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Abstract 
In this paper, for controlling the spread of plant diseases, a nonautonomous 
SEIS (Susceptible → Exposed → Infectious → Susceptible) epidemic model 
with a general nonlinear incidence rate and time-varying impulsive control 
strategy is proposed and investigated. This novel model could result in an ob-
jective criterion on how to control plant disease transmission by replanting of 
healthy plants and removal of infected plants. Using the method of small am-
plitude perturbation, the sufficient conditions under which guarantee the 
globally attractive of the disease-free periodic solution and the permanence of 
the disease are obtained, that is, the disease dies out if 1 1R < , otherwise, the 
disease persists if 2 1R > . 
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1. Introduction 

Plant viruses or pathogens are an important constraint to crop production 
worldwide, and cause serious losses in agriculture and forestry. For example, 
Huanglongbing (HLB) has no cure and affects all citrus varieties, reducing the 
productivity of orchards because the fruits of infected plants have poor quality 
and, in extreme cases, infection leads to plant death [1] [2] [3]. Several plant 
diseases caused by plant viruses in cassava (Manihot esculenta) and sweet potato 
(Ipomoea batatas) are among the main constraints to sustainable production of 
these vegetatively propagated staple food crops in lesser-developed countries [4] [5] 
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[6]. Epidemics of many polycyclic plant diseases caused by ascomycete fungal 
pathogens are invited by wind-borne ascospores transported into the crop in 
autumn [7] and subsequently develop further through cycles of splash dispersed 
conidia [8]. Integrated disease management (IDM) has been developed gradually 
by famers to reduce the numbers of infected individuals to a tolerable level and 
aims to minimize losses and maximize returns which combine biological, 
cultural, and chemical tactics and so on. A cultural control strategy including 
replanting, and/or removing diseased plants is a widely accepted treatment for 
plant epidemics which involves periodic inspections followed by removal of the 
detected infected plants [9]-[17]. Therefore, we have turned more attention to 
plant diseases. 

Mathematical models play an important role in understanding the 
epidemiology of plant diseases. Applications of mathematical approach to plant 
epidemics were reviewed by Van der Plank and Kranz. There are many authors 
establishing mathematical models to describe the transmission of plant disease. 
Meng and Li [6] have investigated vegetatively propagated plant diseases and 
developed a mathematical model with impulsive cultural control strategies as 
follows: 
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Zhang and Meng take into account time delays in modeling equations and the 
models take the form of delay differential equations [18]. The reasonable time 
delay plant disease models are established as follows: 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( ) ( )

d
e ,

d 1
,

d
e ,

d 1

,
.

1 ,

S t S t I t
S t I t

t S t
t n

I t S t I t
d I t

t S t

S t S t
t n

I t r I t

µτ

µτ

β µ ω
α

τ
β ω

α

ρ
τ

−

−

+

+

 
= − − + +  ≠

 = − +  + 
 = +  = = − 

         (2) 

The above epidemic models discussed with constant coefficients and saturation 
incidence rate. However, the nonautonomous phenomenon is prevalent in the real 
life, which should be more realistic than autonomous systems. For example, the 
climate changes may lead to the variation of the disease spreading, seasonal 
cultivation of the plant, and so on. More recently, many authors pointed out that 
a nonlinear incidence rate may be more realistic during the disease transmission 
process. For example, Teng and Zhang [19] have proposed an SIS epidemic 
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model with generalized incidence rate ( )( ) ( )g I t S t . To address the 
time-varying nature of the coefficients more realistically, nonautonomous model 
with general nonlinear incidence rate and time-varying impulse has been 
introduced. 

The remainder of the paper is organized as follows. In Section 2, we 
formulate the impulsive epidemic model and also simplify the original system 
(3). In Section 3, we introduce some useful lemmas and the basic reproduction 
number of the model. In Sections 4 and 5, we proved the global stability of the 
disease-free equilibrium and permanence of the model, respectively. In the finally 
section, we present numerical simulations that demonstrate the theoretical results 
and give some control and prevention measures. 

2. Model Formulation and Preliminary 

In this section, the plant population is subdivided into three groups: susceptible 
plants S, latent infected plants E and infected plants I. We assume that 
replanting susceptible plants and roguing latent infected and infected plants at 
the same time. Motivated by the above factors, we propose a non-autonomous 
epidemic model incorporated general nonlinear incidence rate and time-varying 
impulse as follows: 
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The model is satisfied with the following assumptions. 
(H1) ( ) ( ) ( ), ,S t E t I t  denote the number of susceptible, latent and infected 

plants, respectively. The initial conditions are ( ) ( )0 00, 0S t I t> >  and 
( )0 0R t > . 
(H2) ( ) ( ),S t E t  and ( )I t  are left continuous for [ )0 ,t +∞ . 
(H3) ( ) ( ),t tµ υ  are the nature death, recovery rate at time t, respectively. 
( )tσ  is the rate at which latent population becomes infective population at time 

t. 
(H4) The coefficients ( ) ( ),t tµ υ  and ( )tσ  are assumed to be nonnegative, 

continuous and bounded ω -periodic functions in the interval [ )0 ,t +∞ . 
(H5) kt  represent pulse time. There exists a positive integer q such that 

k q kt t ω+ = +  for all k N∈ . 
(H6) kδ , kp  and kθ  ( 0 , , 1k k kpδ θ≤ ≤ ) are the pulse replanting rates of 

susceptible plants, roguing rates of latent plants and infected plants at each fix 
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time kt t= , respectively, and k q kδ δ += , k q kp p += , k q kθ θ +=  for all k N∈ . 
(H7) The general nonlinear incidence rates ( ), ,f t S E  and ( ), ,g t S I  are 

piecewise continuous, nonnegative, periodic functions with period ω . The 
form of ( ), ,f t S E  and ( ), ,g t S I  are as follows: 
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for all nonnegative integer n, and ( ) ( ),0, , ,0 0i if t E f t S= = ,  
( ) ( ),0, , ,0 0i ig t I g t S= =  for 1,2, ,i q=  . 
Before analysis, we introduce some notations and definitions. Let C denote the 

space of all bounded continuous functions. Given f C∈ , we let 
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Lemma 1. Consider the following nonautonomous impulsive differential 
equations: 
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has a unique positive ω -periodic solution ( )*S t  which is globally 
asymptotically stable. 

Proof. Integrating and solving the first equation of system (4) between pulses 
for 1 , 1, 2, , ,k kn t t n t k q k Nω ω−+ < ≤ + = ∈ . 
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− −+ = + + , and ( )1kS n tω −+  be the initial value 

at time 1kn tω −+ . 
It follows from above equation and using the second equation of system (4), 
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+ = + + , using the inductive method, 
namely that starts with the observations and theories are proposed towards the 
end of the research process as a result of observation, we have 
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Set ( )0nU S n tω= + . From (5) and 0qt t ω− = , we have 
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f is the stroboscopic map. It is easy to see that system (6) has unique positive 
equilibrium: 
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It’s easy to see that system (3) has a unique disease-free periodic solution 
( )( )* ,0,0S t . 

3. Global Attractivity of the Disease-Free Periodic Solution 

0.6 cm Before discuss the attractivity of the disease-free periodic solution of 
system (3), we firstly make the following assumption: 

A): There exist two positive, continuous, periodic functions ( ) ( ),i it tξ β  with 
the period ω , that is ( ) ( )i it tξ ξ ω= + , ( ) ( )i it tβ β ω= + , for all 1,2, ,i q=  , 
such that ( ) ( ) ( ) ( ), ,i ig t S I t S t I tξ≤ , ( ) ( ) ( ) ( ), ,i if t S E t S t E tβ≤ , for 0t t≥ . 

Theorem 1. If 1 1R <  and system (3) satisfies the assumption (A), then the 
disease-free periodic solution ( )( )* ,0,0S t  is globally attractive, where 
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and 

{ } ( ) ( ){ }min , , max , , 1, 2, , .i i i i i ia p t t i qθ α ξ β= = =             (8) 

Proof. Let ( ) ( ) ( )( ), ,S t E t I t  be any solution of system (3). Since 1 1R < , 
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there exists a sufficiently small number 1 0>  such that 
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By the comparison theorem [20], we can get that there exists a positive 
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where ( )i tα  is the same to (8). Thus, we get that 
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By using the similar method, we can deduce from (11) that for  
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Especially, when ( ) 01t n tω= + + , we have  
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Therefor, for any positive integer s, we get that 
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Combining with (9), we have 
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For above mentioned 1 , there exists ( )2 1t t> , we get ( ) ( ) 1E t I t+ <   for all 
2t t> . 

From Lemma 1 and (14), we can see that the disease-free periodic solution 
( )( )* ,0,0S t  is global attractive. 

4. Permanence of the Disease 
In this section, we mainly obtain the sufficient conditions for the permanence of 
system (3). We give the following assumption at first: 

(B) There exist two positive, continuous, periodic functions ( ) ( ),i it tγ η  with 
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According to Lemma 1, we can obtain that the system has a unique positive 
ω -periodic solution ( )**S t  which is globally asymptotically stable. 
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Proof: Since 2 1R > , it’s easily to see that there exists a sufficiently small 
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In order to illustrate the conclusion, we first prove the disease is uniformly 
weakly persistent, that is, there exists a positive constant 0m > , such that 

( ) ( )( )limsupt E t I t m→+∞ + ≥ . By contradiction, for above given 2 0> , there 
exists a constant 3 0t > , such that ( ) ( ) 2E t I t+ <  , for all 3t t> . 

According to assumption (A) and the first equation of system (3), we know 
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Therefore, for above mentioned 2 , there exists an integer * 0n > , such that 
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1N , such that 3 *
1N t nω ω≥ + . Hence for all  

( )1 1, , 1, 2, ,i in t t n t n N i qω ω−+ < < + ≥ =  , by the second and third equations of 
system (3) and (17), we have 

( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
( )( ) ( ) ( ) ( ) ( )( )**

2

d d
d d

, , , ,

,

i i

i

i

E t I t
t t

f t S E g t S I t E t I t t I t

t S t E t S t I t t E t I t t I t

t S t E t I t t E t I t t E t I t

t S t t E t I t

µ υ

γ η µ υ

ϕ µ υ

ϕ µ υ

+

= + − + −

≥ + − + −

≥ + − + − +

 ≥ − − − + 

   (18) 

where ( ) ( ) ( ){ } ( )min , , 1, 2, ,i i it t t i qϕ γ η= =   are defined. In addition, in view 
of system (3), we yeild 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 1 1 ,i i iE t I t p E t I t b E t I tθ+ ++ = − + − ≥ − +  

where { } ( )max , , 1, 2, ,i i ib p i qθ= =   can be seen. 
Then, we consider impulsive comparison system: 

( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )

( )

2 **
2 2

2 2

2 0 0 0

d
, , ,

d
1 , , .

0.

i k

k k

y t
t S t t t y t t t k N

t
y t b y t t t k N

y t E I

ϕ µ υ

+

+

  = − − − ≠ ∈  

 = − = ∈

 = + >



 

By solving above impulsive differential equation, we can obtain that for  
( )1 1, , 1, 2, ,i in t t n t n N i qω ω−+ < < + ≥ =  , 

( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

( ) ( )( )

1

0

1

1 0

1

1 **
2 2 0 21

**
2

1 exp d

d exp d

d .

i

i

n ti
j ij n t

t n t
in t n t

n t

n t

y t b y n t S

S

ω

ω

ω

ω ω

ω

ω

ω ϕ τ τ τ

ϕ τ τ τ µ τ υ τ τ

µ τ υ τ τ

−

−

++−

= +

+

+ +

+

+

= − + − +
 + − ⋅ − + +  

+ − + 

∏ ∫

∫ ∫

∫







  

Furthermore, when ( ) 01t n tω= + + , we have 

( )( )( ) ( ) ( )
( ) ( ) ( ) ( )( )

( ) ( )( )

( )( ) ( ) ( )( ) ( ) ( )( ){
( )}

( )( )

1

1

1

2 0 2

**
2 0 211

1

**
2 0 21

1

2 2 0

1 1

1 exp d

exp d

exp d

ln 1

i

i

i

i

i

i

j q

tq q
i iii t

tq
i t

tq
ii t

q
ii

y n t b y n t

b y n t S

y n t S

b

y n t

ω ω

ω ϕ τ τ τ

µ τ υ τ τ

ω ϕ τ τ µ τ υ τ τ

ω

−

−

−

+

==

=

+

=

=

+

+ + = − +

 = − + −  
 ⋅ − +  

 = + − − + 

+ −

= Ω +

∑∏ ∫

∑ ∫

∑ ∫

∑




 (19) 

Therefore, for any positive integer 2l , we have  
( )( ) ( )2

2 2 0 2 2 0 .ly n l t y n tω ω+ + ≥ Ω +  It follows from (19) that 

( )( ) ( )2
2 2 0 2 2 0 ,ly n l t y n tω ω+ + ≥ Ω + → +∞  

as 2l → +∞ . By the comparison theorem, we have  
( ) ( )( )limt E t I t→+∞ + = +∞ , which is a contradiction to ( ) ( ) 20 E t I t< + <  . 

Thus the claim is proved. 
By the claim, we are left to consider the following two possibilities: 
Case 1. ( ) ( ) 2E t I t+ >   for all large t. 
Case 2. ( ) ( )E t I t+  oscillates about 2  for all large t. 
The first case implies that the result holds. Then we will consider the second 

possibility. At first, set 3t t>  and 3t t>  be large enough such that 
( ) ( ) 2E t I t+ ≥  , ( ) ( ) 2E t I t+ =  . and ( ) ( ) 2E t I t+ <  , for ( ),t t t∈ . 

There are two possible subcases for t . 
Case (I). If it t nω= +  (n is a nonnegative integer and 1,2, ,i q=  ), then 
( ) ( ) 2E t I t+ >   and ( ) ( ) ( ) ( )( ) ( ) ( )2 21 1i ib b E t I t E t I t+ +− < − + ≤ + <  , 

where { } ( )max , , 1, 2, ,i i ib p i qθ= =  . We claim that there must exist a positive 
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constant m, such that ( ) ( )E t I t m+ ≥ , for ( ),t t t∈ . Then, we will consider 
two possibilities in terms of the size of t  and t . 

i) If *t t n ω− ≤ , where *n  is defined in (17), then from system (3), we have 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

d d
, , , ,

d d
, , ,

1 , , .

M M
k

k k

E t I t
f t S E g t S I t E t I t t

t t
E t I t t t k N

E t I t b E t I t t t k N

µ υ

µ υ
+ +


+ = + − + −


 ≥ − + + ≠ ∈

 + ≥ − + = ∈

   (20) 

From (20), we have 

( ) ( )

( ) ( ) ( )( ) ( )( )

( ) ( )

*

*

1

1

1
*

21

1 exp

1 exp

,

nq M M
ii

nq M M
ii

E t I t

b E t I t t t

b n

m

µ υ

µ υ ω

+

=

+

=

+

   ≥ − + − + −  

   ≥ − − +  

∏

∏




 

for all [ ],t t t∈ . 
ii) If *t t n ω− ≥ , in view of the discussion in (i), we have ( ) ( )E t I t m+ ≥ , 

for all *,t t t n ω ∈ +  . Next, we show that ( ) ( )E t I t m+ ≥  for all 

( * ,t t n tω ∈ +  . 
Otherwise, there exists a constant * 0t >  such that 

( ) ( ) ,E t I t m+ ≥  

for all )* *,t t t t n ω∈ + + . ( ) ( )* * * *E t t n I t t n mω ω+ + + + + ≥  and  
( ) ( )E t I t m+ < , for all ( )* *0 1t t t n ω< − + +  . 
Next, we discuss two possibilities separately: 
(a) For all k n∈ , * *

kt t n tω+ + ≠ . 
It’s easy to see system (18) holds on * ,t n tω +  . So we can choose a proper 

0ρ > , such that ( ) ( ) ( )* * * *
0 0E t n t I t n t E I mω ω ρ+ + + + + ≥ + ≥ . 

By the comparison theorem, we have ( )* *0 1t t n tω< − + +  . 

( ) ( )
( ) ( )( )

( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )

* *

* *

* * * *

**
2

**
0 0 2

exp d

exp d

t
it n t

t
it n t

E t I t

E t n t I t n t

S

E I S

ω

ω

ω ω

ϕ τ τ µ τ υ τ τ

ρ ϕ τ τ µ τ υ τ τ

+ +

+ +

+

≥ + + + + +

 × − − − 

 ≥ + − − − 

∫

∫





 

In addition, (16) implies that 

( ) ( )( ) ( ) ( )* *
**

2exp d 1.
t

it n t
S

ω
ϕ τ τ µ τ υ τ τ

+ +
 − − − ≥ ∫   

Then, we obtain that 

( ) ( )
( ) ( ) ( )( ) ( ) ( )
( )

* *
**

0 0 2

0 0

exp d

.

t
it n t

E t I t

E I S

E I m
ω

ρ ϕ τ τ µ τ υ τ τ

ρ
+ +

+

 ≥ + − − − 
≥ + ≥

∫   
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Then, ( ) ( )E t I t m+ ≥ , for ( )* *0 1t t n tω< − + +  , which is a  
contradiction. 

Therefore, ( ) ( )E t I t m+ ≥  for any [ ],t t t∈ . 
(b) There exists a k N∈  such that * *

kt n t tω+ + = . The proof of (b) is 
similar to (a), so we omit it. Subcase (II). If for all k N∈ , kt t≠ , then 
( ) ( ) 2E t I t+ =  . Using the same methods of subcase (I), we can easily get a 

positive constant m, such that ( ) ( )E t I t m+ ≥ , for all [ ],t t t∈ . 
Thus, we see that ( ) ( )E t I t m+ ≥  for any [ ],t t t∈ . Since this kind of 

interval [ ],t t  is chosen in an arbitrary way, we conclude that ( ) ( )E t I t m+ ≥  
for all large t. 

According to our above discussion, the choice of m is independent of the 
positive solution of system (3), and we have proved that any solution of system 
(3) satisfies ( ) ( )E t I t m+ ≥  for sufficiently large t, that is  

( ) ( )( )liminft E t I t m→+∞ + ≥ . It is easy to obtain that, there exist positive 
constants *S  such that ( ) *liminft S t S→+∞ ≥ . Therefore, the permanence of 
system (3) is proved. 

5. Conclusion 

In this paper, we have constructed a nonautonomous SEIS epidemic model 
with general nonlinear incidence and time-varying pulse control. On the 
basis of Theorems 1 and 2, we know that 1R  and 2R  are the threshold 
condition under the disease and become permanent or not. We have proved 
that the infected plants die out and the disease-free periodic solution is globally 
asymptotically attractive when the hypothesis (A) and 1 1R <  hold. What’s 
more, the infected plants persist when the hypotheses (A) and (B) hold and 

2 1R > . 
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