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Abstract 
This paper uses a molecular dynamics (MD) method for intensity-modulated 
proton therapy treatment planning optimization to overcome the problem of 
gradient-based optimization methods such as quasi-Newton, which is sensi-
tive to starting conditions and is easily trapped in local minima. We imple-
mented a molecular dynamics (MD) method and a quasi-Newton method for 
plan optimization. Three types of cancer cases, prostate, head-and-neck and 
lung cancer, were tested with three starting different initial conditions. Over-
all, the MD method consistently resulted in solutions with lower objective 
function values (OFVs) compared to those from the quasi-Newton algorithm. 
Furthermore, the MD method converged on the same OFV regardless of its 
initial starting points used for the prostate cancer case. 
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1. Introduction 

Radiation therapy uses ionizing radiation to treat malignant tumors by damag-
ing the DNA of cancer cells to block their ability to proliferate. The purpose is to 
deliver a prescribed dosage of radiation to the targeted tumor while minimizing 
the dose deposition in healthy tissues [1]. As a new and advanced radiation 
treatment modality, proton therapy has rapidly gained interest [2] [3]. The de-
posited dose of a proton beam starts from a low entrance level, its energy in-
creases gradually while increasing depth, then suddenly jumps to a sharp peak 
known as the Bragg peak. Once the dose deposition reaches a few millimeters 
beyond this peak, it falls sharply to zero (Figure 1). This shows a proton beam’s 
accuracy—delivering almost no dosage to regions beyond the targeted area, a  
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Figure 1. A comparison of dose deposition: proton (high energy) versus proton (low 
energy) versus photon. 

 
feat not typically feasible for photon beams commonly used in intensity mod-
ulated radiation therapy (IMRT). The most advanced proton therapy delivery 
technique is the intensity-modulated proton therapy (IMPT) which uses scan-
ning beamlets (pencil beams) whose weights (intensities) can be modulated in-
dependently for treatment. Using data from imaging technology such as CT 
(computed tomography) or MRI (magnetic resonance imaging), the beamlets 
weight profile can be optimized according to the prescribed treatment dose. The 
optimization problem to determine the optimal beamlets weight is called a flu-
ence map optimization (FMO). As a result, IMPT can deliver a highly conformal 
radiation dose to the desired target tumor while sparing the surrounding organs 
at risk (OAR), especially for structures with complex shapes [4]. Note that unlike 
IMRT with a single fixed energy level (6 MV, 10 MV or 15 MV) per field (i.e., 
treatment angle), an IMPT field consists of multiple energy layers for different 
depths of the tumor and each layer has a set of beamlets to cover the tumor re-
gion. As a result, solving for the FMO of IMPT typically takes much longer than 
IMRT. 

The FMO problem for intensity-modulated radiation therapy (IMRT) plan-
ning has been extensively studied and has been addressed by various solution 
strategies. These strategies can be grossly classified into two groups: global opti-
mization (GO) and local optimization (LO). GO approaches include linear pro-
gramming [5] [6] [7], mixed integer programming [8] [9], simulated annealing 
[10] and genetic algorithms [11] [12]. These approaches are designed to reach a 
global optimal solution. However, they all require an excessive amount of time 
for optimization, which is not practical in clinical treatment planning. In addi-
tion, the performance of these approaches depends heavily on the choice of pa-
rameters [7]. On the other hand, LO approaches can obtain usable solutions 
within a clinically acceptable planning time window. Therefore, LO approaches 
have been commonly used in commercial treatment planning systems such as 
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Eclipse [Varian Associates, Palo Alto, CA] and Pinnacle [Philips, Milpitas, CA]. 
Some of the well-known LO methods include gradient-based algorithms [13] 
[14] [15] [16] [17], local neighborhood search [18] and iterative methods [19]. 
However, it has been reported in the IMRT treatment planning literature that 
FMO is highly degenerate and in many popular optimization methods, it can be 
easily trapped in local minima [20] [21] [22] [23]. As noted by Llacer, Agazaryan 
[24], the commonly used gradient-based methods often result in different solu-
tions when different starting points are used. The FMO problem has even great-
er degrees of freedom in IMPT than in IMRT. This can lead to a higher chance 
of being trapped in a local minimum, as was pointed out by Albertini, Hug [25]. 

Despite the fact that many solution approaches have been proposed to solve 
the FMO problem, a method of avoiding local minima while converging to a so-
lution within a practical time limit has rarely been reported. Hou et al. [26] [27] 
proposed a method to formulate the IMRT FMO problem into a molecular dy-
namics problem which motivated this study. Molecular dynamics is a powerful 
computational technique that is often used to simulate the physical movement of 
atoms and molecules in a many-body system. In Hou’s paper, the beamlets in 
IMRT were considered as virtual atoms. The weight of the beamlets were for-
mulated as the positions of the virtual atoms and the objective function value 
(OFV) of the FMO problem in IMRT was formulated as the potential energy of 
the dynamic system. In classical molecular dynamics, because the movement of 
atoms follows Newton’s Law of Motion, the dynamic system will relax to an equi-
librium state with the lowest free energy. In this process, the position and veloc-
ity of the atoms will change with time. Thus, following the MD formulation, the 
beamlets weight and virtual velocity will update over time and the OFV of the FMO 
problem will be minimized. The MD method’s feature of virtual velocity differs 
from traditional gradient algorithms in that it only updates the weight. Fur-
thermore, within the FMO problem, virtual velocity can help atoms overcome 
the barrier and get out of the local minima, e.g., an atom goes into a local mini-
mum but can continue to move pass the saddle points and reach a lower point 
with sufficient speed. In addition, the search direction in MD follows dynamic 
equations which enable MD to converge faster than many global optimization 
methods. These advantages give this method the potential to overcome the local 
minima problem in FMO for radiation treatment planning without spending 
excessive computation time. 

In this study, a MD method was implemented for the FMO problem in IMPT 
and tested on three patient cases with different starting points. The primary ob-
jective of this study is to demonstrate the MD method can be a viable alternative 
for solving the IMPT FMO problem and evaluate whether this method can alle-
viate the impact of the starting points, a major issue of gradient-based methods. 

The remainder of the paper is organized as followed: Section 2 describes the 
optimization model, the solution algorithms are in Section 3 which includes an 
introduction to the MD method and its formulation of the IMPT FMO problem 
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and an existing quasi-Newton method formulation is shown for the purpose of 
algorithmic performance comparison. The data used in the experiment and the 
initial configuration setups are listed in Section 4. Last but not least, Section 5 
provides the results regarding the convergence properties of the MD method 
and quasi-Newton algorithm. 

2. Optimization Model Formulation 

The main purpose of IMPT is to deliver the prescribed conformal radiation dose 
to the targeted tumor while sparing normal tissues. To achieve this goal, we de-
fine a quadratic objective function to quantify the difference between the pre-
scribed dose ( *

nD , where n is the index of each organ of interest) and the actual 
dose ( iD , where i is the voxel index) delivered to the patient. Although different 
types of objective functions are reported in the literature [28] [29], dose-based 
quadratic objective functions are commonly used in the medical physics com-
munity [13] [14] [15] [17] [30] for optimizing beam intensities in radiation 
therapy and is the base model for this paper. 

A dose-based objective function F is composed of two parts: tumor
nF  for the 

nth target, 1, 2,n =  , and oar
mF  for the mth OAR, 1,2,m =  . Because the 

primary goal of treatment planning is to obtain an actual radiation dose profile 
that is identical or nearly identical to the prescribed dose level on the target, 

tumor
nF  can be defined as the deviation of the resulting actual dose iD  on voxel 

i from the target prescription dose T
nD : 

( )2

1

1 T
nNtumor T

n i nT i
n

F D D
N =

= −∑ ,                   (1) 

where T
nN  is the total numbers of voxels in the nth target. Similarly, oar

mF  can 
be defined as 

( )2

1

1 oar
mNoar oar

m i moar i
m

F D D
N = +

= −∑ ,                  (2) 

where oar
mN  is the total number of voxels in the mth OAR, oar

mD  is the specified 
tolerance dose for the organ, and ( )δ +

 is defined as ( ) ( )max ,0δ δ
+
= . Note, 

we introduced the step function oar
mF  because healthy organs are often allowed 

to receive radiation doses up to a certain amount. However, once the amount is 
over a tolerance value, a penalty will be imposed on the voxel according to the 
degree of deviation from the tolerance. 

The dose iD  in voxel i can be calculated as: 
N

i ij jjD k ω= ∑ ,                        (3) 

where jω  is the weight or intensity of beamlet j, which is the decision variable 
of our IMPT optimization model. Notation N denotes the total number of 
beamlets and ijk  is the unit dose contribution of the jth beamlet to the ith voxel; 

ijk  is also known as the dose deposition coefficient. Here the values of ijk  are 
calculated using an in-house dose calculation engine for proton beamlets [31]. 
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Using the notation described above, the dose-based objective function for our 
optimization model is: 

tumor tumor oar oar
n n m mn mF p F p F= +∑ ∑ ,                (4) 

where tumor
np  and oar

mp  denote the penalty weights of the nth tumor site and mth 
OAR, respectively. These weights are often obtained by trial and error by plan-
ners (dosimetrists, physicists, etc.), to find a balance between tumor dose cover-
age and OAR dose sparing to satisfy the clinical criteria. In this study, the model 
follows the common practice in the medical community of containing a physical 
constraint: the beamlet weight cannot be negative, i.e., 0, 1,2, ,j j Nω ≥ =  . 
Hence, our optimization model for the IMPT FMO problem is: 

min
s.t. 0, 1, 2, ,j

F
w j N≥ = 

                    (5) 

3. Solution Algorithms 

In the following sections, we briefly describe the general concept of MD followed 
by the use of MD for radiation therapy. For the purpose of algorithm perfor-
mance comparison, we describe a quasi-Newton method for FMO, introduced 
by Lomax [32] and has been well accepted in the medical community. 

3.1. Molecular Dynamics 

MD is a computational technique for many-body system simulation that has 
been widely applied in the material sciences community. In a classical MD mod-
el, the physical movements of particles in the system follow Newton’s Laws of 
Motion [33]. Let jx  be the position and jv  be the velocity of a particle j. 
Then, force jf  is the product of mass jm  and acceleration ja  of the particle: 

2

2

d d
d d

j j
j j j j j

j j

v x
f m a m m

t t
f E

= ⋅ = =

= −∇
                  (6) 

where t is the time of the system and E is the potential energy of the system. The 
force jf  is related to the acceleration and can be expressed as the gradient of 
the potential energy of the particle. 

Based on Newton’s Laws of Motion, the position, velocity and acceleration of 
the particle can be described as functions of time t; 

( ) ( ) ( )2

2

d d d
,

d d d
j j j

j j

x t v t x t
v a

t t t
= = =                 (7) 

Therefore, the continuous motion configuration of the system can be calcu-
lated by integrating Newton’s Laws of Motion. When the system is under the in-
fluence of continuous potential energy, the positions and velocities can be ap-
proximated using a Taylor series expansion for a small time step t∆ , 0t∆ > : 

( ) ( ) ( ) ( ) ( )2 31 1
2 6

x t t x t v t t a t t b t t+ ∆ = + ∆ + ∆ + ∆ +          (8) 
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( ) ( ) ( ) ( ) ( )2 31 1
2 6

v t t v t a t t b t t c t t+ ∆ = + ∆ + ∆ + ∆ +          (9) 

where a, b and c are the second, third and fourth time derivatives of the coordi-
nates. 

This Taylor expansion serves as the basis for the most common integrators 
used in MD calculations. Many classical methods for integrating equations re-
quire information from both current and previous steps to update the system. 
This means the information from these steps must be stored in memory and the 
system cannot self-start at the beginning [34]. To resolve this problem, Swope et 
al. [35] introduced the Velocity Verlet method which requires information from 
the previous step only: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

21 ,
2

1 .
2

x t t x t v t t a t t

v t t v t t a t a t t

+ ∆ = + ∆ + ∆

+ ∆ = + ∆ + + ∆  

             (10) 

Therefore, this approach is selected in our algorithm to update the MD system 
to solve the IMPT FMO problem. 

3.2. MD Method for FMO 

In IMPT, the optimization problem can be formulated as a dynamic system with 
N virtual atoms [26]. Each beamlet weight ( jω ) is assumed to be the position 
( jx ) of a virtual atom j in 1-D dimension. The objective function (F) can be 
considered as the potential energy (E) of the system. As a result, the dynamic 
equations for virtual atom j can be expressed as: 

2

2

d d d d
, , .

d d dd
j j j j

j j j j
j

v v Fv a f m
t t t dt
ω ω

ω
∂

= = = = =           (11) 

In this study, we followed the approach of Hou et al. [26], in which the mass 
of the virtual atom j equals the summation of the unit dose contribution of all 
voxels influenced by the jth beamlet, written as 

1
jN

j ijim k
=

= ∑ , where jN  is the 
total number of voxels influenced by beamlet j. Using the velocity Verlet method 
mentioned in Section 3.1, the dynamic updating equations for the IMPT FMO 
problem is written as: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

21
2

1
2

j j j j
j

j j j j
j

t t t v t t t f t
m

v t t v t t f t f t t
m

ω ω+ ∆ = + ∆ + ∆

 + ∆ = + ∆ + + ∆ 

           (12) 

Hence, we calculate the updating beamlet weights by Equation (12) and we 
can combine Equation (12) with Equation (4) to calculate the trajectory of the 
OFVs. 

In physics, temperature is used to specify the thermodynamic state of a sys-
tem. In the MD system, temperature (T) is related to the kinetic energy of the 
system and can be calculated as: 
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2
1

1
3

N
j jjT m v

Nk =
= ∑                       (13) 

where k is the Boltzman constant and N is the total number of particles in the 
system. 

The MD system will converge to an equilibrium state with the lowest free 
energy. Note that free energy consists of kinetic energy and potential energy. 
Therefore, the potential energy equals the free energy only when kinetic energy 
is zero, i.e., the temperature of such system is zero. Thus, the objective function 
(potential energy) of our FMO model is minimized when the system reaches an 
equilibrium state with zero system temperature. However, in physics, the kinetic 
energy and potential energy of a dynamic system follow the law of energy con-
servation. Although kinetic and potential energy will interchange continuously, 
the total energy will remain unchanged. This can create an issue of convergence 
to a specific point because the atoms can still carry significant speed when they 
reach that point. As a result, atoms may move away from an optimal point with 
the lowest potential energy. In order to solve this problem, a “friction” to the sys-
tem (i.e., a damping factor to the MD system) is added to slow the movements of 
atoms as they get closer to an optimal point. The following damping function is 
applied in our algorithm: 

( )
( ) ( ) ( )

( )
, if 0

where 0 1
, otherwise.

j j j
j

j

v t v t f t
v t

v t

λ
λ

<= < <


        (14) 

As we mentioned above, their speed may cause the atoms to pass the optimal 
point and create an issue of convergence. On the other hand, when the virtual 
atoms become trapped in local minima, a proper speed may help them continue 
to move and get out of those local minimum points. Using this feature, we em-
ploy temperature scaling to adjust the velocities to help the atoms move out 
from the local minimum points. From the updating function, Equation (12), we 
define the scaling function as: 

( ) ( ) ( ) ( )
0

1
2

d
j j j j

j

T
v t t v t t f t f t t

T m
 + ∆ = + ∆ + + ∆  ,        (15) 

where 0T  is the initial temperature and dT  is the desired temperature. 
An important physical constraint of IMPT planning is that the beamlet weight 

jω  cannot be negative. Hou and Wang [26] suggested a barrier potential with 
an infinite height at 0ω =  to impose this constraint. The virtual atoms are re-
flected by changing the sign of their velocity each time they try to pass the bar-
rier: ( ) ( )j jv t v t= − , when ( ) 0j tω < . 

The proposed MD method to optimize the IMPT FMO problem is outlined 
below. The algorithm stops when either of these following conditions are met: 
1) a certain number of iterations is reached or 2) there is no change (smaller 
than ε , i.e. 10−4) in the objective value for a certain number of consecutive ite-
rations. 
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Molecular dynamics method 

1: Initialization: 0:t tδ = ; : 0v = ; *
0:ω ω= ; *

0:F F=  

2: while stopping criteria are not met do 

3:     Calculating force f  and updating ω  and v , Equation (12); calculating F, Equations (1)-(3); 

4:     if *F F ε< −  then 

5:           * :F F= ; * :ω ω=  

6:     else if *F F<  then 

7:          * :F F= ; * :ω ω= ; Heating the system by setting the desired temperature 0dT Tβ= ; 

8:     else 

9:          Heating the system by setting the desired temperature 0dT Tβ= ; 

10:     end if 

11:          Damping the system by setting the atom j, if  ( ) ( ) 0j jv t f t < ; ( ) ( )j jv t v tλ= ; 

12:          Checking the physical constraint, set ( ) ( )j jv t v t= − , when ( ) 0j tω < ,  

14: end while 

15: return ( *ω ) as optimal solution 

 
In our implementation, if a new solution increases the OFV to a value larger 

than𝜀𝜀, it replaces the old one. Otherwise, if the new solution increases the OFV 
but the value remains smaller than ε , it replaces the old solution and the system 
is heated by rescaling the temperature by 0dT Tβ= , where β  is the heating 
rate and typically lies between 1.1 and 2. If there is no OFV improvement, we 
keep the old solution and also heat the system. When the stopping criteria are 
satisfied, we stop the algorithm and return the final solution. 

3.3. Quasi-Newton Algorithm 

The quasi-Newton algorithm is often used for solving the FMO problem in radi-
ation treatment planning; it has been implemented in Eclipse, a leading radiation 
treatment planning system [13] [14] [15] [16] [25] [32] [36]. Zhang, et al. (2004) 
mentioned that different gradient-based algorithms for FMO have similar con-
vergence properties and the quasi-Newton method appears to be the fastest one. 
So, in this study, we implemented a quasi-Newton method which was proposed 
by Lomax [32] for the algorithm comparison purpose. 

For a standard Newton method, the updating function of a beamlet weight at 
each iteration is defined as: 

( ) ( ) ( )( )( ) ( )( )121 kk k F k F kω ω α ω ω
−

+ = − ∇ ∇ .          (16) 

Because calculating the Hessian matrix ( )( )2F kω∇  and its inverse can be 
computationally expensive due to the large size of the beamlet vector, the matrix 
is often approximated by its diagonal matrix [13] [15]. Another limitation of 
many existing approaches in the clinic is that algorithm implementations are of-
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ten based on an unconstrained minimization problem even though a radiation 
treatment plan requires that all beamlets be nonnegative. Wu and Mohan [14] 
described a method in which the constraint is checked at the end of each itera-
tion and for any beamlet weights with negative values, they are reset to zero. Liu 
et al. [30] used 2

jω  instead of jω  in the objective function. In our study, we 
applied the damping factor introduced by Lomax [32] in the form of: 

( ) ( )
( )

j ij
ij

i

k k
a k

D k
ω

= .                      (17) 

Therefore, the iterative updating function is: 

( ) ( )

( )

2

2

2 20 0

2 2

d
d

1
d
d

n m
t oar

n m
t oar

j
j j k

j

tumor T oar oar
N Nn m

ij ijn mn i m i
i it oar

j tumor oar
N Nn m

ij ijn mn i m i
t oar

F

k k
F

p D p Dk k
D DN N

k
p pk k
N N

ω
ω ω α

ω

ω

 
 
 + = −  
  
 

+
=

+

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

    (18) 

Similar to the MD method, the quasi-Newton algorithm stops when either one 
of the following two conditions is met: 1) a preset number of iterations is 
reached or 2) there is no improvement in the OFV after a certain number of 
consecutive iterations. 

4. Numerical Experiments 

All algorithms were implemented in C++ and all experiments were performed 
on a 64-bit Linux workstation with 128 GB of memory and quad Intel Xeon 
E5649 2.53 GHz processor. 

Both MD method and quasi-Newton method were used to solve the FMO 
problems for plan optimization. Different types of cancer patient cases were 
tested to represent varying complexity and tumor size for the study. There were 
three different point generation methods used to create different initial condi-
tions for each case. The final objective function value and the objective function 
values during the optimization process were recorded for result analysis. 

4.1. Patient Data 

The three clinical cancer cases from The University of Texas MD Anderson 
Cancer Center selected for this study was a prostate cancer, head-and-neck can-
cer and a lung cancer case (see Figure 2). The corresponding beam angles for 
each case are marked by arrows F1, F2 and F3, respectively. 

The beam angles, number of beamlets in each beam, volumes of interest and 
number of voxels of each volume for each case are listed in Table 1. The prostate 
case involved a medium-sized tumor that required only a simple treatment plan 
in which parallel-opposed fields were used. The head-and-neck case had a small 
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target size but some very subtle OARs such as the optical chiasm. The lung case 
represents a large sized tumor case. It contains twice as much target volume than the 
prostate case and twice as large in total volume compared to the head-and-neck 
case. Because of this, more beamlets were required to cover the tumor for the 
lung case. 

The planned doses and penalty weights for the corresponding VOIs in a 
dose-based objective function for the three IMPT cases are listed in Table 2. The 
same penalty was applied to different initial conditions in each case. Because the 
highest priority was to satisfy the tumor coverage and dose uniformity require-
ments, the penalty for the target was high. Meanwhile, the target dose to the 
OARs is set to 0 Gy, which means we wish to minimize the dose on OARs as low 
as possible. 

The parameter values of each algorithm were assigned the same values for all  
 

 
Figure 2. The three clinical cancer cases selected for the study and their corresponding field direc-
tions. (a) Prostate cancer case; (b) Head-and-neck cancer case; (c) Lung cancer case; the tumors are 
contoured in red. 

 
Table 1. The intensity-modulated proton therapy beam angles, number of beamlets in 
each beam, VOIs and number of voxels of each VOI for the three cancer cases. 

Cancer type Beam angle Number of beamlets VOI Number of voxels 

Prostate 90˚ 599 STV 4916 

 270˚ 605 Bladder 15,189 

   Femoral heads 23,908 

   Rectum 8570 

Head-and-neck 75˚ 374 CTV 2603 

 240˚ 356 Brain 96,536 

 300˚ 365 Brainstem 2506 

   Optic chiasm 110 

Lung 205˚ 1539 PTV 11,161 

 275˚ 1218 Esophagus 1435 

 345˚ 1042 Spinal cord 2030 

   Total lung 159,188 

   Heart 18,148 

Abbreviations: VOI: volume of interest, STV: scanning target volume, CTV: clinical target volume and 
PTV: planning target volume. 
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Table 2. Dose-based objective function parameters used for optimizing the intensi-
ty-modulated proton therapy plans. 

Cancer type VOI Dose (Gy) Weight 

Prostate STV 78 200 

 Bladder 0 1 

 Femoral heads 0 1 

 Rectum 0 1 

Head-and-neck CTV 74 200 

 Brain 0 1 

 Brainstem 0 1 

 Optic chiasm 0 1 

Lung PTV 74 200 

 Esophagus 0 1 

 Spinal cord 0 1 

 Total lung 0 1 

 Heart 0 1 

 
cancer cases. The stopping criteria were either: 1) the number of iterations 
reached 10,000 or 2) there was no change in the OFV for 20 consecutive itera-
tions, where 10 4eε = − . 

4.2. IMPT Starting Conditions 

In this study, the IMPT plans of each of three cases were obtained from three 
different initial conditions (Figure 3). These initial conditions have been de-
scribed by Albertini et al. [25] and described briefly below: 

1) Forward wedge (FW). All beamlet weights are set the same creating a 
wedge-shaped dose that has a high dose at the proximal edge and a low dose at 
the distal edge (Figure 3(a)). 

2) Inverse wedge (IW). The beamlet weights are set to distal tracking creating 
an inverse wedge-shaped dose that has a very low dose to the proximal edge and 
a high dose to the distal edge (Figure 3(b)). 

3) Spread-out Bragg peak (SOBP). The beamlet weights are arranged to deliv-
er a flat dose on the targeted area (Figure 3(c)). 

5. Results 

Choosing the prostate cancer case as a representative, the plots of OFV as a func-
tion of the number of iterations using the two algorithms are shown in Figure 4. 
For each of the three different initial conditions, the MD method consistently 
reached a lower OFV than the quasi-Newton method. Furthermore, in the same 
iteration, the MD method converged faster in all instances. Going beyond the 
iteration did not make much change in OFV. Figure 4 also shows several bumps  
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Figure 3. The initial beamlet weights for a single intensity-modulated proton therapy field from three initial con-
ditions: (a) Forward wedge; (b) Inverse wedge; (c) Spread-out Bragg peak (SOBP). 

 

 
Figure 4. The OFVs of different methods as functions of the iteration steps for the intensity-modulated proton 
therapy processes. The green arrows show bumps in the MD optimization process, which do not occur when the 
quasi-Newton method is used. 

 
along the optimization process of MD. This indicates the OFVs were not mono-
tonically decreased over the iteration which was not the case for the quasi-Newton 
method where the OFV decreased smoothly and monotonically over time. Simi-
lar results were also observed in the other two cases. 

Figure 5 compares OFVs and the computation times obtained from different 
initial conditions for the three cases using the MD and quasi-Newton algorithms. 
We make several observations from this comparison study. 

Observation 1: In all cases, the MD method outperformed the quasi-Newton 
method in terms of OFV. 

Observation 2: For each problem instance, the MD method consistently con-
verged on the same objective value regardless of the starting conditions while  
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Figure 5. The objective function values (OFVs) and computation times for the molecular dynamics (MD) and qua-
si-Newton methods for intensity-modulated proton therapy planning for the three cancer cases starting from forward 
wedge (FW), inverse wedge (IW) and spread-out Bragg peak (SOBP) initial conditions. 

 
OFVs obtained by the quasi-Newton method varied substantially when different 
starting conditions were utilized. 

Observation 3: The IW condition for the quasi-Newton method yielded the 
worst OFVs. 

Overall, the MD method required longer computation times before it reached 
one of the stopping criteria. For the prostate and head-and-neck cases, the qua-
si-Newton method had a greater time variation among the initial conditions while 
the computation times for the MD method differed slightly depending on the ini-
tial conditions. For the lung case, the quasi-Newton method reached convergence 
points about 25% faster than the MD method in three initial conditions. 

In Table 3, the number of iterations required to reach the same or final OFVs 
for two algorithms are listed. To reach the final OFV, the number of iterations 
was influenced by the starting points for both algorithms. For example, the MD 
method took 3750, 3334, 3210 iterations to reach final points in the FW, IW, 
SOBP condition of the prostate case respectively. Compare to the quasi-Newton 
method, which took 3921, 5210, 1952 iterations to converge to final results. 
However, for all three cases, fewer iterations were needed by the MD method to 
reach the same OFVs compared to the quasi-Newton method. For example, in 
the prostate of FW condition, to reach the objective function value 2500, the MD 
method only took 213 iterations compare to the quasi-Newton method, which 
took 1880 iterations. This leads us to believe the MD method could be used for 
FMO to obtain a reasonably good treatment plan in a relative short computation 
time. 

The dose-volume histograms (DVHs) of the scanning target volume (STV) 
and femoral heads for the prostate case, the DVHs of the clinical target volume 
(CTV), brain, brainstem, and optic chiasm for the head-and-neck case and the 
DVHs of the planning target volume (PTV), spinal cord and esophagus for the 
lung case are shown in Figure 6. These DVHs show the results using the MD  
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Table 3. The number of iterations required to reach the same and final OFVs using MD method and qua-
si-Newton method with different starting conditions. 

Cancer type OFV 
MD Method No. Iterations Quasi-Newton Method No. Iterations 

FW IW SOBP FW IW SOBP 

Prostate 5000 16 16 15 10 130 8 

3000 62 64 61 249 725 247 

2500 213 231 204 1880 NA 1860 

 Final 3750 3334 3210 3921 5210 1952 

Head-and-neck 3000 14 185 15 8 182 6 

2000 24 199 24 36 319 25 

1000 55 326 76 243 1541 157 

 Final 3432 2879 3378 5534 2659 3076 

Lung 5000 20 15 9 32 27 8 

3000 51 44 23 153 142 16 

2500 113 104 52 401 385 47 

 Final 3690 3304 3582 3654 3256 2879 

Abbreviations: NA means the stopping criteria were met before the OFV was reached. 
 

 
Figure 6. The dose-volume histograms (DVHs) of three cases using the molecular dynamics method or the 
quasi-Newton method starting from three initial conditions: forward wedge (FW), inverse wedge (IW) and 
spread-out Bragg peak (SOBP). 
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method starting from different initial conditions were almost identical. In con-
trast, the results using the quasi-Newton method varied from case to case. The 
higher OFVs may reflect worse target coverage and OARs sparing in DVHs. 

The dose distributions in the prostate cancer case using the MD and qua-
si-Newton methods are shown in Figure 7. The result doses were normalized to 
95% of the target volume received at 100% of the prescribed dose for all plans. For 
the dose distribution, the MD method yielded the same result regardless of the ini-
tial conditions used, whereas the results from the quasi-Newton method varied 
from one case to the next. The quasi-Newton method for the head-and-neck case 
was the most sensitive to different initial conditions while the lung case was the 
least sensitive. Furthermore, the dose distribution from the MD method was 
clinically better (i.e., more conformal) than the quasi-Newton method. 

6. Conclusion 

Our MD method was developed to overcome the local entrapment issue ob-
served in many gradient-based algorithms that are extensively used in radiothe-
rapy planning systems in clinics. A previously reported quasi-Newton method 
for fluence map optimization was implemented as a benchmark for our pro-
posed MD method. The performance of the MD method was compared to the 
quasi-Newton method using three representative clinical cancer cases. For each 
method, three popular initial conditions were used for each case. We found that 
the MD method consistently produced solutions that were the same or within a 
negligible margin of error regardless of the initial conditions used. The qua-
si-Newton method, however, was sensitive to its initial conditions by converging 
on noticeably different solutions. Compared to the quasi-Newton method, the 
MD method requires longer total computation time to reach the stopping points  

 

 
Figure 7. Intensity-modulated proton therapy dose distributions from the molecular dynamics (MD) me-
thod and quasi-Newton method for the prostate cancer case. A-C: Dose distributions using the MD method 
starting from forward wedge (FW), inverse wedge (IW) and spread-out Bragg peak (SOBP), respectively. 
D-F: Dose distributions using the quasi-Newton method starting from FW, IW and SOBP, respectively. 
The orange, red and magenta isodose lines indicate relative doses of 50%, 100% and 110%, respectively. 
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especially in large tumor sized case. However, to reach the same OFVs, fewer 
number of iterations were required for the MD method. This indicates that the 
MD method can not only solve the FMO problem effectively, but also has the 
potential to obtain a clinically feasible solution in a short time. Future work can 
include the implementation of the MD method using parallel computation in a 
multi-core desktop environment. 
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