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Abstract 
The split common fixed point problem is an inverse problem that consists in 
finding an element in a fixed point set such that its image under a bounded 
linear operator belongs to another fixed-point set. In this paper, we present 
new iterative algorithms for solving the split common fixed point problem of 
demimetric mappings in Hilbert spaces. Moreover, our algorithm does not 
need any prior information of the operator norm. Weak and strong conver-
gence theorems are given under some mild assumptions. The results in this 
paper are the extension and improvement of the recent results in the litera-
ture. 
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1. Introduction 

Let 1H  and 2H  be two real Hilbert spaces. Let 1 1:S H H→  and 

2 2:T H H→  be two nonlinear mappings. We denote the fixed point sets of S 
and T by ( )F S  and ( )F T , respectively. Let 1 2:A H H→  be a bounded li-
near operator with its adjoint *A . Then, we consider the following split com-
mon fixed point problem: 

( ) ( )1Finding such that and .x H x F S Ax F T∈ ∈ ∈          (1.1) 

The split common fixed point problem (1.1) is a generalization of the split 
feasibility problem arising from signal processing and image restoration; see 
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[1]-[7] for instance. It was first introduced and studied by Censor and Segal [8]. 
Note that solving (1) can be translated to solve the fixed point equation 

( )( )* * * * ,   0.x S x A I T Axτ τ= − − >  

Censor and Segal also proposed the following algorithm for directed map-
pings. 

Algorithm 1.1 Initialization: let *
1 : nx H∈ =   be arbitrary. Iterative step: let 

( )( )*
1 ,   0,n n nx S x A I T Ax nτ+ = − − ≥  

where : n nS →   and : m mT R →   are two directed mappings and 
20,τ
λ

 ∈ 
 

 with λ  being the spectral radius of the operator *A A . 

Since then, there has been growing interest in the split common fixed point 
problem; please, see [9]-[15]. 

Recently, Wang [16] introduced the following new iterative algorithms for the 
split common fixed point problem of directed mappings. 

Algorithm 1.2 Choose an arbitrary initial guess 0x . Assume nx  has been 
constructed. If 

( )* 0,n n nx Sx A I T Ax− + − =  

then stop; otherwise, continue and construct 1nx +  via the formula: 

( )*
1 ,   0,n n n n n nx x x Sx A I T Ax nτ+  = − − + − ∀ ≥   

where nτ  is chosen self-adaptively as 

( )
( )

22

2*
.n n n

n

n n n

x Sx I T Ax

x Sx A I T Ax
τ

− + −
=

− + −
 

Algorithm 1.3 Let u H∈  and start an initial guess 0x H∈ . Assume nx  
has been constructed. If 

( )* 0,n n nx Sx A I T Ax− + − =  

then stop; otherwise, continue and construct 1nx +  via the formula: 

( ) ( )*
1 1 ,   0,n n n n n nx u x Sx A I T Ax nα α+  = + − − + − ∀ ≥   

where the stepsize sequence nτ  is chosen self-adaptively as 

( )
( )

22

2*
.n n n

n

n n n

x Sx I T Ax

x Sx A I T Ax
τ

− + −
=

− + −
 

Wang obtained the weak and strong convergence of Algorithms 1.2 and 1.3, 
respectively. Inspired by the above work in the literature, Yao, et al. [17] extend 
Wang’s results in [16] from the directed mappings to the demicontractive map-
pings. Further, they construct the following two self-adaptive algorithms for 
solving the split common fixed point problem (1.1). 

Algorithm 1.4. Initialization: let 0 1x H∈  be arbitrary. For 0n ≥ , assume 
the current iterate nx  has been constructed. If 
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( )* 0,n n nx Sx A I T Ax− + − =  

then stop; otherwise, calculate the next iterate 1nx +  by the following formula 

( )*

1

,
,   0,

n n n n

n n n n

y x Sx A I T Ax
x x y nγτ+

 = − + −


= − ∀ ≥
 

where { }( )0,min 1 ,1γ β µ∈ − −  is a positive constant and nτ  is chosen 
self-adaptively as 

( ) 22

2 .n n n
n

n

x Sx I T Ax

y
τ

− + −
=  

Algorithm 1.5. Initialization: Let 1u H∈  be a fixed point and let 0 1x H∈  be 
arbitrary. Iterative step: for 0n ≥ , assume the current iterate nx  has been 
constructed. If 

( )* 0,n n nx Sx A I T Ax− + − =  

then stop; otherwise, calculate the next iterate 1nx +  by the following formula 

 ( )
( )( )

*

1

,
1 ,   0,

n n n n

n n n n n n

y x Sx A I T Ax
x u x y nα α γτ+

 = − + −
 = + − − ∀ ≥

 

where { }( )0,min 1 ,1γ β µ∈ − −  is a positive constant and nτ  is chosen 
self-adaptively as 

( ) 22

2 .n n n
n

n

x Sx I T Ax

y
τ

− + −
=  

They also obtained the weak and strong convergence of Algorithms 1.4 and 1.5, 
respectively. Motivated and inspired by the work in the literature, the main pur-
pose of this paper is to extend the results of Wang [16] and Yao, et al. [17] from 
the directed mappings or demicontractive mappings to the demicontractive map-
pings. We present two self-adaptive algorithms for solving the split common 
fixed point problem (1.1). Weak and strong convergence theorems are given 
under some mild assumptions. Our results improve essentially the correspond-
ing results in [16] [17]. Further, some other results are also improved; see 
[9]-[22]. 

2. Preliminaries 

Let C be a nonempty closed convex subset of a real Hilbert space H. 
Definition 2.1. A mapping :T C C→  is said to be: 
1) directed if 

( )
2 2 2* * *,   , ;Tx x x x Tx x x C x F T− ≤ − − − ∀ ∈ ∈  

2) β-demicontractive if there exists a constant [ )0,1β ∈  such that 

( )
2 2 2* * *,   , ;Tx x x x Tx x x C x F Tβ− ≤ − + − ∀ ∈ ∈  

3) k-demimetric if there exists a constant ( ),1k ∈ −∞  such that 
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( )2* *1, ,   , .
2

kx x x Tx x Tx x C x F T−
− − ≥ − ∀ ∈ ∈          (2.1) 

Clearly, (2.1) is equivalent to the following: 

( )
2 2 2* * *,   , .Tx x x x k Tx x x C x F T− ≤ − + − ∀ ∈ ∈  

It is obvious that the demimetric mappings include the directed mappings and 
the demicontractive mappings as special cases. Furthermore, this class mapping 
also contains the classes of strict pseudo-contractions, firmly-quasinon expansive 
mappings, 2-generalized hybrid mappings and quasi-non-expansive mappings. 
The class of demimetric mappings is fundamental because many common types 
of mappings arising in optimization belong to this class, see for example [23] [24] 
and references therein. 

Definition 2.2 A sequence { }nx  is called Fejér-monotone with respect to a 
given nonempty set Ω , if for every x∈Ω , 

1 ,   0.n nx x x x n+ − ≤ − ∀ ≥  

Next we adopt the following notations: 
a) nx x→  and nx x  denote the strong and weak convergence of the se-

quence { }nx , respectively; 
b) ( ) { }: :

jw n nx x x xω = ∃   is the weak ω-limit set of the sequence { }nx . 
Recall that a mapping :f C C→  is said to be contractive if there exists a 

constant ( )0,1v∈  such that 

,  , .fx fy v x y x y C− ≤ − ∀ ∈  

We use CΠ  to denote the collection of mappings f verifying the above in-
equality. That is 

{ }: :  is a contraction with constant .C f C H f vΠ = →  

Let D be a nonempty subset of C. A sequence { }nf  of mappings of C into H 
is said to be stable on D (see [25]) if ( ){ }: 0nf x n ≥  is a singleton for every 
x D∈ . It is clear that if { }nf  is stable on D, then ( ) ( )0nf x f x=  for all 0n ≥  
and x D∈ . 

Recall that the (nearest point or metric) projection from H onto C, denoted 

CP , assigns to each u H∈ , the unique point ( )CP u C∈  with the property 

( ) { }inf : .Cu P u u v v C− = − ∈  

The metric projection ( )CP u  of H onto C is characterized by 

( ) ( ), 0,    , .C Cu P u y P u y C u H− − ≤ ∀ ∈ ∈  

Lemma 2.1 ([26]) Let Ω  be a nonempty closed convex subset in H. If the 
sequence { }nx  is Fejér monotone with respect to Ω , then we have the follow-
ing conclusions: 

1) *
nx x ∈Ω  iff ( )w nxω ⊂ Ω ; 

2) the sequence ( ){ }nP xΩ  converges strongly; 
3) if *

nx x ∈Ω , then ( )* limn nx P x→∞ Ω= . 
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Lemma 2.2 ([27]) Let { }nα  be a sequence of nonnegative numbers satisfying 
the property: 

( )1 1 ,   0,n n n n nc nα γ α γ+ ≤ − + ≥  

where { } { },n ncγ  satisfy the restrictions: 
1) 1 nn γ∞

=
= ∞∑ ; 

2) limsup 0n nc→∞ ≤  or 1 n nn c γ∞

=
< ∞∑ . 

Then, lim 0n nα→∞ = . 
Lemma 2.3 ([23] [24]) Let E be a smooth, strictly convex and reflexive Banach 

space and let k be a real number with ( ),1k ∈ −∞ . Let U be an k-demimetric 
mapping of E into itself. Then ( )F U  is closed and convex. 

3. Main Results 

Now we study the split common fixed points problem (1) under the following 
hypothesis: 
 1H  and 2H  are two real Hilbert spaces; 
 1 1:S H H→  and 2 2:T H H→  are two demimetric mappings with con-

stants ( ),1β ∈ −∞  and ( ),1µ ∈ −∞ , respectively; 
 1 2:A H H→  is a bounded linear operator with its adjoint operator *A ; 
 { }n Cf ⊂ Π  is stable on Ω , where Ω  denotes the solution set of problem 

(1.1). 
Lemma 3.1 *z  solves problem (1) iff ( )* * * * 0z Sz A I T Az− + − = . 
Proof. If *z  solves problem (1), then * *z Sz=  and ( ) * 0I T Az− = . There-

fore, we get ( )* * * * 0z Sz A I T Az− + − = . To see the converse, suppose that 
( )* * * * 0z Sz A I T Az− + − = . Then, we have for any z∈Ω  that 

( )
( )

( )
( )

* * * * *

* * * * *

* * * * * *

* * * * *

0

,

, ,

, , .

z Sz A I T Az z z

z Sz A I T Az z z

z Sz z z A I T Az z z

z Sz z z I T Az Az Az

= − + − −

≥ − + − −

≥ − − + − −

≥ − − + − −

             (3.1) 

Since S and T are demimetric, we have that 

2* * * * *1,
2

z Sz z z z Szβ−
− − ≥ −                   (3.2) 

and 

( )
2* * * *1, .

2
I T Az Az Az Az TAzµ−
− − ≥ −             (3.3) 

Combining (3.1), (3.2) and (3.3), we obtain that 

2 2* * * *1 10 .
2 2

z Sz Az TAzβ µ− −
≥ − + −               (3.4) 

Since ( ), ,1β µ ∈ −∞ , we infer that ( )*z F S∈  and ( )*Az F T∈  by (3.4). 
Therefore, *z  solves problem (1.1). This completes the proof. 

Next we construct the following self-adaptive algorithm to solve problem 
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(1.1). 
Algorithm 3.1. Initialization: let 0 1x H∈  be arbitrary. For 0n ≥ , assume 

the current iterate nx  has been constructed. If 

( )* 0,n n nx Sx A I T Ax− + − =  

then stop (in this case nx  solves problem (1.1) by Lemma 3.1); otherwise, cal-
culate the next iterate 1nx +  by the following formula 

( )*

1

,
,   0,

n n n n

n n n n

y x Sx A I T Ax
x x y nγτ+

 = − + −


= − ∀ ≥
                   (3.5) 

where { }( )0,min 1 ,1γ β µ∈ − −  is a positive constant and nτ  is chosen self 
adaptively as 

( ) 22

2 .n n n
n

n

x Sx I T Ax

y
τ

− + −
=  

We assume that the sequence { }nx  generated by Algorithm 3.1 is infinite. In 
other words, Algorithm 3.1 does not terminate in a finite number of iterations. 

Theorem 3.2. Assume that S and T are demiclosed at zero. If Ω ≠ ∅ , then 
the sequence { }nx  generated by (3.5) converges weakly to a solution *z  
( ( )limn nP x→∞ Ω= ) of problem (1.1). 

Proof. Since A is linear and continuous, noticing Lemma 2.3, we see Ω  is 
closed and convex. Thus we have that PΩ  is well defined. 

We next prove that the sequence { }nx  is Fejér-monotone with respect to Ω . 
Letting z∈Ω , we then obtain that 

( )
( )

( )

{ }( )

*

*

22

2 2

,

,

, ,

1 1
2 2

1 min 1 ,1 .
2

n n

n n n n

n n n n n

n n n

n n n n

y x z

x Sx A I T Ax x z

x Sx x z A I T Ax x z

x Sx I T Ax

x Sx Ax TAx

β µ

β µ

−

= − + − −

= − − + − −

− −
≥ − + −

≥ − − − + −

          (3.6) 

In view of Equation (3.5) and Equation (3.6), we deduce 

( )

{ }
( )

{ }( )
( )

2 2
1

2 22 2

22 2

2 2
2

22 2

2

22 2

2
2

2 ,

min 1 ,1

min 1 ,1 .

n n n n

n n n n n n

n n n n

n
n

n n n n

n

n n n n

n
n

x z x y z

x z y x z y

x Sx Ax TAx
x z

y

x Sx Ax TAx

y

x Sx Ax TAx
x z

y

γτ

γτ γ τ

γ

γ β µ

γ β µ γ

+ − = − −

= − − − +

− + −
≤ − +

− + −
− − −

− + −
≤ − − − − −

  (3.7) 
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This implies that the sequence { }nx  is Fejér monotone. 
Next, we show that every weak cluster point of the sequence { }nx  belongs to 

the solution set of problem (1.1). 
From the Fejér-monotonicity of { }nx , it follows that the sequence { }nx  is 

bounded. Further, we deduce from (3.7) that 

{ }( )
( )22 2

2

2 2
1

min 1 ,1

.

n n n n

n

n n

x Sx Ax TAx

y

x z x z

γ β µ γ

+

− + −
− − −

≤ − − −

 

An induction induces that 

{ }( )
( )22 2

2
02

0
min 1 ,1 ,

n n n n

n n

x Sx Ax TAx
x z

y
γ β µ γ

∞

=

− + −
− − − ≤ − < ∞∑  

which implies that 

( )22 2

2lim 0.
n n n n

n
n

x Sx Ax TAx

y→∞

− + −
=  

Observe that 

( )

( )
( )

( )
( )( )

( )
{ } ( )( )

{ }

22 2

2

22 2

2*

22 2

22 2

22 2

222

2 2

2

2

2max 1,

.
2max 1,

n n n n

n

n n n n

n n n

n n n n

n n n

n n n n

n n n

n n n n

x Sx Ax TAx

y

x Sx Ax TAx

x Sx A I T Ax

x Sx Ax TAx

x Sx A I T Ax

x Sx Ax TAx

A x Sx I T Ax

x Sx Ax TAx

A

− + −

− + −
=

− + −

− + −
≥

− + −

− + −
≥

− + −

− + −
=

            (3.8) 

By the demiclosedness (at zero) of S and T, we deduce immediately 
( )w nxω ⊂ Ω . To this end, the conditions of Lemma 2.1 are all satisfied. Conse-

quently, ( )* limn n nx z P x→∞ Ω= . This completes the proof. 
Next, we study an iteration with strong convergence for solving problem (1.1). 
Algorithm 3.3 Initialization: Let 0 1x H∈  be arbitrary. Iterative step: for 

0n ≥ , assume the current iterate nx  has been constructed. If 

( )* 0,n n nx Sx A I T Ax− + − =  

then stop (in this case nx  solves problem (1.1) by Lemma 3.1); otherwise, cal-
culate the next iterate 1nx +  by the following formula 
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( )
( )( )

*

1

,
1 ,   0,

n n n n

n n n n n n n n

y x Sx A I T Ax
x f x x y nα α γτ+

 = − + −
 = + − − ∀ ≥

         (3.9) 

where { }( )0,min 1 ,1γ β µ∈ − −  is a positive constant and nτ  is chosen 
self-adaptively as 

( ) 22

2 .n n n
n

n

x Sx I T Ax

y
τ

− + −
=  

Theorem 3.4 Assume that: 
(C1) Ω ≠ ∅ ; 
(C2) S and T are demiclosed at zero; 

(C3) lim 0n nα→∞ =  and 0 nn α∞

=
= ∞∑ . 

Then the sequence { }nx  generated by (3.9) converges strongly to the solu-
tion ( )0z P f zΩ=  of problem (1.1). 

Proof. Putting 0z P f zΩ= , we obtain from (3.7) that 

{ }( )
( )

2

22 2

2
2

2

min 1 ,1

.

n n n

n n n n

n
n

n

x y z

x Sx Ax TAx
x z

y

x z

γτ

γ β µ γ

− −

− + −
≤ − − − − −

≤ −

  (3.10) 

Next, we show that the sequence { }nx  is bounded. Indeed, we obtain from 
(3.9) and (3.10) that 

( )( )
( )

( ) ( )
( ) ( )

( )( )

1

0

0

1

1

1

1

1 1 .

n n n n n n n n

n n n n n n n

n n n n n n n

n n n n

n n n

x z f x x y z

f x z x y z

f x f z f z z x z

v x z f z z x z

f z z v x z

α α γτ

α α γτ

α α

α α

α α

+ − = + − − −

≤ − + − − −

≤ − + − + − −

≤ − + − + − −

≤ − + − − −

 

By induction, we get 

0
1 0max , ,

1n

f z z
x z x z

v+

 − − ≤ − 
−  

 

which gives that the sequence { }nx  is bounded. 
By virtue of (3.9), we deduce 

( )( )
( ) ( )

( )

2
1 1

1 1

0 1

1 1

0 1

1 ,

1 , ,

,

1

,

n n n n n n n n n

n n n n n n n n n n

n n

n n n n n n n n n n

n n

x z f x x y z x z

x y z x z f x f z x z

f z z x z

x y z x z f x f z x z

f z z x z

α α γτ

α γτ α

α

α γτ α

α

+ +

+ +

+

+ +

+

− = + − − − −

= − − − − + − −

+ − −

≤ − − − − + − −

+ − −
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( )

( )

1 1

0 1

2 2
1

2 2
1 0 1

1

,

1 11
2 2

1 1 , ,
2 2

n n n n n n n n

n n

n n n n n

n n n n n

x y z x z v x z x z

f z z x z

x y z x z

v x z x z f z z x z

α γτ α

α

α γτ

α α

+ +

+

+

+ +

≤ − − − − + − −

+ − −

 = − − − + − 
 

 + − + − + − − 
 

 

which implies 

( )2 2 2
1 0 11 2 , .n n n n n n n n nx z x y z v x z f z z x zα γτ α α+ +− ≤ − − − + − + − −  

This together with (3.10) implies that 

( )( )

( ) { }( )
( )

( )( )

( ) { }( ) ( )
( )

2
1

2
0 1

22 2

2

2
0 1

22 2

2*

1 1 2 ,

1 min 1 ,1

1 1 2 ,

1 min 1 ,1
.

n

n n n n

n n n n

n
n

n n n n

n n n nn

n n n n

x z

v x z f z z x z

x Sx Ax TAx

y

v x z f z z x z

x Sx Ax TAx

x Sx A I T Ax

α α

α γ β µ γ

α α

α γ β µ γ
α

+

+

+

−

≤ − − − + − −

− + −
− − − − −


≤ − − − + − −



− + −− − − − 
− 

− + − 


 (3.11) 

Set 2
n nx zδ = −  and 

( ) { }( )

( )
( )

0 1

22 2

2*

1 min 1 ,1
2 , n

n n
n

n n n n

n n n

f z z x z

x Sx Ax TAx

x Sx A I T Ax

α γ β µ γ
σ

α+

− − − −
= − − −

− + −
×

− + −

    (3.12) 

for all 0n ≥ . Returning to (3.11) to obtain 

( )( )1 1 1 ,   0.n n n n nv nδ α δ α σ+ ≤ − − + ∀ ≥              (3.13) 

From (3.12), we find 

0 1 0 12 , 2 .n n nf z z x z f z z x zσ + +≤ − − ≤ − −  

It follows that limsupn nσ→∞ < +∞ . 
Next we show that limsup 1n nσ→∞ ≥ − . 
If limsup 1n nσ→∞ < − , then there exists 0n  such that 1nσ ≤ −  for all 

0n n≥ . It then follows from (3.13) that 

( )( )1 1 1 .n n n n n nvδ α δ α δ α+ ≤ − − − ≤ −  

for all 0n n≥ . By induction, we have 

0
0

1 .
n

n n i
i n

δ δ α+
=

≤ − ∑                       (3.14) 
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By taking limsup  as n →∞  in (3.14), we have 

0
0

limsup lim ,
n

n n inn i n
δ δ α

→∞→∞ =

≤ − = −∞∑  

which induces a contradiction. So, 1 limsupn nσ→∞− ≤ < +∞ . Thus, we can take 
a subsequence { }kn  such that 

( ) { }( )

( )
( )

0 1

22 2

2*

limsup lim

1 min 1 ,1
lim 2 ,

.

k

k

k
k

k k k k

k k k

n nkn

n
nk

n

n n n n

n n n

f z z x z

x Sx Ax TAx

x Sx A I T Ax

σ σ

α γ β µ γ

α

→∞→∞

+→∞

=

− − − −
= − − −

− + −
×

− + −

 (3.15) 

Since 0 1,
knf z x z+ −  is a bounded real sequence, without loss of generality, 

we may assume 0 1lim ,
kk nf z x z→∞ + −  exists. Consequently, from (3.15), the 

following limit also exists 

( ) { }( ) ( )
( )

22 2

2*

1 min 1 ,1
lim .

k k k kk

k k k k

n n n nn

k
n n n n

x Sx Ax TAx

x Sx A I T Ax

α γ β µ γ

α→∞

− + −− − − −

− + −
 

It turns out that 

( )
( )

22 2

2*
lim 0.

k k k k

k k k

n n n n

k
n n n

x Sx Ax TAx

x Sx A I T Ax→∞

− + −
=

− + −
             (3.16) 

Taking into consideration that 

{ }
( )

( )

22 22 2

22 *
,

2 max 1,

k k k kk k k k

k k k

n n n nn n n n

n n n

x Sx Ax TAxx Sx Ax TAx

A x Sx A I T Ax

− + −− + −
≤

− + −
 

we then deduce from (3.16) that 

lim lim 0.
k k k kn n n nk k

x Sx Ax TAx
→∞ →∞

− = − =              (3.17) 

It follows that any weak cluster point of { }knx  belongs to Ω . Observe that 

( )

( )
( )

( )

1

22 2

2*

1

1 .

n n

n n n n n n n

n n n n

n n n n n

n n n

x x

x f x y

x Sx Ax TAx
x f x

x Sx A I T Ax

α α γτ

α α γ

+ −

≤ − + −

− + −
= − + −

− + −

 

By (C3) and (3.16), we derive 

1lim 0.
k kn nk

x x+→∞
− =  

This means that any weak cluster point of { }1knx +  also belongs to Ω . 
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Without loss of generality, we assume that { }1knx +  converges weakly to x ∈Ω . 
Hence, we obtain 

0 1 0limsup lim 2 , 2 , 0.
kn nkn

f z z x z f z z x zσ +→∞→∞
≤ − − = − − ≤  

due to the fact that 0z P f zΩ= . Rewriting (3.13) as 

( )( ) ( )1 1 1 1 ,   0,
1

n
n n n nv v n

v
σ

δ α δ α+ ≤ − − + − ∀ ≥
−

 

and noticing Lemma 2.2, we get nx z→  as n →∞ . 
Theorem 3.5 Let 1 1:S H H→  and 2 2:T H H→  be two demicontractive 

mappings with constants [ )0,1β ∈  and [ )0,1µ ∈ , respectively. Then the se-
quence { }nx  generated by (1.1) converges strongly to the solution ( )0z P f zΩ=  
of problem (3.9) under the assumption of Theorem 3.4. 

4. Conclusion 

In this paper, we consider a class of the split common fixed point problems. By 
extending results in [16] [17] from the directed mappings or the demicontractive 
mappings to the demimetric mappings, and a fixed point 1u H∈  to a sequence 
mappings { }nf ⊂ Π , we construct two self-adaptive algorithms for solving the 
split common fixed point problem. Further, we also establish the weak and 
strong convergence theorems under some certain appropriate assumptions. The 
results in this paper are the extension and improvement of the recent results in 
the literature. 
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