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Abstract 
Feature selection is very important to obtain meaningful and interpretive 
clustering results from a clustering analysis. In the application of soil data 
clustering, there is a lack of good understanding of the response of clustering 
performance to different features subsets. In the present paper, we analyzed 
the performance differences between k-means, fuzzy c-means, and spectral 
clustering algorithms in the conditions of different feature subsets of soil data 
sets. The experimental results demonstrated that the performances of spectral 
clustering algorithm were generally better than those of k-means and fuzzy 
c-means with different features subsets. The feature subsets containing envi-
ronmental attributes helped to improve clustering performances better than 
those having spatial attributes and produced more accurate and meaningful 
clustering results. Our results demonstrated that combination of spectral clus-
tering algorithm with the feature subsets containing environmental attributes 
rather than spatial attributes may be a better choice in applications of soil da-
ta clustering.  
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1. Introduction 

Clustering generally divides a dataset (in which each data object has certain 
attributes) into k sub-clusters such that similar objects are within the same 
sub-cluster and dissimilar objects are in different sub-clusters [1]. Clustering 
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analysis often uses an unsupervised technique to extract interesting and useful 
information from large datasets without prior knowledge. To obtain good clus-
tering results, we normally require relevant features to be included in the train-
ing data and an appropriate clustering method. 

In real conditions, the observation objects generally have multiple features 
collected in different ways. The selection of useful, relevant features and removal 
of redundant features are important preprocessing steps in clustering analysis. 
Generally, ideal features should be useful in distinguishing patterns belonging to 
different clusters, immune to noise, easy to extract and interpret, decrease the 
workload, and simplify the subsequent design process [2]. The selection of ap-
propriate features ensures meaningful and interpretive results. Although a number 
of methods for selecting appropriate feature subsets have been developed and 
reviewed [3], there is still an absent understanding of the influence of different 
feature subsets on the clustering performance in the real applications of soil data 
clustering to our knowledge.  

On the other hand, no single clustering method presents a panacea that can be 
applied in all clustering conditions. Thus, different clustering methods have been 
developed to solve specific clustering problems [1] [4]. In the fields of agricul-
ture and soil, clustering analysis has been applied to recognize soil patterns [5] 
[6] [7], manage soil nutrients [8] [9], design good soil sampling strategies [10] 
[11], and identify soil microbial communities [12] [13] [14], etc. However, few 
studies have compared the performance differences of clustering methods on 
soil data.  

Inspired by the above-mentioned, we choose three classical clustering algo-
rithms of k-means, fuzzy c-means, and spectral clustering, which are widely used 
and representative of the current state-of-the-art. To our best knowledge, we 
first evaluate the influence of different feature sets on the performances of the 
three clustering methods on soil data. Our research will provide a good reference 
for selecting a good combination of clustering algorithm and feature subsets in 
applications of soil data clustering.  

2. Materials and Methods 
2.1. Clustering Methods 

K-means clustering is a very simple and widely applied clustering method. Given 
the observation data set { }1 2, , , nO x x x=  , where each observation is a d-di- 
mensional vector, k-means clustering partitions the n observations into k (≤ n) 
sub-sets. To achieve the optimal clustering result, k-means clustering minimizes 
the within-cluster sum of squares (WCSS) [1] [4]. The clustering process has two 
steps: 1) first, randomly selects k observations as their initial mean or centers of 
sub-clusters. Each remaining data object will be assigned to the nearest sub- 
cluster based on the distance to each of the cluster centers, and the centers of the 
sub-clusters is then recalculated; 2) repeat (1) until WCSS is minimized. 

The allocation of observations to clusters can be difficult when each data ob-
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ject must be placed into a cluster, but this can be simplified by considering a 
fuzzy property between observations. To represent the fuzzy boundaries between 
observations, fuzzy c-means clustering allows each observation to belong to more 
than one sub-cluster, and then associates the sub-clusters with a set of member-
ship levels. Fuzzy c-means clustering first assigns the membership levels between 
observations and sub-clusters, and then uses these to allocate observations to 
one or more clusters. Fuzzy c-means clustering minimizes the following objec-
tive function of WCSS [15]: 

( )2

1 1
WCSS arg min

n k

ij i j
i j

u x C
= =

= −∑∑                   (1) 

where uij is the degree of membership of xi in cluster Cj, and Ci is the center of 
the cluster. In fuzzy clustering, the WCSS in (1) is iteratively optimized, and the 
membership uij and cluster center Ci are updated according to: 
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Spectral clustering was developed to handle data with any shape and ensure 
convergence to the global optimum. This method constructs an affinity graph 
which is partitioned according to the corresponding Laplace eigen-spectrum 
[16]. First, a graph is formed based on the similarity between observations. Each 
graph node corresponds to one observation, nodes are connected with edges, 
and the edge weights denote the degree of similarity between observations [17] 
[18]. The graph is further characterized by the adjacency matrix W.  

Let the diagonal matrix ijD W= ∑  where Wij is a diagonal element, and de-
fine the Laplacian matrix L = D − W. The top-k eigenvalues and corresponding 
eigenvector of L are calculated, and these k eigenvectors are arranged to form an 
n × k matrix, where each row can be taken as a k-dimensional vector. Finally, the 
k-means algorithm is applied to this n × k matrix, and the output is the spectral 
clustering result. 

2.2. Selection of Feature Subsets 

Soil samples normally contain three types of soil attributes: geographical coor-
dinates, environmental factors, and soil conditions determined by physical or 
chemical analysis. Soil attributes differ in their precise physical meaning. Spatial 
attributes imply spatial structure information, which is normally used to charac-
terize the spatial variability of certain soil conditions, and their environmental 
attributes reflect the factors influencing the soil conditions. To a certain extent, 
the more similar the environmental conditions between soil samples, the more 
similar the soil conditions [19]. In agricultural activities, soil conditions are gen-
erally more interesting and practical than spatial and environmental attributes. 
A good understanding of how the clustering performance will respond to soil 
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feature subsets is both interesting and of practical importance when analyzing 
soil data.  

We set six possible subsets of soil features: 1) spatial attributes (SA); 2) envi-
ronmental variables (EV); 3) spatial attributes and environmental variables (SA + 
EV); 4) spatial attributes and soil condition variables (SA + SCV); 5) environmen-
tal and soil condition variables (EV + SCV); and 6) the whole set of attributes 
(WA). 

The environmental variables influencing the soil conditions of interest are the 
features contained in EV, SA + EV, EV + SCV, and WA. Note that not all envi-
ronmental variables affect a certain soil condition. Hence, redundant environ-
mental variables that are not related to the soil conditions of interest should be 
removed.  

2.3. Data Acquisition and Preprocessing 

Two real soil datasets both contain 520 soil samples collected in Pangtang Town, 
Taoyuan County, Hunan Province. These are used to verify the effect of different 
feature sets on clustering performance. Each soil sample in the two datasets con-
tains five attribute fields: spatial position (x, y coordinates), terrain factors (ele-
vation, slope), and a soil condition (SOC or soil pH). Before applying the clus-
tering models, the values of all soil attributes were normalized according to: 

( )
( ) ( )

min

max min

j j
i ij

i j j
i i

A A
NA

A A

−
=

−
                   (4) 

where j
iA , ( )min j

iA , and ( )max j
iA  denote the value of soil attribute j for 

soil sample i, the minimum value of soil attribute j, and the maximum value of 
soil attribute j, respectively. 

The spatial distribution of the soil samples and environmental variables (ele-
vation and slope) are shown in Figure 1. In the soil datasets, SOC is highly cor-
related with elevation and slope [20], but this is not the case for pH. Moreover, 
there is a significant difference between the SOC values in the top (elevation >  
 

 
Figure 1. Spatial distribution of soil sites and topographical factors in the study area of 
Pantang Town, Hunan Province. 
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95 m) and bottom (elevation < 95 m) regions. Therefore, the dataset including 
SOC field can simply be divided into two sub-clusters according to the elevation 
threshold of 95 m. The spatial distribution of sub-clusters C1 and C2 is shown in 
Figure 2(a). The box-plot clearly indicates a significant difference of SOC con-
tents between C1 and C2 (Figure 2(b)). 

2.4. Validation 

The k-means clustering, fuzzy c-means clustering and spectral clustering algo-
rithms were applied to the experimental datasets. Good clustering results should 
exhibit a significant difference between the soil conditions of interest in different 
sub-clusters. In this study, we use two indicators to evaluate the clustering per-
formance: the clustering dissimilarity index (DI), and the root mean square of 
clustering dissimilarity index (RSDI).  

( )
2

1
k

i ji jDI C C
k k ≠

= −
∗ − ∑                   (5) 

( ) ( )21
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where ˆ
iC  and ˆ

jC  are the average values of a certain soil condition in sub-clus- 

ters iC  and jC , respectively, k is the total number of clusters, ( )iC x  is the soil 

condition value of sample x in sub-cluster iC , and n is the total number of soil 
samples.  

DI and RSDI can reflect the difference of a certain soil condition between the 
various sub-clusters. The bigger these two index values are, the greater the dif-
ferences of the soil condition between the sub-clusters. This indicates a better 
clustering result. For example, DI and RSDI were maximized when the dataset 
was partitioned into two sub-clusters by selecting an elevation threshold of 95 m 
in the case of the dataset of SOC (Figure 3). 
 

 
Figure 2. Distribution and statistical information of two sub-clusters of soil data. (a) spa-
tial distribution of two sub-clusters in the soil dataset; (b) box-plot of SOC for the two 
sub-clusters. 
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Figure 3. Change in clustering dissimilarity index (DI and RSDI) with selected elevation 
values for grouping the soil dataset of SOC. 

2.5. Programming Implementation 

The k-means, fuzzy c-means, and spectral clustering algorithms were implemented 
in Matlab2010 on a Windows Xp operating system. The digital maps of soil sam-
ples and topography factors were produced using ArcGis9.0. 

3. Results and Discussion 
3.1. Clustering Performance under Different Soil Feature Subsets 

We tested the influence of different soil feature sets (SA, EV, SA + SCV, SA + 
EV, EV + SCV, and WA) on the clustering performance of the three clustering 
algorithms. For each soil feature set, the three clustering algorithms were ex-
ecuted so as to form sub-clusters with respect to SOC. The spatial distribution of 
the soil samples in the resulting clusters clearly reflects the response of the clus-
tering performance to the selection of different soil features.  

Compared with the control (Figure 2(a)), the distributions of the clustered 
samples given by the three algorithms under the six feature subsets have signifi-
cant differences. Under EV (Figure 4(d), Figure 4(j) and Figure 4(p)), EV + 
SCV (Figure 4(e), Figure 4(k) and Figure 4(q)) and WA (Figure 4(f), Figure 
4(l) and Figure 4(r)), the clustered samples produced by all three clustering 
methods generally match the control. Under the SA + EV treatment, spectral 
clustering produces the clustering result that best matches the control (Figure 
4(o)), followed by fuzzy c-means (Figure 4(i)), with k-means the worst perfor-
mer (Figure 4(c)). Compared with the results for the above-mentioned feature 
subsets, SA and SA + SCV both resulted in worse clustering. Under SA and SA + 
SCV, all three clustering methods generated two sub-clusters that were scattered 
to the north or south and significantly deviated from the control.  

DI and RSDI were further used to quantitatively evaluate the influence of 
different soil feature sets on clustering performance. These indexes were used 
to measure the deviation in SOC between the two sub-clusters. Generally speak-
ing, DI and RSDI are higher under EV, EV + SCV, and WA than SA + EV, with 
the smallest index values occurring under SA and SA + SCV (Figure 5). This  
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Figure 4. Distribution of clusters generated by k-means (top), fuzzy c-means (middle), 
and spectral clustering (bottom) under six different feature subsets on the SOC dataset 
(from left to right: SA, SA + SCV, SA + EV, EV, EV + SCV, and WA). SA: spatial 
attributes; SA + SCV: spatial attributes and soil condition variables; SA + EV: spatial 
attributes and environmental variables; EV: environmental variables; EV + SCV: envi-
ronmental and soil condition variables; and WA: the whole set of attributes. 
 

 
Figure 5. Comparison of DI and RSDI based on SOC for the three clustering algorithms 
under different feature subsets of soil attributes. KM: k-means; FCM: fuzzy c-means clus-
tering; SC: spectral clustering. 
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demonstrates that EV, EV + SCV, and WA produced a better clustering than SA 
+ EV, with SA and SA + SCV producing the worst results. Additionally, the 
clustering performance of each clustering method can differ under the same 
feature set. Overall, spectral clustering generated relatively higher values of DI 
and RSDI than k-means and fuzzy c-means for EV, EV + SCV, SA + EV, and 
WA, but not for SA and SA + SCV. This indicates that spectral clustering is 
more robust to changes in the feature sets than k-means and fuzzy c-means.  

3.2. Influence of Correlation between Environmental Variables  
and Soil Conditions on Clustering Performance 

We also tested whether the pH values in each sub-cluster were significantly dif-
ferent. DI and RSDI were again used to evaluate the deviation in pH values be-
tween the two sub-clusters under different soil feature subsets. Generally speak-
ing, the values of DI or RSDI are very similar for all six soil feature sets (Figure 
6). Additionally, the clustering performance of the three clustering methods did 
not vary for the same feature set. This demonstrates that the resulted sub-clusters 
have no significant differences in pH under the six soil feature subsets considered 
here.  

Regarding the topographical factors(elevation and slope) correlating well with 
SOC but not with pH, whether the feature subsets containing environmental 
factors help to improve clustering performance or not depends on the correla-
tion of environmental attributes with one or more soil conditions. In other words, 
 

 
Figure 6. Comparison of DI and RSDI based on pH for the three clustering algorithms 
under different feature subsets of soil attributes. KM: k-means; FCM: fuzzy c-means clus-
tering; SC: spectral clustering. 
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feature subsets containing environmental variables help to improve clustering 
performance only if there is a significant relation between environmental va-
riables and the soil conditions of interest. This assertion is supported by the fact 
that DI and RSDI (based on pH) exhibited no significant difference under six 
feature sub sets, whereas these indexes varied considerably with respect to SOC. 
Additionally, in the case of SOC, the bad clustering results under SA, SA + SCV, 
and SA + EV further suggest that spatial attributes make bad contributions in 
clustering models. 

In many practical applications, environmental data collected by remote sens-
ing techniques is rich and easily accessible, while relatively small amounts of 
soil condition data can be obtained at larger cost in terms of human resources 
and time. Thus, using environmental attributes that correlate well with soil con-
ditions, rather than spatial attributes, will enable better recognition of soil pat-
terns and allow information on soil conditions to be applied in the analysis of 
soil data. 

4. Conclusion 

The present study examined the effect of different soil feature subsets on the clus-
tering performance. It was found that the feature subsets containing environ-
mental variables generally helped to improve clustering performances of k-means, 
fuzzy c-means, and spectral clustering methods better than those having spatial 
attributes. Additionally, spectral clustering was clearly more robust to changes of 
feature sunsets than k-means and fuzzy c-means clustering methods in our study 
case. Thus, the combination of spectral clustering method with the feature sub-
sets containing environmental variables can produce useful soil patterns when 
applied to soil survey data, especially those with an irregular shape. In future, 
diverse soil datasets will be used to further validate our results at a bigger spatial 
scale. 
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