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Abstract 

In the field of organic syntheses, the development of environmentally friendly 
methods based on the concept of green chemistry has been always required. 
In response to this requirement, we reported solvent- and catalyst-free syn-
theses of imines using the pressure reduction technique as a key technology. 
We found that this reaction proceeded very rapidly in the initial stage, but its 
rate decreased with the passage of time. It was also found that the reaction of 
benzaldehyde with aniline had a specificity that the phase transition occurred. 
In this method, the desired imines could be obtained in good to excellent 
yields, but target compounds had to be given by purifications using organic 
solvents. Therefore, we tried to develop the perfect synthetic method of imine 
derivatives without organic or inorganic solvents. We selected two methods 
and took them into this investigation. One was exactly mixing (1:1, substance 
ratio) aldehydes and amines and the other was employing lower pressure 
(>0.1 mmHg, previous method: 1.0 mmHg) at the pressure reducing tech-
nique. When this improved synthetic method was performed, it was revealed 
that pure target imines were obtained in excellent yields without any purifica-
tion. 
 

Keywords 

Solvent-Free, Catalyst-Free, Neat Reaction, Pressure Reduction Technique, 
Imine 

How to cite this paper: Suzuki, S., Ito, H., 
Ishizuka, S., Nonaka, R., Noike, M., Koda-
ma, T., Funaki, K., Taguchi, M., Kagaya, T., 
Sato, S., Redler, G. and Yokoyama, Y. 
(2019) Perfect Solvent- and Catalyst-Free 
Syntheses of Imine Derivatives Using the 
Pressure Reduction Technique. Green and 
Sustainable Chemistry, 9, 105-118.  
https://doi.org/10.4236/gsc.2019.94008  
 
Received: August 21, 2019 
Accepted: October 9, 2019 
Published: October 12, 2019 
 
Copyright © 2019 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/gsc
https://doi.org/10.4236/gsc.2019.94008
https://www.scirp.org/
https://doi.org/10.4236/gsc.2019.94008
http://creativecommons.org/licenses/by/4.0/


S. Suzuki et al. 
 

 

DOI: 10.4236/gsc.2019.94008 106 Green and Sustainable Chemistry 

 

1. Introduction 

From the viewpoint of green chemistry, it was considered that using organic 
solvents in organic syntheses aimed at formation convenient compounds was 
not environmentally friendly, in recent years. Several attempts have been made 
to avoid using organic solvents in organic synthetic methods. Among them, the 
method attracting attention was to use water instead of an organic solvent [1] [2] 
[3] [4]. These investigations were very interesting because water was indispensa-
ble to the natural environment and was unlikely to cause environmental destruc-
tion. Since water was more inexpensive than organic solvents, the cost of the 
synthetic reaction could be reduced. Furthermore, it was possible to develop a 
completely different reaction field when organic reactions proceeded in water, 
and further development was expected in the future. On the other hand, a sol-
vent-free reaction had also been recognized as a suitable reaction for green che-
mistry [5] [6] [7] [8]. Therefore, various solvent-free reaction systems had been 
developed [9] [10] [11]. In the last year, we reported that efficient solvent- and 
catalyst-free syntheses of imine derivatives apply the pressure reduction tech-
nique [12]. And more, other researchers also reported that reducing pressure 
technology was effective for syntheses of some imines [13]. In our previous reac-
tion system, it was found that target imines could be obtained in good yields by 
removing water under reduced pressure conditions. We also found that this 
reaction proceeded rapidly in the initial stage, but its rate decreased with the 
passage of time. Although this reaction system gave target products in good 
yields, the purification of the target product was required, such as the column 
chromatography using hexane/ether combination or the recrystallization using 
dichloromethane/hexane combination. Thus, our previous system was not a 
complete solvent-free synthesis system. Therefore, we tried two methods in or-
der to improve this point. One was exactly mixing (1:1, substance ratio) alde-
hydes and amines and the other was employing lower pressure (>0.1 mmHg, 
previous method: 1.0 mmHg) at the pressure reducing technique to remove wa-
ter and unreacted materials perfectly. Actually, it was found that pure target im-
ines were obtained in excellent yields without any purification using organic 
solvents, when we tried improved reaction methods (Scheme). 

 

 
 
In this paper, we will report the details of the improved reaction method. 
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2. Experimental 

2.1. Chemicals and Instruments 

Standard bench top techniques were employed for handling air-sensitive rea-
gent. Liquid aromatic aldehydes and all amines were distilled under argon before 
use. p-Bromobenzaldehyde and p-chlorobenzaldehyde were purified by recrys-
tallization before use. All reactions were carried out under nitrogen atmos-
pheres. All yields of target compounds were isolated yields. ULVAC G-50DA 
(ULVAC KIKO Inc.) was used for carrying out this reducing pressure operation. 
IR spectra were recorded on an FT/IR-610 (JASCO) spectrophotometer. 
1H-NMR, 13C-NMR and 19F-NMR spectra were measured on Bruker BioSpin 
AVANCE III 400 Nanobay spectrometer at 400.1, 100.6 and 376.5 MHz, respec-
tively. Chemical shifts were given in ppm relative to TMS (1H and 13C) or CFCl3 
(19F). 

2.2. Typical Experimental Procedure 1 (Reaction of  
p-Tolualdehyde with o-Toluidine) 

To a stirring p-tolualdehyde (1.20 g, 10.0 mmol) was added dropwise o-toluidine 
(1.07 g, 10.0 mmol) at 25˚C After 1.5 hours, the reaction system was connected 
to a vacuum pump, the pressure was reduced to >0.1 mmHg (13.3 Pa) and 
stirred for 3.0 hours to give the desired pure compound (Compound 1) as a pale 
yellow clear oil in 99% yield (2.06 g) without any purification. All physical prop-
erties of this product were completely consistent with literature values [14] [15] 
or physical data of the commercially available compound.: IR (neat): 495, 720, 
756, 815, 882, 1111, 1172, 1485, 1572, 1594, 1608, 1627, 2856, 2921, 3021, 3060 
cm–1; 1H-NMR (CDCl3) δ (ppm): 2.33 (s, 3H, H1), 2.40 (s, 3H, H2), 6.89 (d, J = 
7.80 Hz, 1H, H3), 7.03 - 7.11 (m, 1H, H4), 7.16 - 7.22 (m, 2H, H5 and H6), 7.26 (d, 
J = 7.92 Hz, 2H, H7), 7.79 (d, J = 7.92 Hz, 2H, H8), 8.30 (s, 1H, H9); 13C-NMR 
(CDCl3) δ (ppm): 17.69 (C1), 21.46 (C2), 117.56 (C3), 125.27 (C4), 126.52 (C5), 
128.55 (C6), 129.30 (C7), 130.02 (C8), 131.61 (C9), 133.74 (C10), 141.50 (C11), 
151.14 (C12), 159.23 (C13). 

 

 
 

p-Tolualdehyde (1.20 g, 10.0 mmol) reacted with m-toluidine (1.07 g, 10 
mmol) to give the corresponding pure compound (Compound 2) in 99% yield 
(2.06 g) as a colorless crystal in the same manner of procedure 1. All physical 
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properties of this product were completely consistent with literature values [16] 
or physical data of the commercially available compound.: IR (neat): 479, 694, 
774, 792, 816, 930, 1148, 1173, 1307, 1483, 1573, 1599, 1627, 2731, 2863, 2919, 
3024 cm–1; 1H-NMR (CDCl3) δ (ppm): 2.39 (s, 3H, H1), 2.42 (s, 3H, H2), 7.00 - 
7.05 (m, 3H, H3, H4 and H5), 7.24 - 7.30 (m, 1H, H6), 7.28 (d, J = 8.12 Hz, 2H, 
H7), 7.79 (d, J = 8.12 Hz, 2H, H8), 8.41 (s, 1H, H9); 13C-NMR (CDCl3) δ (ppm): 
21.44 (C1), 21.66 (C2), 117.86 (C3), 121.66 (C4), 126.54 (C5), 128.79 (C6), 128.96 
(C7), 129.52 (C8), 133.71 (C9), 138.96 (C10), 141.81 (C11), 152.25 (C12), 160.19 
(C13). 

 

 
 

p-Tolualdehyde (1.20 g, 10.0 mmol) reacted with p-toluidine (1.07 g, 10 
mmol) to give the corresponding pure compound (Compound 3) in 98% yield 
(2.05 g) as a colorless crystal in the same manner of procedure 1. All physical 
properties of this product were completely consistent with literature values [17] 
[18] [19] or physical data of the commercially available compound.: IR (neat): 
467, 539, 718, 823, 885, 977, 1108, 1170, 1504, 1568, 1605, 1624, 2859, 2915, 3026 
cm–1; 1H-NMR (CDCl3) δ (ppm): 2.36 (s, 3H, H1), 2.41 (s, 3H, H2), 7.13 (d, J = 
8.20 Hz, 2H, H3), 7.19 (d, J = 8.20 Hz, 2H, H4), 7.27 (d, J = 7.96 Hz, 2H, H5), 7.78 
(d, J = 7.96 Hz, 2H, H6), 8.42 (s, 1H, H7); 13C-NMR (CDCl3) δ (ppm): 21.04 (C1), 
21.66 (C2), 120.83 (C3), 128.73 (C4), 129.52 (C5), 129.76 (C6), 133.79 (C7), 135.60 
(C8), 141.69 (C9), 149.64 (C10), 159.65 (C11). 

 

 
 

p-Anisaldehyde (1.36 g, 10.0 mmol) reacted with o-toluidine (1.07 g, 10 
mmol) to give the corresponding pure compound (Compound 4) in 99% yield 
(2.24 g) as a colorless crystal in the same manner of procedure 1. All physical 
properties of this product were completely consistent with literature values [20] 
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[21] [22] or physical data of the commercially available compound.: IR (neat): 
450, 517, 724, 757, 832, 883, 1031, 1107, 1164, 1253, 1309, 1511, 1574, 1605, 
2332, 2559, 2838, 2910, 2934, 2955, 3009, 3065 cm–1; 1H-NMR (CDCl3) δ (ppm): 
2.35 (s, 3H, H1), 3.86 (s, 3H, H2), 6.89 - 6.91 (m, 1H, H3), 6.98 (d, J = 8.72 Hz, 
2H, H4), 7.08 - 7.12 (m, 1H, H5), 7.18 - 7.29 (m, 2H, H6 and H7), 7.85 (d, J = 8.72 
Hz, 2H, H8), 8.28 (s, 1H, H9); 13C-NMR (CDCl3) δ (ppm): 17.73 (C1), 55.26 (C2), 
113.96 (C3), 117.61 (C4), 125.11 (C5), 126.53 (C6), 129.37 (C7), 130.02 (C8), 130.22 
(C9), 131.60 (C10), 151.24 (C11), 158.56 (C12), 161.94 (C13). 

 

 
 

p-Anisaldehyde (1.36 g, 10.0 mmol) reacted with m-toluidine (1.07 g, 10 
mmol) to give the corresponding pure compound (Compound 5) in 99% yield 
(2.24 g) as a colorless crystal in the same manner of procedure 1. All physical 
properties of this product were completely consistent with literature values [21] 
[23] or physical data of the commercially available compound.: IR (neat): 443, 
530, 694, 792, 834, 933, 1024, 1105, 1165, 1246, 1309, 1419, 1457, 1508, 1604, 
1621, 2554, 2839, 2910, 2935, 2966 cm–1; 1H-NMR (CDCl3) δ (ppm): 2.38 (s, 3H, 
H1), 3.87 (s, 3H, H2), 6.95 - 7.05 (m, 3H, H3, H4 and H5), 6.98 (d, J = 8.72 Hz, 2H, 
H6), 7.25 - 7.29 (m, 1H, H7), 7.84 (d, J = 8.72 Hz, 2H, H8), 8.39 (s, 1H, H9); 
13C-NMR (CDCl3) δ (ppm): 21.45 (C1), 55.45 (C2), 114.18 (C3), 117.87 (C4), 
121.66 (C5), 126.36 (C6), 128.96 (C7), 129.32 (C8), 130.49 (C9), 138.94 (C10), 
152.37 (C11), 159.54 (C12), 162.19 (C13). 

 

 
 

p-Anisaldehyde (1.36 g, 10.0 mmol) reacted with p-toluidine (1.07 g, 10 
mmol) to give the corresponding pure compound (Compound 6) in 98% yield 
(2.21 g) as a colorless crystal in the same manner of procedure 1. All physical 
properties of this product were completely consistent with literature values [18] 
[24] [25] [26] [27] or physical data of the commercially available compound.: IR 
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(neat): 505, 546, 590, 820, 838, 1025, 1105, 1166, 1249, 1420, 1508, 1570, 1604, 
2555, 2841, 2876, 2971, 3005 cm–1; 1H-NMR (CDCl3) δ (ppm): 2.37 (s, 3H, H1), 
3.87 (s, 3H, H2), 6.98 (d, J = 8.80 Hz, 2H, H3), 7.12 (d, J = 8.04 Hz, 2H, H4), 7.17 
(d, J = 8.04 Hz, 2H, H5), 7.84 (d, J = 8.80 Hz, 2H, H6), 8.39 (s, 1H, H7); 13C-NMR 
(CDCl3) δ (ppm): 20.99 (C1), 55.42 (C2), 114.13 (C3), 120.76 (C4), 129.35 (C5), 
129.71 (C6), 130.38 (C7), 135.35 (C8), 149.72 (C9), 159.00 (C10), 162.08 (C11). 

 

 

2.3. Typical Experimental Procedure 2 (Reaction of  
p-Tolualdehyde with Benzylamine) 

To a stirring p-tolualdehyde (1.20 g, 10.0 mmol) was added dropwise benzyla-
mine (1.07 g, 10.0 mmol) at 25˚C. After 2.0 hours, the reaction system was con-
nected to a vacuum pump, the pressure was reduced to >0.1 mmHg (13.3 Pa) 
and stirred for 3.0 hours to give the desired pure compound (Compound 7) as a 
white solid in 97% yield (2.03 g) without any purification. All physical properties 
of this product were completely consistent with literature values [28] [29] or 
physical data of the commercially available compound.: IR (neat): 442, 505, 697, 
733, 819, 865, 1028, 1173, 1307, 1377, 1453, 1496, 1606, 1648, 2837, 2920, 3027, 
3061 cm–1; 1H-NMR (CDCl3) δ (ppm): 2.38 (s, 3H, H1), 4.80 (s, 2H, H2), 7.22 (d, J 
= 7.96 Hz, 2H, H3), 7.24 - 7.28 (m, 1H, H4), 7.32 - 7.36 (m, 4H, H5 and H6), 7.67 
(d, J = 7.96 Hz, 2H, H7), 8.35 (s, 1H, H8); 13C-NMR (CDCl3) δ (ppm): 21.51 (C1), 
65.02 (C2), 126.91 (C3), 127.94 (C4), 128.23 (C5), 128.45 (C6), 129.31 (C7), 133.51 
(C8), 139.39 (C9), 141.04 (C10), 161.94 (C11). 

 

 
 

p-Anisaldehyde (1.36 g, 10.0 mmol) reacted with benzylamine (1.07 g, 10 
mmol) to give the corresponding pure compound (Compound 8) in 100% (2.25 
g) as a colorless crystal in the same manner of procedure 2. All physical proper-
ties of this product were completely consistent with literature values [30] [31] or 
physical data of the commercially available compound.: IR (neat): 462, 528, 697, 
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731, 1033, 1165, 1252, 1308, 1449, 1510, 1604, 1650, 2551, 2813, 2844, 2940, 
2969, 2999, 3028 cm–1; 1H-NMR (CDCl3) δ (ppm): 3.84 (s, 3H, H1), 4.79 (s, 2H, 
H2), 6.93 (d, J = 8.80 Hz, 2H, H3), 7.23 - 7.29 (m, 1H, H4), 7.32 - 7.36 (m, 4H, H5 
and H6), 7.73 (d, J = 8.80 Hz, 2H, H7), 8.32 (s, 1H, H8); 13C-NMR (CDCl3) δ 
(ppm): 55.35 (C1), 64.95 (C2), 113.96 (C3), 126.90 (C4), 127.94 (C5), 128.45 (C6), 
129.06 (C7), 129.83 (C8), 139.52 (C9), 161.35 (C10), 161.67 (C11). 

 

 
 

p-Fluorobenzaldehyde (1.24 g, 10.0 mmol) reacted with benzylamine (1.07 g, 
10 mmol) to give the corresponding pure compound (Compound 9) in 99% 
(2.11 g) as a pale yellow clear oil in the same manner of procedure 2. All physical 
properties of this product were completely consistent with literature values [32] 
or physical data of the commercially available compound.: IR (neat): 470, 518, 
698, 734, 837, 1151, 1230, 1293, 1454, 1508, 1602, 1644, 2841, 3030, 3063 cm–1; 
1H-NMR (CDCl3) δ (ppm): 4.81 (s, 2H, H1), 7.09 (t, JHH = 8.76 Hz, JHF = 8.76 Hz, 
2H, H2), 7.24 - 7.28 (m, 1H, H3), 7.32 - 7.37 (m, 4H, H4 and H5), 7.77 (dd, JHH = 
8.76 Hz, JHF = 5.52 Hz, 2H, H6), 8.35 (s, 1H, H7); 13C-NMR (CDCl3) δ (ppm): 
64.94 (C1), 115.68 (d, JCF = 21.78 Hz, C2), 127.04 (C3), 127.96 (C4), 128.51 (C5), 
130.14 (d, JCF = 8.49 Hz, C6), 132.41 (d, JCF = 2.96 Hz, C7), 139.14 (C8), 160.47 
(C9), 164.32 (d, JCF = 250.66 Hz, C10); 19F-NMR (CDCl3) δ (ppm): −109.86 (F1). 

 

 
 

p-Chlorobenzaldehyde (1.41 g, 10.0 mmol) reacted with benzylamine (1.07 g, 
10 mmol) to give the corresponding pure compound (Compound 10) in 99% 
(2.27 g) as a colorless crystal in the same manner of procedure 2. All physical 
properties of this product were completely consistent with literature values [33] 
[34] or physical data of the commercially available compound.: IR (neat): 462, 
506, 701, 735, 821, 827, 859, 1012, 1044, 1088, 1340, 1371, 1450, 1491, 1593, 
1645, 2802, 2818, 2852, 2874, 3030, 3062, 3084 cm–1; 1H-NMR (CDCl3) δ (ppm): 
4.81 (s, 2H, H1), 7.24 - 7.29 (m, 1H, H2), 7.32 - 7.36 (m, 4H, H3 and H4), 7.38 (d, J 
= 8.52 Hz, 2H, H5), 7.71 (d, J = 8.52 Hz, 2H, H6), 8.34 (s, 1H, H7); 13C-NMR 

C9

C3

C3

C8

C11
C8

N
C10

H8

C2

H3

H7O

H3

H7 H2H2

C6

C5

C7

C4

C5
C6 H6

H6

H4H5

H5

C1(H1)3

Compound 8

C10

C2

C2

C6

C7
C6

N
C9

H7

C1

H2

H6F1

H2

H6 H1H1

C5

C4

C8

C3

C4
C5 H5

H5

H3H4

H4

Compound 9

https://doi.org/10.4236/gsc.2019.94008


S. Suzuki et al. 
 

 

DOI: 10.4236/gsc.2019.94008 112 Green and Sustainable Chemistry 

 

(CDCl3) δ (ppm): 64.99 (C1), 127.08 (C2), 127.97 (C3), 128.53 (C4), 128.86 (C5), 
129.43 (C6), 134.57 (C7), 136.68 (C8), 138.99 (C9), 160.54 (C10). 

 

 
 

p-Bromobenzaldehyde (1.85 g, 10.0 mmol) reacted with benzylamine (1.07 g, 
10 mmol) to give the corresponding pure compound (Compound 11) in 100% 
(2.74 g) as a colorless crystal in the same manner of procedure 2. All physical 
properties of this product were completely consistent with literature values [35] 
[36] or physical data of the commercially available compound.: IR (neat): 460, 
500, 513, 698, 732, 857, 1009, 1044, 1068, 1295, 1340, 1370, 1450, 1484, 1588, 
1644, 2802, 2851, 2874, 3028, 3060, 3082 cm–1; 1H-NMR (CDCl3) δ (ppm): 4.80 
(s, 2H, H1), 7.24 - 7.29 (m, 1H, H2), 7.30 - 7.37 (m, 4H, H3 and H4), 7.54 (d, J = 
8.48 Hz, 2H, H5), 7.64 (d, J = 8.48 Hz, 2H, H6), 8.33 (s, 1H, H7); 13C-NMR 
(CDCl3) δ (ppm): 65.00 (C1), 125.14 (C2), 127.08 (C3), 127.97 (C4), 128.52 (C5), 
129.65 (C6), 131.81 (C7), 134.98 (C8), 138.95 (C9), 160.63 (C10). 

 

 

3. Results and Discussion 

We found that target imines were obtained in excellent yields easily when alde-
hydes and amines were mixed without a solvent and a catalyst. Some results of 
reactions of p-tolualdehyde or p-anisaldehyde with various type toluidines were 
summarized in Table 1. 

p-Tolualdehyde reacted with o-toluidine for 1.5 h without any solvent fol-
lowed by the vacuum operation (3.0 h) to give the corresponding imine (Com-
pound 1) in 99% yield (entry 1). In this reaction method, any purification, for 
example, a column chromatography with organic solvents and so on, of the tar-
get compound was not needed. The corresponding pure imine (by 1H-NMR 
analysis, purity: over 99.5%) was obtained. This methodology could be applied 
to the case of m-toluidine and p-toluidine. When p-tolualdehyde and 
m-toluidine were stirred under nitrogen for 1.5 h, the target compound (Com-
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pound 2) was obtained, quantitatively (entry 2) after the vacuum operation. We 
also found that p-tolualdehyde reacted with p-toluidine, in the same manner, to 
give the target imine (Compound 3) in excellent yield (entry 3). Interestingly, an 
aldehyde that was inert to a nucleophilic reaction could be also used as a starting 
material for this synthetic method. p-Anisaldehyde was inactive for the nucleo-
philic reaction because it had a strong electron-donating group (methoxy group) 
at p-position. When this type of reaction using p-anisaldehyde and o-toluidine 
as starting materials was carried out, the target compound (Compound 4) was 
obtained in 99% yield (entry 4). m-Toluidine and p-toluidine also reacted with 
p-anisaldehyde smoothly, and products (Compounds 5 and 6) were given in 
99% yield and 98% yield (entries 5 and 6). It was reported that Compound 1 was 
obtained in the highest yield (96%) when formic acid, water, and ethanol were 
used as a catalyst and solvents in the previous study [15]. On the other hand, 
Compound 2 was given in 51% yield (the highest yield) by iron com-
pounds-promoted C-C bond formation reactions [16]. These facts indicated that 
our method was more efficient for syntheses of Compounds 1 and 2 because our 
reactions gave these compounds in higher yields. In the case of the synthesis of 
Compound 3, it was obtained in 99% yield by the synthetic reaction using pyri-
dine [17]. In contrast, our reaction gave Compound 3 in a similar yield without 
any solvent, perfectly. Compounds 4, 5 and 6 have already been synthesized by 
reactions using some solvents and some catalysts in 90% yield, 90% yield and 
98% yield, respectively [20] [23] [26]. Our method was more suitable for syn-
theses of these imines than previous techniques in the viewpoints of yields of 
target compounds, solvent- and catalyst-free. 

Some aldehydes were examined as starting materials for this imine formation 
and results were shown in Table 2. In this investigation, benzylamine was used 
as a nucleophile. Although this amine had a milder nucleophilicity than aromat-
ic amines, it had been classified as a strong nucleophile generally. 

When aromatic aldehydes having weak or strong electron-donating groups, 
such as methyl group and methoxy group, were employed as substrates, pure tar-
get imines (Compounds 7 and 8) were obtained in 97% yield and 100% yield (en-
tries 1 and 2). This phenomenon indicated that the ability of electron-donation of 
a substituent at p-position of the aromatic aldehyde did not affect the yield of an 
imine at all. Halogenated aromatic aldehydes were also used as starting com-
pounds in this synthetic method. The fluorinated imine derivative (Compound 9) 
was given in excellent yield by the reaction of p-fluorobenzaldehyde and benzyla-
mine (entry 3). Furthermore, p-chlorobenzaldehyde and p-bromobenzaldehyde 
could be used as substrates in this reaction system to give target compounds 
(Compounds 10 and 11) in 99% yield and 100% yield (entries 4 and 5). In pre-
vious synthetic methods of Compounds 7, 8, 9, 10 and 11, these compounds 
were obtained in over 90% yields [28] [30] [32] [33] [36]. Meanwhile, our me-
thods gave these compounds in excellent yields that were comparable to pre-
vious methods. Additionally, pure target products could be given without any 
solvent and any catalyst in our method.  
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Table 1. Solvent-and catalyst-free syntheses of imines. 

 
 

Table 2. Effective syntheses of various benzylated imines. 
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It was revealed that our methodology was superior to the previous one for the 
synthesis of an imine derivative, because of two reasons that were led from facts 
in Table 1 and Table 2. The first reason was an excellent yield of a target com-
pound and the second reason was an easy technique under solvent- and cata-
lyst-free conditions. 

4. Conclusion 

In this paper, we reported that perfect solvent- and catalyst-free syntheses of 
imine derivatives use the pressure reduction technique. This synthetic reaction 
proceeded under mild conditions, and desired imines were obtained in excellent 
yields. In this synthetic method, there were two important key-techniques. 
When aldehydes and amines were mixed exactly 1:1 (substance ratio) and re-
duced the pressure of the reaction pod under >0.1 mmHg at the end of this reac-
tion, target imines were obtained, quantitatively. The scope and limitation of this 
synthetic method are now unknown. Further investigation is in progress. 
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