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Development of linear positive operators brings major contribution in the field

of approximation theory. Several mathematicians [1] [2] [3] [4] [5] have worked

on hybrid linear positive operators. They improved rate of convergence by tak-
ing their linear combination. Here in this paper we consider a sequence of hybr-

id operators, combination of Beta and Baskakov basis functions,

(B )00 =25 b (O i (01 (0, 0

for every, xe[0,) and f e L, [0,%),p>1
Here,

1 X'
i+1n) (1+x)

n+i+l

b(n,i) (X) = B(
and

o
P(n,i)(t){m-l Jt—n. )

I (1+t)
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) i(n-1)! )
where, B(i+1,n)=——-" isBeta function.
(n+1)!

Clearly, the above operators are linear positive operators and reproduce only
constant functions.

Also, B, (Lx)=1.

These operators can be used to approximate Lebesgue integrable functions
and canbe L, approximation methods.

The order of approximation for these operators is at its best at O(n’l). We
can improve the order of approximation by taking linear combination of these
operators.

Let d,,d;,d,,---,d, be k+1 arbitrary but fixed distinct positive integers.
Then linear combination B (f K, X) of B(djn) ( f, X) , 1=01---,n is de-
fined by,

Bl (F.%) d™ dg” - dy”
B (f,x) d d? o

(fx)= an 1) &7 AT 3)
B (f.X) d7 d® - "

where A is Vandermonde determinant obtained by replacing the operator
column of above determinant by entries 1 given by
1 od,t d? o dy"
Al dt d? - d"

1d’ d? - df

n

Simplification of (3) leads to,

B (1. kox) =35, C0.K)B, , (.X) (4)
where, (j k) Hlomdd—jd k#0 and C(0,0)=1

Let O<a <a;<a,<b,<by<b <o and I, =[a,b], i=123. Also let
[a] denote integral part of « .
Let 1<p<ow, fel, [O,oo). Then for sufficiently small 7 >0, the steklov

mean f, . of m-th order corresponding to £is defined as,
—m 2 n/2 /2 m-1 m "M
fom [ W[ t)+(-1)" AT f (t)}dtidtz odt (5)
We will use the following results:

a) f”vm

a.eand belongs to L, (a,,b,).
<G,n"@,,r=12,3,---,m

, el
azb]

||f ~fuall,

<) plaz bp]

has derivatives up to order m, f,l(yTnfl) e AC[a,b] and fn(yr,"n) exists

< Gerla)m ( f 17, p’[ailbl])
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[,

I

|t

. <G, " " f "Lp(alxbl) “

Lp[az,

where G;’s are certain constants independent of fand 7.
The present chapter deals with inverse and saturation results for these opera-
tors using linear approximating methods.

Operators (1) can be written as,

(B(n) f )(x) = [7 Ry (1) f (t)dt ?)
where the kernel, P

(n) (X’t) = @ iio b(n,i) (X) P(nii) (t)

2. Some Auxiliary Results

Here, we will present some definitions, results and lemmas which we will be
needing in our main theorems.

Definition 2.1.

Jensen’s Inequality. It generalizes the statement that the secant line of a con-
vex function lies above the graph of the function. The secant line consists of

weighted means of the convex function (for te [0,1] ).
f it +(1-1)%, ) <tf (x)+(1-t) f(x,)

Definition 2.2.

Fubini’s Theorem. It gives conditions under which it is possible to compute a
double integral by usng iterated integral. Order of integration may be switched if
the double integral yields a finite answer when the integrand is replaced by its
absolute value.

Lemma 2.3. [3] There exists polynomials St.in) (x) independent of i and
n such that,

i-r

X
(1+x

dr

dx’ [ﬁ} = Zappear (1=10)" 55 ()

1.k>0

)n+|+r
Also,

(x +x) %(bw) () = Xayoeer (n+2)* (i=(n+2)x)" 85, ) (¥) By (X)

1.k=0

Lemma 2.4. For me Ny,neN,xe [0,00) , the mth order central moment is
defined by,

o (9= 80 (=" ) =TS b 0] B (O1-x)" d

then,

1) Foreach x [0,%), we have, T, . (x)=0 (n{(m+1)/z])
2) Ty =1

DOI: 10.4236/jamp.2019.710170 2510 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2019.710170

A. Srivastava, V. K. Singh

3) Ty =(3x+1)/(n-2)

2{nx(1+ X)+7x% +5x+1}
D Tog = n®-5n
-5n+6
2
5) For n sufficiently large and ¢ > 2, B (|t X| ) [ (n, 2)}]/2 < o :CX

We have the following recurrence relation,

(=M =2)T, ) (%)= (3 + )T () +2m (X2 +X)T,, 0y (%)

8
+[2x+m+L4x(2m+1) T (x) ®

Proof. (X*+x)by,; (x)=(i—nx=x)b,, (x)

(t2 +t) Pl (1) = (i=nt) p,; (t)

_[ Plni) "dt— m(x + X)T(n,m—l) (x)
This implies,
(x2 + x)T((nl_)m) (x)+ m(x2 + x)T(n’mfl) (x)

:MZT(}(' = X)by, o (X) [ Py (8) (E=%)" dlt

n

—Mz;b@,i)(x)m(i—nt>+<nt—nx>—x} CICE

n

n; 1)Z?iob<n,i)(X)If (£ ) Pl (D) (t=%)" At 40T (X)=XT 0 (%)
_(-Y iiob(n,i)(x)ro[(t—x)+2x(t—x)+(t—x)2

n

(0 ) | Py (D(E=3)" dt0T o () =XT ) (%)
== (M +2)(2x+1) Ty (¥) = (M +2) Ty ) (X)

- m(x2 + x)T(n'm_l) (X)+ T gy (X) = Xy (%)
Hence the result (8).

Lemma 2.5. For sufficiently large 1 and certain polynomials Q(p,k,x) in x
of degree p/2 there holds,

1

By ((t-%)" k. x) =—riQ(pkx)+O()

forevery peN.
Proof. From the above lemma 2.4 we have,

B, ((t-x)",x)= i"f%(X){ﬁ}

n 2
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Here, F; ’s are certain polynomials in x of degree at most 4.
Now using lemma 2.4 we will have the required result.
Lemma 2.6. [4] [5] Let for q(t)e L [0,0) and ne N, we have,

(-

n 0

—nt)"

By () Ry (6

nm

1
q(t)dt <K nm/2 ||q(t)||L1[0,oo) ©)

Ll[O,oo)

where, ¢(t) has a compact support and K is some constant independent of n
and gq.
Lemma 2.7. [4] [5] Let for q(w)eL,[0,0),p>1 and jeNU{0}, m>0,

we have

(nl

[, Zobw) n,i)(t)(i_r:X) [ (t-w)’ g(w)dwdt

1 1
<H {Wumw |

Here, His some constant independent of nand q.
Lemma 2.8. [2] [4] Let qeL,[0,:0),p>1 and supphc(a,,b,], then,

‘ g(2«+2) (q,.)

(n)
Here, /is some constant independent of nand q.
Lemma 2.9. [1] [2] [4] Let ¢®¥ cAC(a,b,) and q**? eL,(a,b,),
then,

Here, /is some constant independent of nand q.
Lemma 2.10. [1] [2] [4] [5] Let f eC**2 (al,bl) have a compact support,
there holds for n —

k+l

'-p(az‘bz) q"L (22.b2) (11)

< Jnk+l (2k+2)

B(2+2) (q, ) L (o)

(n)

q (12)

Lp(az.b2)

1

By (k)= f(x) == (X R (k) F0 () +0@)  (13)

n

uniformly in X € (a,,b, ), where B (k,x) isa polynomial in x of degree jand
does not vanish for all i=1,2,3,- (k +1).
3. Inverse Theorem

Theorem 3.1. Let 0<a <2(k+1), fel,[0,0),p>1,and
1
HB(n)(f,k,x)— PO :O(Wj

then, a)z(kﬂ)(f,z', p,[az,bz]):O(r“) for n— 0,7 >0

Proof. Let th=1f forall <7 and
a <X <X, <X <@, <b, <y, <y, <y <b, where, supphc[x,,y,] for any
function g eC2*" and h(t)=1 on ESA
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AZVT (x) = A2 (T (1) =By, (Tok x))+ a2 (B, Tk, x))
Now solving 2™ term using Jensen’s inequality and Fubini’s theorem we have
<[ A2 (T (1)~ By (kX))

B(Zn()kJrl) ( f_, k, X)

A2(k+1) f_(X)Lp o]

¥

Lp[*2.¥2]
2(k+1)

T

Lp[ %2, y2+27(k+1)]

< Ai(kﬁ) ( f_(t)_ B(n) ( f_’ K, X)) Lolx2,y2]
K (k+)) (¥ _ F
+72( 1) B(Zn) 1) (f - f,,,g(k+1)’k’ X) Lp[%2.y2+27(k+1)]

+

2(k+1) (
B(n) (fn,Z(k+l)’k’X)

Lp[ X2, Y2 +27(k+1)]
Applying (6), (11), (12) we have

Az(k+1)f_(x)

4

Lp[x2.¥2]

< A2V (T (1) -8y, (Tkx))

Lp[x2.y2]

+ +: 1 f
+Ly l)(”(k ! +WJw2<k+l>(f"7* [, v2])

For proving our theorem, we will be using mathematical induction:
Step 1: For a <1

Now we will prove for n — o,

AXEY (T (1)-B,, (Tkx))

of 1)
Lp[x2.y2] n

a)Z(k+1)(f_'T' p,[Xz,yz])=O,r—>o
f(t)=f(t) for te[x; Ys]

y

therefore,

B (F.kx)-F

Lp[x2.¥2]
B, (N(X)(f(t)-f(x)).k.x)
B, (F()(h(t)=h(x)).k,x

1 1
Lplxz v2] (n 2) (n“/zj

Lp[x2.¥2]

S~—

d

B, (T.kx)-f

Step 2: For (m-1)<a <m
Let [c,d]<(a,h)

a)z(m)(f,r, p,[c,d])=O(r(m_l)+ﬂ),r—>0,0<ﬂ<l

Here, we have, ¢(t) asa characteristic function of [, Y]
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Due to smoothness of fwe have,

‘Bn (f_,k,x)— o]
<Xl 0B (5 (- h ]
= (n)[co(t)[h(t) <){J 2 VV:)( f1><w>_f<~>(x))dw}k,xD
Lp[x2.¥2]
* B(n{[f(x)—i (-9 (1)) (h(t)-h(x )),k,xJ
Lp[x2.y2]

=H;+H,+H,

where, for te[0,00) and Xxe[X,,Y,]

Using lemma 2.4, we have for n — o

I ¥2
X2

r|

p
r— r— p
<R[ [ Vo (. )WW(W)\“ Y (w)= £ (x)] dweltax

(1+1) 2p (r+4)p
. X+ t—X
<RYL [ {Lﬁ Viny (xt) T w0
n

[t=x
(1+1)
XJ-XH N QD(W)‘ f (r-1) (W)— f(r—l) (X)‘p dwdt
X,L 2p t r+4
A |4p%
<[ o(w)| U (w)— £ (x) det}dx
Jn
2 _ Wl L
+I I - [({jj |t|t X)|(|f (EFJJ ‘ Y (w)— £ (t)‘pdwdtdx
[ n
—rp+1)/. +)
{zlr 1n P+l 2 (141 (a)(f(rfl),w, p'[xi,yl]))pdw

PN

Using lemma 2.4 and interchanging integration we have

< R{Z: 1n( Tl /ZJ' l}l)(o(a)” ))p dw+ n('”’”)/zjo%(o(wﬂ ))p dw}
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We have for n— o

Combining all the results

1 1
H,H,H; = O(ﬂ(k-ﬂ) ]O(n(mﬂ)/Z ]

Thus we have the theorem.

4., Saturation Result

Theorem 4.1. For fel, [O,oo), 1< p<ow and ‘

B, (f.k,x)—f ,
RISLL R WA
then, f coincides almost everywhere with a function F on [a,,b,] having

2(k +1) th derivative such that,

2 F®% e AC(a,,b,),vp>1
b) FA e L (a,,b,),vp >1
o F®Y el (a,b,),vp=1
8 F® e AC(a,,b,),vp=1

for a, <X <X,<a,<b, <y, <y <b

Proof. Let qeC2*" suppqc(a,b,) such that =1 on [%.,y,] and

fg=f,thenfor 0<a<2(k+1), wehave,

1
= O _
Lp(x:%1) (n“/zj

Dy (141 ( f.z,p,[%, yz]) = O(r“)

By (F1k %)= T (x)

Now,
f.k,x)-f
‘ B(n)( X) (X) Lolxz.v2]
<[B) (f.kx)= 1 () o +[Boy (F-F.kx) o
Here, ‘ B ( -1k, X) is arbitrarily small, so we have,

Lolxz v2]

Case 1l: for p>1

Consider a sequence {nj} and a function h(x)el,, ., such that for

every geC2*" and suppg < (a,b), we have from Alaoglu’s theorem,

By (F.k %)= F(x)

=0 (%] , N—> o
Lolxz.v2] n+)

lim, ., n?”<B(n)(f_,k,x)—f_,g>:(h,g> (14)

DOI: 10.4236/jamp.2019.710170 2515 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2019.710170

A. Srivastava, V. K. Singh

5.

By lemma 2.10, we have
lim, ., n'j‘+1<B(n)(f_, k,x)-F, g>

=lim, .. n“l(lim_ né+t B(n)(g,k,x)—g,f_>)

j njoo <
ke o = (15)
(R 00 5 o)

2(k+1) y* o =
=<9,Zi1 R (ki’x)T f>
Comparing (14) and (15) we have

k+: 8 s
h=Y" ”PU)(k,x)ﬁf

i=1

Here, f®" eAC(%,Y,)

So, F*™ e AC(a,,b,)
Similarly, e AC(%,,Y,)
So, F* e AC(a,,b,)

We have (i) and (ii)
Case 2: for p=1
Proceeding in the similar manner as above, we get (iii) and (iv).

Hence the theorem.

Conclusion

We have improved order of approximation by taking suitable linear combina-

tions. Inverse and saturation results have been developed for our hybrid opera-

tors.
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