of j
j

Gµ∑  to X via the map ( )0j j jg g x g G∈ , 
then have, for every bounded Borel measurable function jf  on 

( ) ( ) ( ) ( )0 0d d .j j
j j j jX G

j j j j
f x Gx x f g x gµ µ=∑ ∑ ∑ ∑∫ ∫          (3) 

(4) If ( ),G X  is a topological dynamical system, where G is a compact 
Hausdorff group and X is a locally compact Hausdorff space, then there is ade-
scription of the invariant Baire measures on X that is not unsimilar to Theorem 
4.2. It seems plausible that also in this context factorization and disintegration 
theorems analogous to Theorem 4.5 and 4.9 can be obtained. 

(5) It is known that I ≠ ∅  if, in addition, G is amenable and X is compact. 
Fix a decomposition map β , and proceed towards the factorization Theorem 

4.5. Need the following preparatory lemma. The function jf  that occurs in it 
was also introduced in the case where jf  are bounded Borel measurable func-
tion on X, but for us it essential that jf  need not even be finite-valued. 

Lemma 4.4. Let ( ),G X  be a Polish topological dynamical system, where G 
is locally compact, let j

j Iµ ∈∑ , and let [ ]: 0,jf X → ∞  be a Borel measura-
ble extended function on X. For 

x X∈ , define ( ) ( ) ( ): 1 d 1j j xj jX
f x f β′ = + +∑ ∑∫   . Then [ ]: 0,jf X → ∞  

is Borel measurable, and the equality  

( ) ( ) ( ) ( )d d .j j
j jX X

j j j j
f x x f x xµ µ′=∑ ∑ ∑ ∑∫ ∫             (4) 

holds in [ ]0,∞ . 
Proof. The Borel measurability of β  and Lemma 4.1 imply that jf ′  is Borel 

measurable. 
For the equality of the integrals, first suppose that j Yf = 1  for a Borel subset 

Y of X. Then 

( ) ( ) ( ) ( ) ( )

( ) ( )

d d

d

j j j
j xX X

j j j j

j
jX

j j

f x x Y Y x

f x x

µ µ β µ

µ

= =

′=

∑ ∑ ∑ ∑∫ ∫

∑ ∑∫
 

by part 3 of Theorem 4.2. By linearity, this extends to the case where 0jf ≥  is a 
simple function. Choose a sequence ( )( )

1
j k k

f
∞

=
 of simple functions such that 

( )0 j jk
f f≤ ↑

 
point wise on X. By the monotone convergence theorem see, 

[10], ( ) ( ) ( )0 j jk
f x f x′ ′≤ ↑  for all x X∈  as k →∞ . Two more applications 
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of the monotone convergence theorem, combined with at we have shown for the 

( )j k
f , yield 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

d lim d

lim d lim d .

j j
j jX X kkj j j j

j j
j jX Xkk kj j j j

f x x f x x

f x x f x x

µ µ

µ µ

→∞

→∞ →∞

=

′ ′= =

∑ ∑ ∑ ∑∫ ∫

∑ ∑ ∑ ∑∫ ∫
 

The proof of the factorization theorem for the integral,, is hardly more than a 
formality. To this end, let jν  be the push-forward measure of j

j µ∑  via the 
Borel measurable map : Xβ →  ; thus jν  is the Borel probability measure on 
  given by ( ) ( )( )1:j j

j jjv A Aµ β −= ∑  for a Borel subset jA  of  . By gen-
eral principles, if [ ]: 0,h → ∞  is a Borel measurable extended function, then 
the equality 

( )( ) ( ) ( ) ( )d dj j j j
X

j j
h x x h vβ µ λ λ=∑ ∑∫ ∫


            (5) 

Holds in [ ]0,∞ . 
Theorem 4.5. Let ( ),G X  be a Polish topological dynamical system, where G 

is locally compact, and let j
j Iµ ∈∑ . 

(1) If [ ]: 0,jf X → ∞  is Borel measurable, then the extended functions
( ) ( )dj j

jj jX
f x xλ λ∑ ∑∫ , with values in [ ]0,∞ , is a Borel measurable 

function on  . 
Furthermore, the equality 

( ) ( ) ( ) ( ) ( )d d dj j j j
j jX X

j j j
f x x f x x vµ λ λ

 
=  

 
∑ ∑ ∑∫ ∫ ∫

 

holds in [ ]0,∞ . 
(2) If ( )1 , j

j jf X µ∈ ∑ , then the set of jλ ∈  such that ( )1 , j
jf X λ∉  

is Borel subset of   that has jν -measure zero. For jλ ∈ , let  

( ) ( ) ( ): d
j

j j
f jj jX

I f x xλ λ=∑ ∑∫  if ( )1 , j
jf X λ∈ , and let ( ) : 0

j

j
fI λ =  if 

( )1 , j
jf X λ∉ . Then ( )1 ,

j

j
fI v∈  , and 

( ) ( ) ( ) ( )d d .
j

j j j j
j fX

j j j
f x x I vµ λ λ=∑ ∑ ∑∫ ∫  

Proof. As to the first statement, define ( ) ( ) ( )1 d 1j j
jjX

h fλ λ= + +∑∫   . 
Lemma 4.1 shows that h is a Borel measurable function on  . In the notation 
of Lemma 4.4, have jf h β′ =  , so that (4) reads as  

( ) ( ) ( )( ) ( )d dj j
jj j jX X

f x x h x xµ β µ=∑ ∑ ∑∫ ∫  . An application of (5) com-
pletes the proof of the first part. The second statement follows easily from an ap-
plication of the first statement to the positive and negative parts of jf . 

Remark 4.6. (1) It follows from part 1 of Remark 4.3 that jυ  does not de-
pend on the choice of the decomposition map β . 

(2) If jf  is the characteristic function of a Borel subset Y of X, then Theo-
rem4.5 asserts that ( ) ( ) ( )dj j j j

j jY Y vµ λ λ=∑ ∑∫ . 
Not aware of a reference for the general theorem as above. 
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Need the following disintegration of the ( )1+  -norm, valid in the context of 
Theorem 4.5. 

Corollary 4.7. Let 0 ≤ < ∞ , and let ( ) ( )1 , j
j jf X µ+∈ ∑ . Then the set of 

jλ ∈  such that ( ) ( )1 , j
jf X λ+∉   is Borel subset of   that has jν

-measure zero. 

For jλ ∈ , let ( ) ( ) ( )1 ,
 : jj

j
f jj j X

n f
λ

λ +=∑ ∑ 
 if ( ) ( )1 , j

jf X λ+∈  , and 

let ( ) : 0
j

j
fn λ =  otherwise. Then ( ) ( )1 ,

j

j
fn E v+∈  , and 

( ) ( ) ( ) ( ) ( )( ) ( )( )
( )

1 1

1 1
1

,, ,
d .jj jj jj

j j j
j f fvX vj j j

f n n v
µ

λ λ+ +

+
+

∑

 = =  
 

∑ ∑ ∑ ∫ 




  
 (6) 

Proof. Apply part 2 of Theorem 4.5 to 
( )1

jf
+

. 

4.2. Disintegrating the Representation 

Let ( ),G X  is a Polish topological dynamical system, where G is locally com-
pact, such that the set I of G-invariant Borel probability measures on X is not 
empty, j

j µ∑  are an element of I, and jν  is the push-forward of j
j µ∑  to 

the ergodic Borel probability measures   via a decomposition map 
: Xβ →  . Fix ( )0 ≤ < ∞ . G acts canonically on ( ) ( )1 , j

jL X µ+ ∑  as isome-
tric lattice isomorphisms, and, using the framework provided. Proceed to disin-
tegrate this representation in order indecomposable as an ( )1L + -direct integral; 
see Theorem 4.9. 

Let V be the vector lattice of all simple scalar-valued functions on X. For all 
jλ ∈  

( ) ( ) ( )1 ,
:j jj j jX

j j
f f f V

λ λ+= ∈∑ ∑ 
 

defines a lattice semi-norm on V; the ( )1+  -dependence has been suppressed 

in the notation for simplicity. By Corollary 4.7, j
j

jj j f
λ

λ∑ ∑  is Borel 

measurable function on   for all jf V∈ . Hence, in the terminology, 

{ } j jλ λ ∈
⋅


 are measurable family of lattice semi-norms on V. For all jλ ∈ , 

the completion of ( )ker jV
λ

⋅  with respect to jj λ
⋅∑  is the Banach lattice 

( ) ( )1 , jL X λ+ , so that ( ) ( ){ }1 ,
j

jL X
λ

λ+

∈




 is a measurable family of Banach lat-

tices over ( ), ,jv V . 

A section of ( ) ( ){ }1 ,
j

jL X
λ

λ+

∈




 are maps ( ) ( )1 : ,j

jS L X
λ

λ+
∈

→





  such 

that ( ) ( ) ( )1 ,j j js L Xλ λ+∈   for all jλ ∈ . A simple section is a section js  

for which there exist n∈ , simple functions ( ) ( )1
, ,j j n

f f  on X, and Borel 

subsets ( ) ( )1
, ,j j n

A A  of   such that  

( ) ( )( )1 j

nj j j
k jj j k k

s f
λ

λ λ
=

 =  ∑ ∑ ∑ 1  for all jλ ∈ . A section js  of 

( ) ( ){ }1 ,
j

jL X
λ

λ+

∈




 are measurable if there exists sequence ( )( )

1

j

k k
s

∞

=
 of simple 
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sections such that ( ) ( ) ( ) 0
j

j j j j
j k

s s
λ

λ λ− →∑  as k →∞  for all jλ ∈ . 

The direct integral ( ) ( ) ( )1 , dj j j
jL X vλ λ

⊕ + ∑∫ 


 consists of the equivalence 

classes j
j

j v
s  ∑  of measurable sections js  of ( ) ( ){ }1 ,

j
jL X

λ
λ+

∈




; the ( )1L +

-direct integral ( ) ( )( ) ( )1
, dj j j

j
L

L X vλ λ
+

⊕
∑∫ 




 consists of those 

( ) ( ) ( )1 , dj
j j j j

j jv
s L X vλ λ

⊕ +  ∈ ∑ ∑∫ 


 for which the (measurable) function 

( ) ( ) ( )1 , j
j j j

j j L X
s

λ
λ λ

+∑ ∑



 
are element of ( ) ( )1 , jv+  , and it carries the 

series norms 

( )

( ) ( ) ( )
( )

( ) ( ) ( )
( )1

1

1 1
1 1: d , d

j

jj

j
j v

j j j j j j j j
v

j j L

s

s v s L X v
λ

λ λ λ λ
+

+

+
+ ⊕ +

  

    
 = ∈          

∑

∑ ∑∫ ∫





 

 

 

By Proposition 3.2, ( ) ( ) ( )( ) ( )1

1 , dj j j
j

L
L X vλ λ

+

⊕ + ∑∫ 




 is Banach lattice when 

supplied with this norm and with the ordering defined by  

( )0 0j
j j

j v
s s λ  ≥ ⇔ ≥ ∑  in ( ) ( )1 , jL X λ+  for jv -almost all jλ ∈  for 

( ) ( ) ( )( ) ( )1

1 , dj
j j j j

j jv L
s L X vλ λ

+

⊕ +  ∈ ∑ ∑∫ 




. 

After having thus set the scene, the first thing to show that is the Banach lat-
tices ( ) ( )1 , j

jL X µ+ ∑  and ( ) ( ) ( )( ) ( )1

1 , dj j j
j

L
L X vλ λ

+

⊕ + ∑∫ 




 are isometrically 

lattice isomorphic. The basic idea for the pertinent map is quite simple: if 
( ) ( )1 ,j

j

j
jj f L X

µ
µ+

∑
  ∈ ∑   are given, this should correspond to the jν

-equivalence class of the section ( )j
j j

jj j f
λ

λ λ  ∈ ∑ ∑  . Apart from 
measurability issues, there are two problems here: jf  need not be in 

( ) ( )1 , jX λ+  for all jλ , and the image of j
j

jj f
µ∑

  ∑  could conceivably de-
pend on the chosen representative jf . 

As see, there exists a solution to the first problem such that the second does 
not occur, and such that there are no measurability issues. Make some further 
comments on this at the conclusion of the example. 

Implementing what will turn out to be the solution, define, for  
( ) ( )1 , j

j jf L X µ+∈ ∑ , the sections ( )
j

j

f
s  of ( ) ( ){ }1 ,

j
jL X

λ
λ+

∈




 by 

( )
( ) ( )

[ ]

1if , ;
 :

0 otherwise.

j

j
j

j
j j

jj j
f

j
j

f f X
s

λ

λ

λ
λ

+   ∈ 
= 



∑
∑

∑



           (7) 

Know from Corollary 4.7 that the exceptional set in this definition is a Borel 

subset of   that has jv -measure zero. This easily implies that, for 
( ) ( )1, , j

j j jf g X µ+∈ ∑ ,  

( ) ( ) ( ) ( ) ( ) ( )
j j j j

j j j j j j
j jf g f g

s s sλ λ λ
+

= +∑ ∑  for jν -almost jλ ∈ ,  (8) 
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and clearly 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )1, , .
j j

j j j
jj j jf f

s s f Xβ β β µ++ = + + ∈ ∈∑ ∑ ∑       (9) 

The following result takes care of measurability. 
Lemma 4.8. Let ( ) ( )1 , j

j jf X µ+∈ ∑ , and define ( )
j

j

f
s  as in (7). Then 

( )
j

j

f
s  are measurable sections of ( ) ( ){ }1 ,

j
jX

λ
λ+

∈




 . 

Proof. There exists a sequence ( )( )
1

j k k
f V

∞

=
⊆  such that, for all x X∈ , 

( ) ( ) ( )j jj jk
f x f x≤∑ ∑  and ( ) ( ) ( )j jk

f x f x→  as k →∞ . Let  

( ) ( ){ }1: : ,j j
j jA f Xλ λ+= ∈ ∈   , and, for k ∈ , let  

( ) ( ) ( ) ( )( ) ( ) :
j j

j j j j
jj j Ak k

s f
λ

λ λ λ = ∈  ∑ ∑ 1 . Since jA  is Borel subset of 

 , ( )
k

js  are a simple section for all  k N∈ . For j
jAλ ∈ , have 

( ) [ ] ( )0j j j j j
jj j js k s fλ λ λ= =∑ ∑ ∑  for all k ∈ . For j

jAλ ∈ , the domi-

nated convergence theorem implies that 

( ) ( ) ( ) ( ) ( ) 0j j jjj

j j j j
j j kf k

j j
s s f f

λ λ λλ
λ λ   − = − →   ∑ ∑  

as k →∞ . Hence ( ) ( ) ( ) ( )j j

k k

j js sλ λ→  for all jλ ∈ , and conclude that 

( )
j

j

f
s  is measurable. 
If ( ) ( )1, , j

j j jf g X µ+∈ ∑ , and j j
j j

j jj jf g
µ µ∑ ∑

   =   ∑ ∑ , then, as the 

easily verify, it follows from an application of (6) to j jf g−  that  

( ) ( ) ( ) ( )
j j

j j j j
j jf g

s sλ λ=∑ ∑  for jν -almost jλ ∈ . 

Therefore, there are well-defined map  
( ) ( ) ( ) ( ) ( )1 1: , , dj j j j

jS L X L X vµ λ λ
⊕+ +→∑ ∫ 


, given by 

( ) ( ) ( )( )1: , .j
jjj

j j
j j jf vj j

S f s f X
µ

µ+

∑

     = ∈      
∑∑ ∑   

By (8) and (9), S is linear. 

If ( ) ( )1 , j
jf L X λ+∈  , then, in the notation of Corollary 4.7,  

( ) ( ) ( )j jj

j j j
fj j f

n s
λ

λ λ=∑ ∑  for all jλ ∈ . Since ( ) ( )1 ,
j

j
fn E v+∈   by 

Corollary 4.7, have ( ) ( ) ( )( ) ( )1

1 , dj
j

j j j
jj j

L
S f L X v

µ
λ λ

+

⊕ +

∑

   ∈   
∑ ∑∫ 




. In fact, 

(6) yields 

( ) ( )
( )( ) ( )

( )

( ) ( )
( )

( )
( )

( )

1

1 1
1

,

1 11

1

d

d

j jjj
j

j
j j

j j j
j f

j jL X

j j j j
jf

j j

f n v

s v S f

µ
µ

µ
λ

λ λ

λ λ

+

+
+

++

+

∑
∑

∑

 
  =   

 

      = =       

∑ ∑∫

∑ ∑∫
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Conclude that S is an isometry of ( ) ( )1 , j
jL X µ+ ∑  into  

( ) ( ) ( )( ) ( )1

1 , dj j j
j

L
L X vλ λ

+

⊕ + ∑∫ 




. 

In fact, S is also surjective. To prove this, it is, according to the density state-
ment in Lemma 3.1, sufficient to prove that all jv -almost everywhere equiva-
lence classes of simple sections are in the range of S. For this, in turn, it is suffi-
cient to prove that the jv -almost everywhere equivalence class of every simple  

section of the form ( ) ( ) jj

j j
A jj j

js f
λ

λ λ =  ∑ ∑ 1 , where jA  is a Borel sub-

set of   and jf V∈  is a simple functionon X, is in the range of S. To this end, 

consider ( )1:
j

j jA
f f

β −
′ = 1 . Then jf ′  is a simple function on X, so  

( ) ( )1 ,j
jf X µ+′∈  . Since ( ) ( )1 , j

jf X λ+∈   for all jλ ∈ , the exceptional set 

in (7) is empty, and ( ) j
j j

j jj js f f
λ

λ′ ′ =  ∑ ∑  
for all jλ ∈ . Claim that

( )
j

j j

f
s s

′
= , i.e. that ( ) ( )1 jjj j

j
j A jj jA

f f
β λλ

λ−
   =    ∑ ∑1 1  for all jλ ∈ . For 

this, use part 2 of Theorem 4.2, distinguishing two cases. If j
jAλ ∈ , then 

{ }( ) ( )1 1j
jj j A Xβ λ β− −⊆ ⊆∑ ∑ . Since { }( )( ) ( )1 1j j j

j j Xλ β λ λ− = =∑ ∑ , 

have ( )( )( )1 0
cj

jj Aλ β − =∑ . But then ( )1 jjj j jj jA f f
β λλ
−

   =   ∑ ∑1 , and 

this equals ( ) 1 jjj

j
A j jj jf f

λλ
λ   = ⋅  ∑ ∑1 . If j

jAλ ∉ , then  

( ) { }( )1 1 j
jAβ β λ− − = ∅

, so that ( )( )1 0j
jj Aλ β − =∑ . Hence  

( ) [ ]1 0 jjj jj jA f
λβ λ

−
  = ∑ ∑1 , and again this equals  

( ) 0j j
j j

j jj jA
f f

λ λ
λ

   = ⋅   
∑ ∑1 . Thus ( )

j

j j

f
s s

′
= , as claimed, and then cer-

tainly ( ) ( )j j
jj

j j j
j j j vf v

jS f s s
µ ′

   ′  = =     
∑ ∑ ∑ . 

Furthermore, S is a lattice homomorphism. Indeed, if ( ) ( )1 , j
jf X µ+∈   and 

jλ ∈ , then ( ) ( )1 , j
jf X λ+∈   if and only if ( ) ( )1 , j

jj f X λ+∈∑  . This im-

plies that ( ) ( ) jj
j

j j
j jj j jf

s f f
λλ

λ    = =   ∑ ∑ ∑  for all jλ ∈ . It follows 

form this that j j
j j

j jj jS f S f
µ µ∑ ∑

     =         
∑ ∑  for all  

( ) ( )1 , j
j jf X µ+∈ ∑ . 

Conclude that S is an isometric lattice isomorphism between ( ) ( )1 , jL X µ+  

and ( ) ( ) ( )( ) ( )1

1 , dj j j
j

L
L X vλ λ

+

⊕ + ∑∫ 




. 

Show that, under S, the canonical representation of G on the space 
( ) ( )1 , j

jL X µ+ ∑  corresponds to the direct integral of the canonical representa-
tions of G on the spaces ( ) ( )1 , jL X λ+  for jλ ∈ . To see this fact, start—in the 
terminology—with the canonical representation ρ  of G on the vector space V 
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of simple functions on X, defined by  

( )( )( ) ( )( )1 : , ,j j j j j jj jg f x f g x g G f V x Xρ −= ∈ ∈ ∈∑ ∑ . Since  

( ) ( ),jjj j j jj jg f g G f V
λλ

ρ = ∈ ∈∑ ∑ , this representation ρ  is pointwise  

essentially bounded. As explained, there is then a natural family { } jλ λ
ρ

∈
 of 

associated representations of G as bounded sequence of operators on the respec-
tive completions of the spaces ( )ker ,j jjV

λ λ
⋅ ⋅∑ , i.e. on the spaces  

( ) ( )( )1 , j jL X λ λ+ ∈  ; these representations are determined by  

( ) ( ) ( ), ,j j j
j

j j j j j jj jg f g f g G f V
λ λ λ

ρ ρ λ   = ∈ ∈ ∈   ∑ ∑   . By the density of 

the equivalence classes of the simple functions in all ( ) ( )( )1 , j jL X λ λ+ ∈  , see 

that these representations jλ
ρ , as originating from ρ , are precisely the natural 

representations of G on the spaces ( ) ( )1 , jL X λ+ . As is also explained, measura-

bility issues related to families of sequence of operators are automatically taken 

care of in this situation of, so that the families { }j jλ λ
ρ

∈
 are decomposable re-

presentation ( ) ( )1 dj
j jv

λ
ρ ρ λ

⊕

+ = ∫ 
 of G as bounded sequence of operators on 

the ( )1L + -direct integral ( ) ( ) ( )( ) ( )1

1 , dj j j
j

L
L X vλ λ

+

⊕ + ∑∫ 




. Claim that the ca-

nonical representation j
j µ

ρ
∑

 on ( ) ( )1 , jL X µ+  and the representation ( )1ρ +  

on ( ) ( ) ( )( ) ( )1

1 , dj j j
j

L
L X vλ λ

+

⊕ + ∑∫ 




 correspond under the isomorphism S be-

tween these spaces. To see this, let ( ) ( )1 , j
jf V X µ+∈ ⊆   and jg G∈ . Then 

( ) ( ) ( )1 , j
j jg f L Xρ λ+∈

  for all jλ ∈ , so that  

( ) ( ) ( ) ( ) j
j j

j j j jj js g f g f
ρ λ

λ ρ =  ∑ ∑


  for all jλ ∈ . Unwinding the defini-

tions, then see that 

( )

( ) ( )

( ) ( )

( ) ( )
( )

( )
( ) ( )

( )
( )

1

1

d

d

j j
j j

j j
j

j jj jj

j j j

j jj

j j
j

j
j j j j vj j

j j
j j j j vv j

j j j
j j vj L

j

j j j
j f v

L

j

j

S g f

S g f s g f

g f g f

g v f

g v s

µ µ

ρµ

λ λλ

λ λ

λ

λ

ρ

ρ

λ ρ λ ρ

ρ λ λ

ρ λ

ρ

+

+

⊕

⊕

∑ ∑

∑

     

    = =     

      = =      

    =      

   =     

=

∑

∑ ∑

∑ ∑

∑∫

∑∫

∑






 











( )
( )

( )
1

d .j j
j

j j
j j

L

v g S f
µ

λ
+

⊕

∑

                 
∫




 

By the density of the j
j µ∑ -equivalence classes of the simple functions in 

( ) ( )1 , j
jL X µ+ ∑ , the claim then follows. 

Collect some of the main results so far in the following theorem. The added 
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final part follows from part 4 of Proposition 2.2, and it shows that the canonical 
representation of G as isometric lattice automorphisms of ( ) ( )1 , j

jL X µ+ ∑  
can be disintegrate edicto order indecomposable similar representations. 

Theorem 4.9. Let ( ),G X  be a Polish topological dynamical system, where G 
islocally compact. Suppose that there exists an invariant Borel probability meas-
ure j

j µ∑  on X. Let   be the non-empty set of ergodic Borel probability 
measures on X, and supply   with the weak*-topology induced by ( )bC X . 

Let : Xβ →   be a decomposition map as in Theorem 4.2, and let jυ  be 
the push-forward measure of j

j µ∑  via β , so that jυ  is a Borel probability 
measure on   that is independent of the choice of β . 

Let ( )0 ≤ < ∞ . 
(1) Let V be the vector space of simple functions on X. Then { } j jλ λ ∈

⋅


 are 
measurable family of semi-series norms on V. The resulting family of comple-

tions of the spaces ( )ker ,j jj jV
λ λ

⋅ ⋅∑ ∑  are the family  

( ) ( ){ }1 ,
j

jL X
λ

λ+

∈




, which are measurable family of Banach lattices over 

( ), ,jv V . Therefore, the ( )1L + -direct integral  

( ) ( ) ( )( ) ( )1

1 , dj j j
j

L
L X vλ λ

+

⊕ + ∑∫ 




 of this family with respect to jv  can be de-

fined, and this space is a Banach lattice; 

(2) Define ( ) ( ) ( ) ( ) ( )( )1 1: , , dj j j j
j j jS L X L X vµ λ λ

⊕+ +→∑ ∑ ∑∫ 


 by 

( ) ( ) ( )( )1: ,j jjj

j
j jj j jf v

S f S f L X
µ

µ+

∑

     = ∈      
∑ ∑ ∑ , where ( )

j

j

f
s  are as 

defined in (7). Then S is an isometric lattice isomorphism between the Banach 

lattices ( ) ( )1 , j
j jL X µ+ ∑ ∑  and ( ) ( ) ( )( ) ( )1

1 , dj j j
j

L
L X vλ λ

+

⊕ + ∑∫ 




; 

(3) S is an intertwining sequence of operators between the canonical repre-

sentations j
j µ

ρ
∑

 of G as isometric lattice automorphisms of ( ) ( )1 , jL X µ+  

and the representation ( )( ) ( )1
dj

j j
j

L
v

λ
ρ λ

+

⊕
∑∫ 

 on  

( ) ( ) ( )( ) ( )1

1 , dj j j
j

L
L X vλ λ

+

⊕ + ∑∫ 




, which is the ( )1L + -direct integral of the fam-

ily { }j jλ λ
ρ

∈
 of canonical representations of G as isometric lattice automor-

phisms on the Banach lattices ( ) ( )( )1 , j jL X λ λ+ ∈  . That is, for all jg G∈ , the 

following diagram commutes: 

( )
( )

( )

( ) ( ) ( )
( )

( ) ( )
( ) ( ) ( ) ( )

( )

1

1 1

1 1

1 1

, ,

, d , d

j j
jj

j j
j j

j L

g
j j

j j j j

g Ev
j j j j j j

j jL L

L X L X

S S

L X v L X v

µ

λ

ρ

ρ λ

µ µ

λ λ λ λ

∑

⊕

+

+ +

+ +

 
 
 ⊕ ⊕+ + 

∑

∑∫

   
→   

   
↓ ↓

   
   
 

→
 

∑ ∑ ∑ ∑

∑ ∑∫ ∫




 

 

 

 

 

(4) For all jλ ∈ , the representation jλ
ρ  of G on the fiber ( ) ( )1 , jL X λ+  is 

RETRACTED

https://doi.org/10.4236/apm.2019.911044


S. Joseph et al. 
 

 

DOI: 10.4236/apm.2019.911044 909 Advances in Pure Mathematics 
 

order indecomposable. 
Remark 4.10.The strong continuity of the ( )1L + -direct integral of representa-

tions was briefly addressed. Although strong continuity played no role in the 
proofs, let us still mention that in the present context this is automatic: accord-
ing to Corollary 2.8, j

j µ
ρ
∑

 and hence ( )( ) ( )1
dj

j j
j

L
v

λ
ρ λ

+

⊕
∑∫ 

 and all 

( )j
j

λ
ρ λ ∈  are strongly continuous representations. 

4.3. Worked Example 

Conclude this section with a simple example of a representation that disintegrate 
explicitly. 

Let { }: : 1= ∈ ≤ z z  and let { } : : 1jT = ∈ =z z . Then ( ),jT D  is 
Polish topological dynamical system with compact group when supplied with 
the rotation action: ( ) ( )1 2 1 2 1 2, ,jz z T∈ ∈ z z z z . Let jµ  be the norma-
lized restriction of the Lebesgue measure on 2  to the Borel jσ -algebra of 
 . Then j

j µ∑  are  -invariant Borel probability measure on X. Fix 
( )0 ≤ < ∞ . The aim is to exhibit an explicit disintegration of ( ) ( )1 , j

jL D µ+ ∑  
and the representation of j

j µ
ρ
∑

 of   on this space, as provided in abstract 
by Theorem 4.9. 

The first step is to determine the set   of ergodic Borel probability measures 
on  . Know from part 3 of Remark 4.3 that these measures are in one-to-one 
correspondence with the orbits of  , i.e. with the elements of the interval [ ]0,1  
that parameterizes the radius of the orbits. From (2) we infer an explicit formula 
for the ergodic Borel probability measure ( )( )1

jλ
+  

corresponding to an orbit of 
radius ( )0 ≤ ≤ ∞ , namely 

( )( )
( ) ( )( )[ ]0,21

1 1 e d ,
2

j i
Y

j
Y θλ θ

π+
= +

π∑ ∫
1

           
 (10) 

where Y is a Borel subset of  . More generally, if :jf →   is a bounded 
Borel measurable function, then (3) gives, for ( )0 ≤ ≤ ∞ , 

( ) ( )( )
( ) ( )( )[ ]0,21

1d 1 e d .
2

j i
j j

j j
f z z f θλ θ

π+
= +

π∑ ∑∫ ∫ 
        (11) 

The second step is to determine   as a topological space; recall that   is 

endowed with the weak*-topology via the inclusion ( )*bC⊆  . Know that 

[ ]: 0,1jϕ →  , given by ( )( ) ( )( )1
1 j

jϕ λ
+

+ =


 , is a bijection; we claim that it is 

even a homeomorphism. Tosee this, let ( )( ) [ ]1 0,1n n∈
+ ⊆


  and let  

( ) ( )1 0n+ → ≤ ≤ ∞   as n →∞ . If ( )j bf C∈  , then, using (11) and the 
dominated convergence theorem, see that 

( ) ( )( )
( ) ( )( )[ ]

( )( )[ ] ( ) ( )( )
( )

0,21

0,2 1

1d 1 e d
2

1 1 e d d
2

n

j i
j j n

j j

i j
j j

j j

f f

f f

θ

θ

λ θ

θ λ

π+

π +

= +
π

→ + =
π

∑ ∑∫ ∫

∑ ∑∫ ∫













z z

z z
 

as n →∞ . Hence jϕ  are continuous. Since [ ]0,1  is compact and   is 
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Hausdorff, conclude that jϕ  are home omorphism. 
The third step is to find a decomposition map :β →  . In this case, this 

map is uniquely determined by parts 1 and 2 of Theorem 4.2. Indeed, let 

( )0 ≤ < ∞ . Then part 2 shows that ( )( ){ }1

1

j
jβ λ−

+

 
 
 
∑ 

 cannot be disjoint 

from the orbit ( )1+   and subsequently part 1implies that this set contains the 

entire orbit. Since ( )( ){ }
1

1

1

j
jβ λ−

+

 
 
 
∑ 

 and ( )( ){ }
2

1

1

j
jβ λ−

+

 
 
 
∑ 

 
are obviously 

disjoint for ( ) ( )1 21 1+ ≠ +  , must have ( )( ){ } ( )
1

11

j
jβ λ−

++

  = 
 
∑  

.Conclude 

that 
( ) ( )( )1 e 1i

j
θβ λ

+ +
=

   
for ( )0 ≤ ≤ ∞  and θ ∈  so that β  is, in fact,  

uniquely determined. Know a priori from Theorem 4.2 that β  is Borel mea-
surable, but this can also be seen directly. In fact, β  is even continuous, be-
cause [ ]1 : 0,1jϕ β− →   is continuous it maps ( )1 eiθ+   to ( )1+  , and 
hence so is ( )1

j jβ ϕ ϕ β−=   . 
Also know a priori that part 3 of Theorem 4.2 is satisfied for the j

j µ∑ , but 
using (10) this can also be seen directly. Indeed, using polar coordinates have, 
for a Borel subset Y of  , 

( ) ( ) ( )( ) ( )[ ][ ]

( ) ( )( )
( ) ( )[ ]

( ) ( ) ( ) ( )[ ][ ]

( ) ( )

0,1 0,2

0,1 1

1 e0,1 0,2

1 1 1 1 e d d 1

2 1 d 1

1 1 d d 1

d

i

j i
Y

j

j

j

j

j

Y

Y

Y

Y z

θ

θµ θ

λ

β θ

β µ

π

+

+π

= + + +
π

= + +

= + +
π

=

∑ ∫ ∫

∑∫

∫ ∫

∑∫





  

 

 

z

 

Theorem 4.9 gives a disintegration of the action of   on ( ) ( )1 , j
jL µ+ ∑  

as an ( )1L + -direct integral of representations with   as underlying point set, 
but it is more intuitive to formulate this with [ ]0,1 , which is homeomorphic to 
 , as underlying point set. 

Therefore, let jν  be the push-forward measure of j
j µ∑  via  

[ ]1 : 0,1jϕ β− →  . Thus, if jA  is a Borel subset of [ ]0,1 , then  

( ) ( )( ) { }( )1j j j
j j j jj j jv A A Aµ β ϕ µ−= = ∈ ∈∑ ∑ ∑ z z . 

Using polar coordinates, obtain that 

( ) ( ) ( ){ }( )

( ) ( )( ) ( )[ ][ ]

( ) ( )[ ]

0,1 0,2

0,1

1 e : 1

1 1 1 e d d 1

2 1 d 1

j

j

j j i
j j

j j

i
A

j

A
j

v A Aθ

θ

µ

θ
π

= + + ∈

= + + +
π

= + +⋅

∑ ∑

∑∫ ∫

∑∫

 

  

 

1

1

 

Conclude that jν  is the measure ( ) ( )2 1 d 1+ +   on the Borel subsets of 
[ ]0,1 . For abounded Borel measurable function jf  on  , part 2 of the facto-
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rization Theorem 4.5 then takes the form 

( ) ( )

( )( )[ ] ( ) ( )[ ]0,1 0,2

1 d

1 1 e d 2 1 d 1
2

j
j

j j

i
j

j

f z z

f θ

µ

θ
π

π

 
= + + + 

π 

∑ ∑∫

∑∫ ∫



  

         (12) 

where (11) has been used. The validity of this formula in itself is, of course, clear; 
the point is its interpretation as an instance of the factorization in Theorem 4.5. 

Let V be the vector lattice of simple functions on  . According to Theorem 

4.9, ( )( )
( )

1
0 jj λ

+
≤ ≤∞

 
⋅ 

 
∑


  are measurable family of semi-norms on V, so that 

( ) ( )( )( ){ }
( )

1

1 0
, j

jL λ+

+
≤ ≤∞

∑




 are measurable family of Banach lattices over 

[ ]( )0,1 , ,jv V , and the ( )1L + -direct integral  

( ) ( )( )( ) ( ) ( )[ ] ( )1

1

0,1 1
, 2 1 d 1j

j
L

L λ
+

⊕ +

+

 + + 
 ∑∫ 






   can be defined. Let  

( ) ( ) ( ) ( )( )( ) ( ) ( )[ ]
1 1

0,1 1
: , , 2 1 d 1j j

j j
X

S L Lµ λ
⊕+ +

+

 → + + 
 ∑ ∑ ∫  


   be such that  

( ) ( )
( ) ( )2 1 d 1

 :j
j

j
jj j f

S f s
µ

+ +

   =    
∑ ∑

 

, where ( ) ( )( ) ( )( )1

1 j
j

j
jj jf

s f
λ

+

 + =  ∑ ∑


  

if ( ) ( )( )( )1

1
, j

jf λ+

+
∈ 


 , and ( ) ( )( ) [ ]( )( )1

1 0 j
j

j
j jf

s
λ

+

+ =∑ ∑


  if 

( ) ( )( )( )1

1
, j

jf λ+

+
∉ 


 . The latter exceptional set is Borel measurable and has 

( ) ( )2 1 d 1+ +  -measure zero. Equivalently, it has ( )d 1+  -measure zero, like-

wise, could have written ( )
( )d 1j

j
j f

s
+

 
  

∑


 for ( )
( ) ( )2 1 d 1j

j
j f

s
+ +

 
  

∑
 

. Then, 

according to Theorem 4.9, S is a well-defined isometric lattice isomorphism be-

tween ( ) ( )1 , j
jL µ+ ∑  and ( ) ( )( )( ) ( ) ( )[ ] ( )1

1

0,1 1
, 2 1 d 1j

j
L

L λ
+

⊕ +

+

 + + 
 ∑∫ 






  . If 

jf  is a bounded Bore measurable function on  , then the exceptional set is 
empty, and, using (11), the isometric nature of S at the point  

( ) ( )1 ,j
j

j
jj jf L X

µ
µ+

∑
  ∈ ∑ ∑  is an application of (12) to 

( )1
jj f

+
∑


: 

( )
( ) ( ) ( )

( )( ) ( )

[ ] ( ) ( )[ ]

( ) ( ) ( )( )
( ) ( ) ( )[ ]

( ) ( )( )
( )( )

( )
( ) ( )[ ]

( )

( )

1

1 1

1

0,1 0,2

1

0,1 1

1

0,1

1

1

1 d

1 1 e d 2 1 d 1
2

d 2 1 d 1

1 2 1 d 1

.

j
j

jj

j
j

j
j j

j j j

i
j

j

j
j

j

j

f
j

j
j

f f z

f

f z

s

S f

µ

θ

λ

µ

µ

θ

λ

+

+ +

+

π

+

+

+

+

+

∑

∑

  =  π

 
= + + + 

π  
 

= + + 
 

= + + +

  =    

∑ ∑ ∑∫

∑∫ ∫

∑∫ ∫

∑∫

∑







 













  

 

  

z

z  
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Furthermore, S is an intertwining operator between the canonical representa-

tions j
j µ

ρ
∑

 of   on ( ) ( )1 , j
jL µ+ ∑  and the ( )1L + -direct integral 

( )( )
( ) ( )[ ]

( )11
0,1

2 1 d 1jj
L

λ
ρ

++

⊕ 
+ +  

 
∑∫



   of the order indecomposable representa-

tions ( )( )1
jλ

ρ
+

 of   on the spaces ( ) ( )( )( )1

1
, jL λ+

+



. That is, for all ∈z , 

the diagram 

( )
( )

( )

( ) ( )( )
( ) ( )[ ]

( )

( )( )
( ) ( ) ( )[ ]

( ) ( ) ( )( )
( ) ( )[ ]

( )

0,1
1 1

1 1

1 1

2 1 d 1
1 1

0,1 0,11 1

, ,

, 2 1 d 1 , 2 1 d 1

j
jj

j
j

L

z
j j

j j

j j

j jL L

z

L L

S S

L L

µ

λ

ρ

ρ

µ µ

λ λ

∑

⊕

+ +

+ +

+ +

 
 + + 
 ⊕ ⊕+ + 

+ +

∑

∑∫

   
→   

   
↓ ↓

      
+ + + +           

→
   

∑ ∑

∑ ∑∫ ∫

 

  

 

 

 

 

 
   

 
 (13) 

is commutative. 
Intuitively, this is certainly plausible, since “restricting a function to an orbit” 

is clearly a  -equivariant operation, and the commutativity of diagram (13) 
merely reflects that this is what the sequence of operator S tries to do. Write 
“tries to do”, and not “does”, because “restricting” is meaningless for the ele-
ments of the actual domain of S, which are j

j µ∑ -equivalence classes of mea-
surable functions. The “actual” intertwining statement in Theorem 4.9 is, there-
fore, that this intuitive observation can be modified into a form that is mea-
ningful and that survives during the measure-theoretical constructions. In this 
case, it comes down to the following. 

If there is an empty exceptional set in the definition of ( )
j

j

f
s  for 

( ) ( )( )1 , j
j jf µ+∈ ∑ , then, for each fixed ( )0 ≤ < ∞ , the value  

( ) ( ) ( )( )1

1 j
j

j
jj f

s f
λ

+

 + =  ∑


  are determined by the restriction of jf  to the 

corresponding orbit of radius ( )1+  . Since the characteristic function of this 

orbit are j
j µ∑ -almost everywhere zero, it is likewise that ( )( )1

jjj f
λ

+

  ∑


 al-

ways depends on the choice of the representative jf  of j
j

jj f
µ∑

  ∑ . Never-

theless, the ( ) ( )2 1 d 1+ +  -equivalence class of the section  

( ) ( ) ( ) ( )( )1

1 1 j
j

j
jj jf

s f
λ

+

 + + =  ∑ ∑



   does not depend on this choice. 

Moreover, the map S sending j
j

jj f
µ∑

  ∑  to this ( ) ( )2 1 d 1+ − + 

-equivalence class is  -equivariant. 
Furthermore, this can still be made to work when there is a non-empty excep-

tional set in the definition of ( ) ( )1
j

j
j f

s +∑  ; i.e. when ( )1+  -integrability of 

jf  are lost when jf  are restricted to certain orbits. For each fixed orbit, there 
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are evidently ( ) ( )1 , j
j jf L X µ+∈ ∑  for which this is the case, but for all fixed 

( ) ( )1 , j
j jf X µ+∈ ∑  there are ( ) ( )2 1 d 1+ +  -almost none of such orbits. 

5. Disintegration: General Case 

In section 4, started with a topological dynamical system ( ),G K  and a G inva-
riant Borel probability measure on X. In that context, there existed canonically 
associated strongly continuous representations of G as isometric lattice auto-
morphisms of the spaces ( ) ( )1 , j

jL X µ+ ∑ , ( )0 ≤ < ∞  that fix the constants. 

In the current section, we turn the tables. Start with an (at first) abstract group 
G and a probability spaces ( ), j

jX µ∑ , and assume that, for some ( )0 ≤ < ∞ , 
G acts as isometric lattice automorphisms of ( ) ( )1 , j

jL X µ+ ∑  such that the 
constants are left fixed. It is then established that, in fact, G acts naturally in a 
similar manner on ( ) ( )1 , j

jL X µ+ ∑  for all ( )0 ≤ < ∞  see Corollary 5.10. 
Furthermore, if G is a locally compact Hausdorff group and the original repre-
sentation is strongly continuous, then it is shown that there is an isomorphic 
model in which this G-action on all ( )1L + -spaces originates canonically from a 
measure preserving continuous G-action on a compact Hausdorff space; see 
Theorem 5.14. Under mild additional assumptions, then conclude from our dis-
integration Theorem 4.9 that, even though there was originally no action of G on 
an underlying point set, the original representation(s) of G on ( ) ( )1 , j

jL X µ+ ∑  
can still be disintegrated into order indecomposable representations as an ( )1L +

-direct integral. This leads to Theorem 5.15, which is an ordered relative of the 
general unitary disintegration. 

Remark 5.1. It follows from the combination of [[12], Vol. I, Exercise 
1.12.102], [[4], Vol. II, Example 6.5.2], and [[12], Vol. I Exercise 4.7.63] that, for 
( )0 ≤ < ∞  

( ) ( )1 , j
jL X µ+ ∑  is always separable whenever X is a separable metric space 

and j
j µ∑  are Borel probability measure on X. Therefore, the representation 

spaces are all separable. Furthermore, have observed in Remark 4.10 that the re-
presentations on the relevant spaces are all strongly continuous. Neither of the 
seproperties has played a role in the proofs so far. Quite to the contrary, in the 
current section both properties will be essential in order to be able to exhibit a 
model in Theorem 5.14 to which the disintegration Theorem 5.15 can subse-
quently be applied. 

Remark 5.2. With the exception of Remark 5.8, the combination of ideas, ar-
guments and results in Lemma 5.3 up to and including Theorem 5.14 is rather 
similar to that in [9]. Unfortunately, we cannot directly apply results. The reason 
is that the so-called Markov operators on ( ) ( )1 , j

jL X µ+ ∑  that are considered 
are positive operators jT  that fix the constants and satisfy  

d dj j
j jj j j jX X

f fµ µ=∑ ∑ ∑ ∑∫ ∫  for all ( ) ( )1 , j
j jf L X µ+∈ ∑ . The point of 

departure, where  preserves the norm rather than the integral, and is a lattice 
homomorphism rather than merely a positive sequence of operators, are differ-
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ent. This necessitates an independent, albeit similar, development; see also Re-
mark 5.6. 

Begin by showing that representations of an abstract group G as isometric lat-
tice automorphisms that fix the constants come in families. There will be only 
one measure section, and happily resort to the usual practice of ignoring the dis-
tinction between equivalence classes of functions and their representatives. 

Start with the following key observation. 
Lemma 5.3. Let ( ), j

jX µ∑  be a probability space, and let  

( ) ( ): , ,j j j
j jT L X L Xµ µ∞ ∞→∑ ∑  be a lattice homomorphism that fixes the 

constants. Then ( )( ) ( ) ( )11j j
j jj jT f T f

++
=∑ ∑


 for all ( ), j

jf L X µ∞∈  and 

all ( )0 ≤ < ∞  

Lemma 5.4. Let ( ), jX µ  be a probability space, and let  

( ) ( ): , ,j j jT L X L Xµ µ∞ ∞→  be a lattice homomorphism that fixes the con-
stants. Then the following are equivalent: 

(1) ( ) d dj j j
j jj j j jX X

T f fµ µ=∑ ∑ ∑ ∑∫ ∫  for all ( ), j
j jf L X µ∞∈ ∑ ; 

(2) ( ) 11

j
j jj jT f f=∑ ∑  for all ( ), j

jf L X µ∞∈ ; 

(3) There exists ( )0 ≤ < ∞  such that ( )
( ) ( )11

j
j jj jT f f

++
=∑ ∑ 

 for all 

( ), j
jf L X µ∞∈ ; 

(4) For all 0 ≤ < ∞ , have ( )
( ) ( )11

j
j jj jT f f

++
=∑ ∑ 

 for all  

( ), j
j jf L X µ∞∈ ∑ . 

Proof. To see that (1) implies (4), we use Lemma 5.3 to note that 

( )
( )

( ) ( )
( )

( )( ) ( )

( )

( )

1

1 1

1 1 1

1

d

d d

j j j
j jj j jX

j j j
j j jj j j jX X

T f T f

T f f f

µ

µ µ

+

+ +

+ + +

+

=

= = =

∑ ∑ ∑∫

∑ ∑ ∑ ∑∫ ∫



 

  



. It is clear that (4) 

implies (3). 
To see that (3) implies (2), invoke Lemma 5.3 to compute as follows: 

( ) ( ) ( )
( )( ) ( )

( )( ) ( )

( )( )
( )

( )

( )

( )

( )

1

11 1

11 1

11 1

1

11 1

11

d d

d

d

j j j j j
j j jX X

j j j j j

j j
jX

j j

j j
jX

j j

j
j

j

j j
j j

T f T f T f

T f

T f

T f

f f

µ µ

µ

µ

+
+

+
+

+
+

+

++

+

= =

 
=   

 

=

=

= =

∑ ∑ ∑ ∑ ∑∫ ∫

∑ ∑∫

∑ ∑∫

∑

∑ ∑
















 

To see that (2) implies (1), note that the equality in (1) is just the one in (2) if 
0jf ≥  (note that 0j

jT f ≥  then. For general jf , then have 
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( )

( )( ) ( )( )
( ) ( )

d

d d

d d

d d d

j j
jX

j j

j j j j
j jX X

j j j j

j j j j
j jX X

j j

j j

j j

j j j
jX X X

j jj

T f

T f T f

T f T f

f f f

µ

µ µ

µ µ

µ µ µ

+ −

+

+ −

−

−

= −

= −

= =

∑ ∑∫

∑ ∑ ∑ ∑∫ ∫

∑ ∑ ∑ ∑∫ ∫

∑ ∑ ∑∫ ∫ ∫

 

Fix 0 ≤ < ∞ , and consider a lattice homomorphisms  
( ) ( ) ( ) ( )1 1: , ,j j j

j j jT L X L Xµ µ+ +→∑ ∑ ∑ 

 
that leaves the constants fixed. 

Then jT , being a positive sequence of operators on a Banachlattice, is conti-
nuous in the ( )1+  -norm. Furthermore, jT  leaves ( ), j

jL X µ∞ ∑  invariant. 
If ( ), j

j jf L X µ∞∈ ∑ , then j j Xj jf f
∞

≤∑ ∑ 1  in the lattice 
( ) ( )1 , j

jL X µ+ ∑ . An application of jT  shows that ( )j
jT f  are in ( )L X∞  

again, and also that ( ) ( ): , ,j j j
j j jT L X L Xµ µ∞ ∞→∑ ∑ ∑  are contractive in 

the supermom-norm. For later use, let us note that the latter implies that a group 
of lattice automorphisms of ( ) ( )1 , j

jL X µ+ ∑  that fixes the constants automat-
ically acts on ( )L X∞  as isometric lattice automorphisms. 

Using continuity and density arguments, the following result is an easy con-
sequence of Lemma 5.4. 

Lemma 5.5. Let ( ), j
jX µ∑  be a probability space, let ( )0 ≤ < ∞ , and let 

( ) ( ) ( ) ( )1 1: , ,j j j
j j jT L X L Xµ µ+ +→∑ ∑ ∑   be a lattice homomorphism that 

leaves X1  fixed. Then jT  leaves ( ), j
jL X µ∞ ∑  invariant, and the restriction 

of jT  to ( ), j
jL X µ∞ ∑  are contractive lattice homomorphism for the su-

permom-norm that leaves the constants fixed. Furthermore, the following are 
equivalent: 

(1) ( )d dj j j
j jj j j jX X

T f fµ µ=∑ ∑ ∑ ∑∫ ∫  for all ( ), j
j j jf L X µ∞∈ ∑ ∑ ; 

(2) ( )d dj j j
j jj jX X

T f fµ µ=∑ ∑∫ ∫  for all ( ) ( )1 , j
j jf L X µ+∈ ∑ ; 

(3) ( )
( ) ( )11

j
j jj jT f f

++
=∑ ∑ 

 for all ( ) ( )1 , j
j jf L X µ+∈ ∑ . 

Remark 5.6. In the terminology of [[9], Section 13.1], the equivalence of (2) 
and (3) in Lemma 5.5 implies that a lattice homomorphism 

( ) ( ) ( ) ( )1 1: , ,j j j
j jT L X L Xµ µ+ +→∑ ∑   that leaves the constants fixed is a 

Markov operator on ( ) ( )1 , j
jL X µ+ ∑  precisely when it is an isometry. 

Note that ( )1+   is absent from part 1 of Lemma 5.5, but present in parts 2 
and 3. 

Lemma 5.4 has similar features. Using restriction to, and extension from, the 
common dense subspace ( ), j

jL X µ∞ ∑  of all spaces  
( ) ( ) ( )1 , 0j

jL X µ+ ≤ < ∞∑  , one readily obtains the following result. 
Lemma 5.7. Let ( ), j

jX µ∑  be a probability space, let ( )0 ≤ < ∞  and let 
( ) ( ) ( ) ( )1 1: , ,j j j

j j jT L X L Xµ µ+ +→∑ ∑ ∑   be an isometric lattice homomor-

phism that leaves the constants fixed. Then  jT  leaves  
( ) ( ) ( ) ( )1 1, ,j j

jL X T L X T+ +⊆ ∑   invariant, and the restriction  
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( ) ( ) ( ) ( )1 1: , ,j j j
j j jT L X T L X T+ +→∑ ∑ ∑   are isometric lattice homomor-

phism that leaves the constants fixed. Moreover, every isometric lattice homo-
morphism of ( ), j

jL X T∑  
that leaves the constants fixed can thus be obtained 

from a unique. 
Remark 5.8. There is an alternative way to understand why Lemma 5.7 holds. 
According to Lamperti’s theorem [[20], Theorem 3.2.5], the isometries of 

( ) ( )1 , j
jL X T+ ∑  are, for ( )0 ≤ < ∞  the composition of a multiplication se-

quence of operators and the sequence of operators that are induced by a regular 
set isomorphism. An inspection of the proof shows that the theorem actually 
describes all disjointness preserving isometries; this disjointness preserving 
property being automatic if 1≠ . Consequently, if ( )0 ≤ < ∞  is fixed, and 

( ) ( ) ( ) ( )1 1: , ,j j j
j j jT L X T L X T+ +→∑ ∑ ∑   is an isometric lattice isomor-

phism that fixes the constants, then the description in Lamperti’s theorem ap-
plies to the operator. Since j

j T∑ fixes the constants, the multiplication opera-
tor is the identity, so that  jT  is actually induced by a regular set isomorphism. 
Since j

j T∑  is an isometry, this regular set isomorphism must be measure 
preserving. It is then clear why and how j

j T∑  acts as isometric lattice auto-
morphisms on all spaces ( ) ( )1 , j

jL X µ+ ∑ : all these actions arise from the same 
underlying measure preserving regular set isomorphism. 

At the cost of invoking Lamperti’s result, and of some technical details of a 
different nature, a different proof of Lemma 5.7 can thus be given. 

If ( ), j
jX µ∑  are probability space, and if ( )0 ≤ < ∞ , then, as is well 

known, the topology that is induced on ( ){ }, : 1j
j jj jf L X fµ∞

∞
∈ ≤∑ ∑  by 

( ) ( )1 , jL X µ+  does not depend on ( )1+  . As a first consequence, the spaces 
( ) ( )1 , j

jL X µ+ ∑  for ( )0 ≤ < ∞  are either all separable, or all non-separable; 

their separability is known to be equivalent to the separability of jµ , (see e.g. 
[1]). As a second consequence, when combined with Lemma 5.7 and with the 
observed fact that a lattice homomorphism of ( ) ( )1 , j

jL X µ+ ∑ , that leaves the 

constants fixed, automatically leaves ( ){ }, : 1j
j jj j jf L X fµ∞

∞
∈ ≤∑ ∑ ∑

 
invariant, this ( )1+  -independence of the topology yields the statement on the 
strong operator topology of the following result. 

Proposition 5.9. Let ( ), j
jX µ∑  be a probability space, and let ( )0 ≤ < ∞ . 

Then the semigroup/group of isometric lattice homomorphisms/automorphisms 
of ( ) ( )1 , j

jL X µ+ ∑  into/onto itself that leaves the constants fixed is, via the re-
striction map, isomorphic to the semigroup/group of isometric lattice homo-
morphisms automorphisms of ( ) ( )1 , j

jL X µ+ ∑  into/onto itself that leaves the 
constants fixed. This isomorphism is ahomeomorphism for both the strong and 
the weak operator topologies as induced from the bounded sequence of opera-
tors on ( ) ( )1 , j

jL X µ+ ∑  and ( ) ( )1 , j
jL X µ+ ∑ . 

Thus have the following result concerning the type of representations always 
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occurring in families. 
Corollary 5.10. Let ( ), j

jX µ∑  be a probability space, let G be a group, and 
let ( )0 ≤ < ∞ . Suppose that G acts on ( ) ( )1 , j

jL X µ+ ∑  as isometric lattice 
automorphisms that leave the constants fixed. Then G acts naturally on 

( ) ( )1 , j
jL X µ+ ∑  as isometric lattice automorphisms that leave the constants 

fixed for all ( )0 ≤ < ∞ . These representation spaces are either all separable, or 
all non-separable. If G is a topological group, then these representations are ei-
ther all strongly/weakly continuous, or all strongly/weakly discontinuous. 

Proceed to show that, if G is a locally compact Hausdorff group, there is a 
model that gives an addional “explanation” of Corollary 5.10, in addition to the 
observation in Remark 5.8. The main ideas leading to the pertinent Theorem5.14 
are those employed, where the group is compact and 0= , but with a few 
technical modifications, so that they lead to a stronger result that is valid for 
non-compact groups and for all ( )0 ≤ < ∞  simultaneously. The basic tool is 
an application of the commutative Gelfand-Naimark theorem, and for this need 
some preparations. 

The proof of the following result is a technically strengthened variation. For 
this, invariant integration over the group is needed, and this is the reason that 
the requirement that 𝐺𝐺 be a locally compactHausdorff group becomes part of 
the hypotheses. 

Lemma 5.11. Let ( ), j
jX µ∑  be a probability space, let ( )0 ≤ < ∞ , and let 

ρ  be a strongly continuous representation of a locally compact Hausdorff 
group G on ( ) ( )1 , j

jL X µ+ ∑  as isometric lattice automorphisms that leave the 
constants fixed. Then there exists a G-invariant closed subalgebra ( )( )1jj A

+∑ 
  

of ( )( ), ,j
jL X µ∞

∞
⋅∑  that contains X1 , is dense in ( ) ( )1 , j

jL X µ+ ∑ , and is 

such that the restricted representation of G on ( )( )( )1
,jA

∞+
⋅


 are strongly 

continuous. If j
j µ∑  are separable, and G is jσ -compact, then ( )( )1jA

+
 can 

be taken to be a separable subalgebra of ( )( ), ,j
jL X µ∞

∞
⋅∑ . 

Proof. If ( ) ( )1 , j
jj jf L X µ+∈∑ ∑ , and ( )cC Gφ ∈ , then, since the inte-

grand is continuous and compactly supported, the ( ) ( )1 , j
jL X µ+ ∑ -valued 

Bochner integral ( ) ( ) ( ) ( )d j
j j j j jjX

f g g f G gρ φ φ ρ µ= ∑∫  exists; here j
Gµ  

is a left-invariant Haar measure on G. If ( ), j
j jf L X µ∞∈ ∑ , then ( )ρ φ  is, in 

fact, an element of ( ), j
jL X µ∞ ∑ . To see this, choose, for 1,2,n = 

, a disjoint 

partition 1
supp nN

ii
Eφ

=
=


 of the compact set suppφ  into measurable subsets 

iE ,and ( )j ii
g E∈ , such that  

( ) ( ) ( )( ) ( )( )
( )1

1
j j j j j jj i i

g g f g g f
n

φ ρ φ ρ
+

− ≤∑


 

and ( ) ( )( ) 1j jj i
g g nφ φ− ≤∑  for all j ig E∈ . It is easy to see that
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( ) ( )( ) ( )( ) ( )1
nN j

i j j j ji j i i
E g g f fµ φ ρ ρ φ

=
→∑ ∑  in ( ) ( )1 , j

jL X µ+ ∑  as 

n →∞ . Passing to a subsequence, may assume that this convergence is point-
wise almost everywhere. On the other hand, know that G acts as isometrieson

( )( ), ,j
jL X µ∞

∞
⋅∑ , so that 

( ) ( )( ) ( )( ) ( )1 suppnN j j
i j j j jj i j ji i

E g g f fµ φ ρ µ φ φ
= ∞ ∞∞

≤∑ ∑ ∑ ∑  for all n. 

Conclude that ( ) jfρ φ  is an element of ( ), j
jL X µ∞ ∑ , as claimed. Moreover, 

since 

( ) ( )( ) ( )( ) ( )( ) ( )1 1
n nN Nj j

i j j j j ij i i j ji i i
E g g f g Eµ φ ρ φ µ φ

= = ∞∞
≤∑ ∑ ∑ ∑ ∑ , let 

n →∞  and conclude that ( ) 1j jj jf fρ φ φ φ
∞∞ ∞

≤∑ ∑ . It follows easily 

from the latter inequality and the strong continuity of the left regular represen-

tation of G on ( )1L G  that the map ( ) ( )j j jj jg g fρ ρ φ∑ ∑  from G into 

( )( ), ,j
jL X µ∞

∞
⋅∑  is continuous. 

After these preparations, let  

( )( ) ( ) ( ){1
, :j

j j j j jj j jÁ f L X g g fµ ρ∞

+
= ∈∑ ∑ ∑ 


 are continuous from G 

into ( )( )}, ,j
jL X µ∞

∞
⋅∑ . 

Using that G acts as isomerizeson ( )( ), ,j
jL X µ∞

∞
⋅∑ , one sees that 

( )( )1jj Á
+∑ 

 are closed G-invariant subalgebra of ( )( ), ,j
jL X µ∞

∞
⋅∑  that 

contains X1 . It follows from the preparations that ( )( )1jj Á
+∑ 

 are dense in 

( ) ( )1 , j
jL X µ+ ∑ . 

For the general case, one can take ( )( ) ( )( )1 1j jj j ÁA
+ +

=∑ ∑ 
. If j

j µ∑  are 

separable, and G is jσ -compact, select a countable subset S of ( )( )1jj Á
+∑ 

 

containing X1  that is dense in ( ) ( )1 , j
jL X µ+ ∑ . If jf S∈ , then ( ) jG fρ  are 

jσ -compact, and hence a separable, subset of ( )1  jÁ + ∞

 
⋅ 

 



. 

Therefore there exists a countable subset 
jfG  of G, containing the identity 

element, such that ( ) ( ){ }:
jj j j j fG f g f g Gρ ρ

∞⋅

⊆ ∈ ⊆ ( )( )1jÁ
+

. One take 

( )( )1jÁ
+

 to be the closed subalgebra of ( )( ), ,jL X µ∞
∞

⋅  that is generated by 

the ( )j jg fρ  for jf S∈  and 
jj fg G∈ . 

Note. Deduce that: 

( ) 1j j
j j

f fρ φ φ φ
∞∞

∞

≤∑ ∑  

RETRACTED

https://doi.org/10.4236/apm.2019.911044


S. Joseph et al. 
 

 

DOI: 10.4236/apm.2019.911044 919 Advances in Pure Mathematics 
 

Proof. From proof of lemma 5.11 we can get 

( )( )

( ) ( )

1

11
22 22

1 1
1 1

k j k
k j

n n

k j jk
k k j j

f

f f

ρ φ

φ ρ φ φ φ

∞=

∞
= = ∞

∞ ∞

  
≤ =  

   

∑∑

∑ ∑∑ ∑
 

Remark 5.12. It is worth noting that every separable locally compact Haus-
dorff group G is jσ -compact. Indeed, there exists an open neighbourhood of V 
of e in G that is jσ -compact, and if S G⊂  is a countable dense subset, then 

( )1
j

j
s S

G s V V −
∈

= 



 is jσ -compact. 
The following result has no counterpart It is needed when one wants to trans-

fer the “whole” picture in Theorem 5.14, i.e. for all 1≤ < ∞  simultaneously. 
Proposition 5.13. Let ( ), j

jX µ∑  be a probability space, let ( )0 ≤ < ∞  
and let ρ  be a strongly continuous representation of a locally compact Haus-
dorff group G on ( ) ( )1 , j

jL X µ+ ∑  as isometric lattice automorphisms that 
leave the constants fixed, so that G acts naturally in a similar fashion on 

( ) ( )1 , j
jL X µ+ ∑  for all ( )0 ≤ < ∞ . Then there exists a G-invariant closed 

subalgebra jA  of ( )( ), ,j
jL X µ∞

∞
⋅∑  that contains X1 , is dense in  

( ) ( )1 , j
jL X µ+ ∑  for all ( )0 ≤ < ∞ , and is such that the restricted representa-

tion of G on ( ),jA
∞

⋅  are strongly continuous. If jµ  are separable, and G is 
jσ -compact, then jA  can be taken to be a separable subalgebra of 

( )( ), ,j
jL X µ∞

∞
⋅∑ . 

Proof. For 1,2,n = 
, choose an algebra ( )j n

A  as in Lemma 5.11 that is 
dense in ( ),n j

jL X µ∑ , and let jA  be the closed subalgebra of 

( )( ), ,j
jL X µ∞

∞
⋅∑  that is generated by the ( )j n

A . 
The following “transfer theorem” is a stronger version. Include the short proof 

for the convenience, but hasten to add that it is a modest variation on that of [[9], 
Theorem 15.27], where only 0=  is considered and where the group is com-
pact. 

Theorem 5.14. Let ( ), j
jX µ∑  be a probability space, let ( )0 ≤ < ∞ , and let 

( )1ρ +  be a strongly continuous representation of a locally compact Hausdorff 
group G on ( ) ( )1 , j

jL X µ+ ∑  as isometric lattice automorphisms that leave the 
constants fixed, so that G acts naturally in a similar fashion on ( ) ( )1 , j

jL X µ+ ∑  
for all ( )0 ≤ < ∞ . 

Then there exist 
(1) a topological dynamical system ( ),G K , where K is a compact Hausdorff 

space; 
(2) a G-invariant regular Borel probability measure j

j µ∑   on K with 
supp j

j Kµ =∑  ; 

(3) a family ( ){ }
( )1 0+ ≤ <∞

Φ  
 of isometric lattice isomorphisms  

( )
( ) ( ) ( ) ( )1 1

1 : , ,j j
j jL X L Kµ µ+ +

+Φ →∑ ∑ 

 
  that 

(a) send X1  to K1 ; 
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(b) are compatible with the inclusions between ( )1L + -spaces; 
(c) Intertwine the strongly continuous representations of G on the spaces 
( ) ( )1 , j

jL X µ+ ∑  with the canonical strongly continuous representations of G 
on the spaces ( ) ( )1 , j

jL K µ+ ∑ 

 . 
If j

j µ∑  is separable, and G is  jσ -compact, then K can be taken to be 
amortizable. 

Proof. Choose an algebra jA  as in Proposition 5.13. By the commutative 
Gelfand-Naimark theorem, there exist a compact Hausdorff space K and a unital 
isometric algebra isomorphism ( ) ( )( ): , ,jA C K

∞ ∞
Φ ⋅ → ⋅ . If jA  is separable, 

then K is amortizable. Know that Φ  is a lattice isomorphism, that  
( )1

j jf A
+

∈


 for all j jf A∈  and 0 ≤ < ∞ , and that 
( )( ) ( ) ( )

( )( )11
, 0 .j j j jf f f A

++
Φ = Φ ∈ ≤ < ∞


            (14) 

Transfer the strongly continuous action of G on ( ),jA
∞

⋅  to ( )( ),C K
∞

⋅  
via Φ . As is well known, this transferred action necessarily originates from a 
topological dynamical system ( ),G K . 

The Riesz representation theorem furnishes a regular Borel probability meas-
ure j

j µ∑  on K, easily seen to be of full support, such that 

( ) ( )d d .j j
j j j jK X

j j
f f f Aµ µΦ = ∈∑ ∑∫ ∫

            
 (15) 

Since Φ  intertwines the G-actions on ( )C K  and jA  by construction, it is 
immediate from (15) and part 1 of Lemma 5.5 that j

j µ
∨∑  are G-invariant. 

Furthermore, combination of (14) and (15) shows that 

( ) ( )

( )( ) ( ) ( )

1

1 1

d

d d ,1

j
jK

j

j j
j j j jK X

j j

f

f f f A

µ

µ µ

+

+ +

Φ

= Φ = ∈ ≤ < ∞

∑∫

∑ ∑∫ ∫







 


 

Since, for all ( )0 ≤ < ∞ , jA  are dense in ( ) ( )1 , j
jL X µ+ ∑ , and ( )C K  is 

dense in ( ) ( )1 , j
jL K µ+ ∑ , by extension obtain a family of isomerizes 

( )
( ) ( ) ( ) ( )( )1 1

1 : , , 0j j
j jL X L Kµ µ+ +

+Φ → ≤ < ∞∑ ∑ 

 
  . 

Since Φ  is a lattice isomorphism, so are the ( )1+Φ  . The statements in parts 
3b and 3c are routinely verified. 

It is clear that Theorems 5.14 can still be used to disintegrate representations 
even when there is no initial action on the underlying point set, since—under 
mild conditions—the latter is furnished by Theorem 5.14. The result is the fol-
lowing, which should be compared with the general unitary disintegration [21]. 
Note the separability assumption on the probability space, needed to ensure that 
the compact Hausdorff space from Theorem 5.14 is Polish. 

Theorem 5.15. Let G be a locally compact Polish group, let ( )0 ≤ < ∞ , and 

let ( ), j
jX µ∑  be a separable probability space. Let  

( ) ( ) ( )( )1 1: , j
jG L L Xρ µ+ +→ ∑   be a strongly continuous representation of G 

as isometric lattice automorphisms that leave the constants fixed. Then, for all 
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( )0 ≤ < ∞  there exists a representation ( )1ρ +  of G on ( ) ( )1 , j
jL X µ+ ∑  

with the same properties, that is obtained from ( )1ρ +  via restriction to, and 
extension from, ( ), j

jL X µ∞ ∑ . Furthermore, there exist a Borel probability 
space ( ), jνΩ  and a vector space V such that, for all ( )0 ≤ < ∞ , there exist 

(1) A measurable family ( )( ){ }1
j jjj B

ω ω

+

∈Ω
∑


 of Banach lattices over 

( ), ,jv VΩ ; 

(2) A family of strongly continuous and order indecomposable representa-

tions ( ) ( )( )( )( )11 :j j
j

jj jG L B
ω ω
ρ ω

++ → ∈Ω∑ ∑
  of G as isometric lattice iso-

morphisms of ( )( )1
jjB

ω

+
; 

(3) An isometric lattice isomorphism  
( ) ( ) ( ) ( )( ) ( )( ) ( )1

11 1: , dj
j j j

jj j
L

S L X B v
ω

µ ω
+

+⊕+ +

Ω
→∑ ∑∫ 

   such that the following 

diagram commutes for all jg G∈ : 

( )
( ) ( )

( )

( )( ) ( )
( )

( ) ( ) ( )
( ) ( )( ) ( )

( )

1

1

1

1 1

1 1

d
1 1

, ,

d d

j
j

j j
jj

j L
j j

g
j j

j j

g v
j j j j

j j
j jL L

L X L X

S S

B v B v
ω

ρ

ρ ω

ω ω

µ µ

ω ω

+

+⊕
Ω

+

+ +

+ +

 
 
 + +⊕ ⊕ 

Ω Ω

∑

∑∫

   
→   

   
↓ ↓

   
   
 

→
 

∑ ∑

∑ ∑∫ ∫







 

 

 

 

Inspection of the proofs shows that there is some more information available. 
V can be taken to be the vector lattice of all simple functions on the compact 
metric space K that is furnished by Theorem 5.14, Ω  is then the set of all er-

godic Borel probability measures on K, and jv  is then the push-forward of the 

measure j
j µ∑   on K in Theorem 5.14 to the set of ergodic Borel probability meas-

ures, using a decomposition map for j
j µ∑  . The families ( )( ){ }1

j jjj B
ω ω

+

∈Ω
∑


 of 

Banach lattices is then the families ( ) ( ){ }1 ,
j

jL K
ω

ω+

∈Ω

  of ( )1L + -spaces corres-

ponding to the ergodic Borel probability measures on K, and the representations 
( )1

jω
ρ +  are then the canonical representations of G on these spaces. 

6. Perspective 

Put forward the task of disintegrating strongly continuous representations of a 
locally compact group as isometric lattice automorphisms of Banach lattices into 
similar representations that are order indecomposable. This would be the 
analogue of what is known to be possible for strongly continuous unitary repre-
sentations of separable groups on separable Hilbert spaces. The ( )1L + -spaces for 
finite ( )1+   are arguably the prime examples of Banach lattices that can serve 
as representation spaces, and in that cases, the goal was achieved in Theorem 
5.15 for a certain class of such representations. As explained, this class includes 
e.g. all natural representations on ( )1L + -spaces corresponding to topological ac-
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tions of Lie groups on compact manifolds with an invariant Borel probability 
measure. 

Consequently, do not only know that the ensuing natural unitary representa-
tion of the group on the pertinent 2L -space is a direct integral of irreducible (i.e. 
indecomposable) unitary representations, but also that the natural representa-
tions of the group as isometric lattice automorphisms of the pertinent real ( )1L +

-spaces for finite ( )1+   are direct integrals of similar representations that are 
order indecomposable. 

Still, it is clear that Theorem 5.15 is only a first step in the study of the disin-
tegration of general strongly continuous group representations as isometric lat-
tice automorphisms of ( )1L + -spaces. At a conceptual level, the main insight 
seems to be that this is, in fact, possible for the representation, and that (a 
modification of) the direct integral theory provides the language to formalize 
such a disintegration. This is not so clear at the outset. 

It is hoped that further steps can be taken. One possible development, still for 
a probability measure j

j µ∑  and a strongly continuous representation as iso-
metric lattice automorphisms that leave the constants fixed, would be to attempt 
to relax the conditions in Theorem 5.15 that G be Polish and/or that the proba-
bility space be separable. As is indicated in Remark 5.8, if the constants are fixed, 
then one is “actually” looking at a measure preserving action of G on the meas-
ure algebra ( ) j

j
jA

µ∑
. It is conceivable can then be used to improve on the 

technical hypotheses in Theorem 5.15, since the main basic results (Theorems 1, 
2a, and 2b) do not involve any topology. They can be applied in the context of 
any measure preserving abstract group action on a measure algebra, and yield a 
decomposition of ( ) j

j
jA

µ∑
 with respect to the sub-algebra of the fixed points 

of G in ( ) j
j

jA
µ∑

. It is shown that this can be used to yield anergodic 
decompositon of the group action at the level of measure spaces if G equals the 
integers or the real numbers, and it is mentioned that a similar theorem holds in 
more general cases. 

It is open to investigation whether such a decomposition at the level of meas-
ure spaces—once actually established for more general G—can be pushed still 
further to the G-action on the ( )1L + -spaces themselves, while at the same time 
incorporating the direct integral formalism of [13]. There are definitely some 
measurability issues to be taken care of, and perhaps the assumptions on G and 

j
j µ∑  in Theorem 5.15 are not only not too restrictive from a practical point 

of view, but also not so easy to avoid when needing to ensure measurability in 
the proofs. After all, for the disintegration of a strongly continuous unitary 
group representation both the group and the Hilbert space are also required to 
be separable. On a positive note, since our main sources for the ergodic decom-
position, but concentrate on Borel spaces and group actions. 

Another possible development is the bold leap to consider the most general 
case of strongly continuous representations as isometric lattice automorphisms 
of ( )1L +

 spaces—for possibly infinite measure j
j µ∑ —that do not necessarily 
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arise from an underlying measure preserving action, such operators are—this is 
true for σ-finite measures—always a composition of a multiplication operator 
and an operator that arises from, an action on ( ) j

j
jA

µ∑
; see also Remark 5.8 

for 1= . With this factorization available, or else attempt a route via measure 
algebras by generalizing the material 
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