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Abstract 
Accurately simulating large-scale user behavior is important to improve the 
similarity between the cyber range and the real network environment. The 
Linux Container provides a method to simulate the behavior of large-scale 
users under the constraints of limited physical resources. In a container-based 
virtualization environment, container networking is an important compo-
nent. To evaluate the impact of different networking methods between the 
containers on the simulation performance, the typical container networking 
methods such as none, bridge, macvlan were analyzed, and the performance 
of different networking methods was evaluated according to the throughput 
and latency metrics. The experiments show that under the same physical re-
source constraints, the macvlan networking method has the best network 
performance, while the bridge method has the worst performance. This result 
provides a reference for selecting the appropriate networking method in the 
user behavior simulation process. 
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1. Introduction 

In recent years, with the continuous development of network attack and defense 
confrontation technology, the network security situation has become more and 
more severe, and higher requirements have been put forward for the evaluation 
of the security performance of network information systems and the training of 
high-level network security protection personnel. The cyber range is an impor-
tant infrastructure for network attack and defense drills and new network tech-
nology evaluation. It can be used to verify the security performance of network 
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information systems, and provide a support platform for network attack and de-
fense drills. At present, many countries in the world attach great importance to 
the construction of cyber range, and use it as an important means to support 
cyberspace security technology verification, network weapon testing, attack and 
defense confrontation drills and network risk assessment [1].  

During the process of building the cyber range, in order to enhance the fideli-
ty of the cyber range environment, it is necessary to simulate and generate 
large-scale user behaviors that are consistent with the real network environment. 
To this end, it is necessary to establish a behavior model of a typical user and 
generate multiple virtualized instances in the cyber range network through vir-
tualization technology. Here, each virtualized instance is essentially a virtual 
machine in which a test program is deployed to perform operations in accor-
dance with a specific user behavior model, including interacting with real busi-
ness systems in the network, and communicating between different virtual ma-
chines etc., so as to generate high-fidelity user behavior traffic on demand in the 
cyber range environment. 

In order to support large-scale user behavior simulation, two key issues need to 
be solved: 1) how to build a lightweight virtualization instance to support the gen-
eration of a larger number of virtualization instances under the same physical re-
source constraints, so as to eliminating the bottleneck of large scale user behavior 
simulation; 2) how to improve the networking performance between virtualiza-
tion instances and eliminate the communication bottlenecks for large-scale user 
behavior simulation. 

In recent years, the development of container technology has provided sup-
port for solving the above problems. Typical container technologies include LXC 
[2], Docker [3], etc. Compared with the traditional virtualization technologies 
such as virtual machines, containers are isolated by namespaces, and different 
containers share the same physical operating system kernel, which makes it 
more lightweight. 

Although more and more researchers use the lightweight virtualization tech-
nology such as Linux Container to solve the practical problems of high cost, low 
efficiency and inflexibility of the current user behavior simulation technology 
[4], the network performance difference caused by different network modes be-
tween containers is also obvious. In order to verify the impact of different net-
working modes on network performance, and to establish an efficient container 
networking model for user behavior simulation, this paper analyzes the three 
most common network modes of LXC: none mode, bridge mode and macvlan 
mode. Throughput and network latency are used as indicators to verify the dif-
ferences in performance between the three, and to provide technical support for 
building a container networking model for large-scale user behavior simulation. 

2. Typical Networking Mode Analysis 

LXC is a container-based operating system level virtualization technology, which 
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uses virtualization technology to form a lightweight independent space, and lays 
a foundation for implementing multiple virtualized network functions [5]. This 
technology is based on two kernel features: namespaces and Cgroups. The na-
mespace is used to control the isolation of resources between different processes. 
Each group of resources has a namespace type associated with it. For example, 
each network namespace has its own independent network stack, and processes 
in the namespace can only see the network stack, and cannot access network de-
vices in other namespaces. Cgroups, on the other hand, is another mechanism of 
the kernel that consolidates (or separates) a series of system tasks and their sub-
tasks into different groups that are ranked by resources according to require-
ments, thus providing a unified framework for system resource management. In 
general, namespaces restrict the resources that a process can see, while Cgroups 
restrict the resources that a process can use. With these features, the entire sys-
tem can be hidden in a set of processes. These processes are then run in a con-
tainer. 

Related studies show that under the same number of virtual nodes, compared 
with traditional virtual machines, container technology can save a lot of CPU 
and storage resources [6]. Therefore, using LXC for user behavior simulation 
can effectively meet the constraints of lightweight virtualization instances. On 
this basis, how to establish an efficient networking mode between different Li-
nux Containers become a key issue. 

For the Linux Container, its network mode mainly includes: none mode, 
bright mode, macvlan mode, phys mode, etc. [7]. 

None mode: none mode is the easiest way to deploy. The container does not 
have its own independent network stack, but shares the network stack of the 
physical host. There is no network isolation between the host and the container. 

Bridge mode: bridge mode is the default network mode when creating LXC. 
As shown in Figure 1, it mainly creates a virtual bridge lxcbr0 on the host. 
When a new container is created and connected to the network, a new pair of 
virtual veth interfaces are created. One segment is connected to lxcbr0 and the 
other end is connected to the container, as shown in Figure 1. The container is 
assigned a private IP address and communicates with the outside world through 
an address translation protocol. 

Macvlan mode: As shown in Figure 2, the macvlan mode creates multiple 
virtual sub-interfaces on the physical interface. Each sub-interface is assigned a 
random MAC address and an IP address in the subnet of the physical interface.  
 

 
Figure 1. Bridge mode. 
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Figure 2. Macvlan mode. 

 
The container can use such an IP address to communicate with the outside 
world. Although macvlan supports four different modes, here we only consider 
the bridge-based macvlan mode.  

Phys mode: If the host has multiple physical NICs, we can leave one for the 
host and the rest for each container. The number of containers that this model 
can support is limited by the number of physical NICs, so it only makes sense 
when there is a small amount of container networking requirements, and it is 
difficult to apply to large-scale container networking environments. 

3. Related Work 

Claassen et al. compared the network performance of the Docker container’s 
bridge mode, macvlan mode, and ipvlan mode [8]. They deploy 1 to 128 con-
tainer pairs on a single physical host and send continuous TCP traffic between 
different container pairs. The throughput test results for TCP show that for all 
containers on a host, the throughput rate of macvlan mode and ipvlan mode is 
equivalent, which is about 2.5 to 3 times higher than that of bridge mode. 

Morabito et al. [9] used Netperf to test the throughput and latency of Docker 
containers and LXC in bridge mode. The results show that Docker and LXC can 
saturate 10Gbps links under TCP traffic, but the throughput of both uses UDP. 
The rates dropped by 42.97% and 42.14% respectively. The TCP latencies of 
Docker and LXC increased by 19.36% and 17.35%, respectively. The latency of 
UDP increased by 12.13% and 10.82%. The results show that LXC is slightly bet-
ter than Docker. 

Kozhirbayev et al. [10] also performed similar tests using Netperf. Compared 
to physical hosts, Docker’s UDP throughput was reduced by approximately 
7.5%, while TCP throughput was reduced by approximately 10.0%. The LXC test 
results show that the UDP throughput rate is reduced by 24.9% compared to the 
physical host, and the TCP throughput rate is reduced by 25.8% compared to the 
physical host. However, when testing with the iperf tool, different experimental 
results appeared. Docker’s TCP throughput was reduced by 43.9%, and LXC’s 
throughput was down by 18.4%. The authors suspect that the size of the TCP 
buffer may be the cause of the difference between the two tools. 

Based on the above analysis, it can be found that although the networking 
technology between containers is currently a research hotspot, the research on 
the network performance analysis of LXC under different network modes is not 
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comprehensive, which makes it difficult to evaluate the performance differences 
of different networking models. In this regard, this paper analyzes the perfor-
mance difference of LXC in different networking modes from the perspective of 
latency and throughput, and then provides support for selecting efficient con-
tainer networking mechanisms. 

4. Experimental Setup 
4.1. Experimental Environment 

As shown in Figure 3, we use one host as the server and one host as the client, 
and each host has 10 LXCs deployed. The configuration is shown in Table 1.  

We tested the inter-container communication between containers in the same 
physical host, in different physical hosts using different networking modes and 
different packet sizes (28 bytes, 1024 bytes). The test time was set to be 180 
seconds, and the network latency and throughput rate were evaluated. The final 
results are averaged by 10 individual tests. 

The test tool we used is the sockperf 3.5, which is a socket API-based network 
benchmarking utility evaluation tool, and can be used to evaluate the network 
system performance (such as throughput and latency) [11]. 

4.2. Results Description 

Throughput 
The throughput of the average packet per second (pps) is firstly determined 

by sending UDP traffic. The reason for not using TCP traffic during the experi-
ment is that the TCP buffer may have an impact on the experimental results. To 
avoid this effect, we use UDP traffic for testing. 
 

 
Figure 3. Experimental deployment. 

 
Table 1. Hardware configuration. 

 Server Client 

Host system Ubuntu 16.04 

CPU 
Inter (R) Core (TM) i5-3470 

(3.2 GHz 4 Cores) 
Inter (R) Core (TM) i7-6700 

(2.6 GHz 8 Cores) 

Memory 4 GB 16 GB 
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Scenario 1: container networking mode performance comparison on the same 
host 

First, deploying two containers in the same host as the server and client re-
spectively, so as to test the throughput of the single container pairs; then dep-
loying 20 containers (10 servers and 10 clients), so as to evaluate the communi-
cation throughput of multiple container pairs. 

As shown in Figure 4, the pps of the physical host is firstly tested and ana-
lyzed. The experimental results show that when the packet size is 1024 bytes, the 
pps of the host itself can reach 87,263, and when the packet is 28 bytes, it can 
reach 89,533. Although the packet size is reduced by about 40 times, the pps is 
not significantly increased, mainly because the CPU becomes a bottleneck in 
packet processing. 

Then we give an analysis on the performance of the container networking 
mode. In the case of large packet transmission (here the packet size is 1024 
bytes), the pps of the none mode, bridge mode, and macvlan mode are 78,308, 
64,698, and 96,692 respectively for a single container pair; and the pps of the 
none mode, bridge mode, and macvlan mode are 37,375, 31,186, and 42,462 re-
spectively for 10 container pairs.  

In the case of using small packet transmission of 28 bytes, as shown in Figure 
5, for a single container pair: pps of the none mode, bridge mode, and macvlan 
mode are 79,355, 66,310 and 99,204 respectively. For 10 container pairs, the pps 
of the none mode, bridge mode, and macvlan mode are 38,446, 31,361, and 
44,924 respectively. 
 

 
Figure 4. Packets per second for large packet transmission between different 
containers in the same physical host. 

 

 
Figure 5. Packets per second for small packet transmission between different 
containers in the same physical host. 
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It can be seen from the above experimental results that as the number of con-
tainers increases, the throughput of per container is significantly reduced. The 
main reason is that the parallel processing of the traffic increases the CPU over-
head. At the same time, whether it is a single container pair or multiple contain-
er pairs, the macvlan mode has the highest throughput, while the bridge mode 
has the lowest. The performance difference between the two is about 26% to 
33%. 

Scenario 2: networking mode performance comparison between containers in 
different physical hosts. 

Firstly, deploying a container on each of the two physical hosts to form a con-
tainer pair across the host, and evaluating the network throughput between 
them; and then deploying 10 containers on each of the two physical hosts to 
evaluate the network throughput between multiple containers. 

The experimental results show that, without using the container, the experi-
ment is directly performed on the server and the client hosts. When the packet is 
1024 bytes, the pps is 3801, and when the packet is 28 bytes, the pps is 8244. 

When using a large packet of 1024 bytes for cross-host transmission, as shown 
in Figure 6, for a single container pair: the pps of the none mode, bridge mode, 
and macvlan mode are 3821, 3741 and 3960 respectively; and for 10 container 
pairs, the pps of the none mode, bridge mode, and macvlan mode are 3823, 3052 
and 3819 respectively.  

When using a small packet of 28 bytes for the cross-host transmission, as 
shown in Figure 7, for a single container pair, the pps of the none mode, bridge 
mode, and macvlan mode are 8624, 7064 and 8248 respectively; and for 10 con-
tainer pairs, the pps of the none mode, bridge mode, and macvlan mode are 
8654, 5717 and 8515 respectively. 

In the cross-host packet transmission, when the number of parallel packets 
increases, the default bridge mode requires considerable overhead due to the 
need to forward through the NAT protocol and lxcbr0, especially in the small 
packet scenario of 28 bytes. The performance of the none mode and macvlan 
mode is almost the same, which is much better than the bridge mode. 
 

 
Figure 6. Packets per second for large packet transmission between different 
physical hosts. 
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Figure 7. Packets per second for small packet transmission between different 
physical hosts. 

 
Latency 
Here, we mainly test the average end-to-end latency of the packets transmis-

sion. 
Scenario 1: Comparison of the container networking mode in the same host 
The experimental method is similar to the method of Scenario 1 of the 

throughput. Firstly, the latency of the host itself is evaluated. The result shows 
that when using the large packet size, the latency can reach 5.690 ms, and when 
the packet size is small, it can reach 5.545 ms. 

When the packet is a large packet of 1024 bytes, as shown in Figure 8, in a 
single container pair, the latencies of the none mode, the bridge mode, and the 
macvlan mode are 6.339 ms, 7.685 ms, and 5.130 ms, respectively; When there 
are 10 containers pairs, the latencies of the three are 10.800 ms, 13.395 ms, and 
8.956 ms, respectively.  

When grouped into small packets of 28 bytes, as shown in Figure 9, in a single 
container pair, the latencies of the three are 6.256 ms, 7.497 ms, and 4.994 ms 
respectively; and when 10 container pairs are deployed, The latencies of the 
three are 10.441 ms, 13.151 ms, and 8.705 ms, respectively.  

The results of the two experiments are similar in terms of latency, but as the 
number of containers increases, the latency also increases accordingly, which 
mainly because the amount of data that needs to be processed in parallel in-
creases, resulting in data being queued by the CPU. In the comparison of the 
three modes, the latency of the bridge mode is still the largest, while the latency 
of the macvlan is the smallest, which is even less than the latency in the bare 
state. 

Scenario 2: Comparison of the container networking mode across different 
physical hosts. 

The experimental method is the same as the Scenario 2 of the throughput 
evaluation. When evaluating the cross-host networking, we still firstly evaluate 
the communication latency without using the container. The network latency of 
the large packet is 131.186 ms, and the latency of the small packet is 60.421 ms. 
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Figure 8. Large packet transmission latency between different containers in the 
same physical host. 

 

 
Figure 9. Small packet transmission latency between different containers in the 
same physical host. 

 
In the case of the 1024 bytes large packet transmission, as shown in Figure 10, 

in a single container pair, the latencies of the none mode, bridge mode, and 
macvlan mode are 130.486 ms, 133.299 ms, and 125.934 ms respectively. When 
deploying 10 container pairs, these latencies are127.104 ms, 158.864 ms, and 
128.053 ms respectively. 

In the case of the 28 bytes small packet transmission, as shown in Figure 11, 
in a single container pair, the latencies of the none mode, bridge mode, and 
macvlan mode are 57.738 ms, 70.508 ms, and 60.409 ms respectively. While 
when deploying 10 container pairs, these latencies are 55.283 ms, 84.277 ms, and 
56.050 ms respectively.  

From the above experimental results we can see that, no matter a single con-
tainer pair or multiple container pairs are considered, the overall latency is much 
larger than the transmission in the same physical host, which is mainly due to 
the transmission and processing latency in the physical link. At the same time, 
the latency of the macvlan mode and the none mode is similar, while the default  
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Figure 10. The latency of large packet transmission between different hosts. 

 

 
Figure 11. The latency of small packet transmission between different hosts. 

 
bridge mode has the largest network latency, which is about 17% - 25% larger 
than the other two. Besides, as the number of containers increases, the perfor-
mance of the bridge mode becomes worse. 

5. Conclusion 

With the continuous development of cyber range construction, the demand for 
large-scale user behavior simulation is also increasing. How to realize the simu-
lation of network user behavior under the constraints of limited physical re-
sources has become a problem to be solved. As the development of the container 
technology, nowadays more and more people use the container technology to 
construct large scale user behavior simulation platform. This paper compares the 
performance of three common networking modes of the LXC container: the 
none, bridge and macvlan mode. The evaluation results show that, compared to 
other network modes, the default bridge mode of the LXC container has the 
worst performance, while the macvlan mode have the best performance in terms 
of throughput. Although the none mode has similar performance with the mac-
vlan mode in network latency, it cannot provide any network isolation due to its 
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network stack share method, which has serious security problem. Besides, the 
none mode cannot satisfy the large-scale container deployment requirement. 
Therefore, the macvlan networking mode is an optimal one for container based 
large-scale user behavior simulation. 
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