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Abstract 
The resolvent helps solve a PDE defined on all of wave-number space, ∈k . 
Almost all electromagnetic scattering problems have been solved on the spa-
tial side and use the spatial Green’s function approach. This work is moti-
vated by solving an EM problem on the Fourier side in order to relate the re-
solvent and the Green’s function. Methods used include Matrix Theory, 
Fourier Transforms, and Green’s function. A closed form of the resolvent is 
derived for the electromagnetic Helmholtz reduced vector wave equation, 
with Dirichlet boundary conditions. The resolvent is then used to derive ex-
pressions for the solution of the EM wave equation and provide Sobolev es-
timates for the solution. 
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1. Introduction 

This paper solves Maxwell’s equations on the wave-number side. I apply tools 
from classical functional analysis to the Electromagnetic Helmholtz Reduced, 
Vector Wave Equation. These tools have been used successfully to understand 
solutions of second order, linear, ordinary differential equations with Dirichlet 
or Neumann boundary conditions, but to the author’s knowledge do not apply 
to more general settings.  

I follow techniques described by Chew [1] using i∇→ − k , and the spectral 
representation for ( ) ( )ˆ ˆE k ,H k . The spectral or k  side motivates the study of 
solutions in wave-number space.  

To the author’s knowledge, there has not been a significant amount of re-
search on solving electromagnetic problems on the wave-number side. This 
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could be because students in electromagnetics do not take courses in Functional 
Analysis or Applied Analysis.  

Electromagnetics (EM) and Quantum Mechanics (QM) usually yield very 
singular solutions. All EM problems are scattering problems solved using singular  

Green’s functions. The Operators in both EM (
x
∂
∂

) and QM ( i ψ ′−  ) problems  

are singular. As an example, the solution of the homogeneous vector wave equa-
tion is unbounded. If we consider, 2ˆ (k) Sobolev space ∈E   with a norm that is 
complete w.r.t. ⋅ , the solution is compact using weak derivatives.  

2. The Reduced, Vector Helmholtz Wave Equation 
2.1. Homogeneous Case, Radiation Condition at ∞ 

We derive the vector Helmholtz wave equation assuming harmonic time depen-
dence, e i t i

o
ω− + ⋅k xE , from Maxwell’s curl equations, and the divergence for E  in 

a source-free region. To introduce later on a Fourier transform for ( )E x , con-
sider the domain for k  to be 3 , 3mod R . Then our problem is given by  
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x k
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E E E E
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k  is a root of a homogeneous polynomial of degree 2, with constant coeffi-
cients; i.e., the last equation in (2) is the Dispersion equation,  

22 2 2 2
o x y zk k k k= + + = k                         (3) 

From the last of Equation (2), we have  

( )2 2

0
0
0

x

o y

z

E
k E

E

   
   − =   
   
   

k                         (4) 

From Equation (3), if 22 2 2 2
o x y zk k k k= + + = k , then ≠E 0  then the homo-

geneous system in Equation (1) has a non-zero solution in the form of a spheri-
cal wave traveling in 3  and satisfying  
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oiωµ∇× =

⊥ =

E H
k E 0

                          (5) 

To construct a solution for ( ), tE r , go to the Fourier side where  

( ) ( ) ( ) ( )
3

3
3 32, ,

ˆ ˆ2π d , ,x y zi k x k y k ze + ±−
⊥ ⊥= ∈ ∈∫∫∫E k E r r E r
 



           (6) 

where Ê  is the symbol of the operator, and the plus sign in the exponential 
corresponds to waves traveling in the −z direction and the negative sign for 
waves traveling in the +z direction. The symbol of the operator will be con-
structed to satisfy  

ˆ 0⋅ =k E                             (7) 

Parseval’s theorem on the Fourier side gives  

( ) ( ) ( )
3

2 22ˆ
∈

= ⋅∑
r

E k r r E r                    (8) 

The symbol of the operator satisfies  

( ) ( ) ( )
0

ˆ ˆ ˆ

=

× × = ⋅ − ⋅


k k E k E k k E                   (9) 

If 2 2
ok k= , the solution for Ê  when Ĥ  is ⊥  to the plane of propagation 

containing ˆ ,E k , the so-called TM case, as in Figure 1, is  

( ) ( ) eˆ ˆ
i

x
y
z

⋅

=

 
 =  
 
 

k r

E k e k
r

r

 

                       (10) 

 

 
Figure 1. Geometry showing plane of incident wave and plane containing perfect con-
ductor.  
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2.2. Inhomogeneous Case, Dirichlet Boundary Conditions,  
Radiation Condition at ∞ 

Solve  
2
o ok iωµ∇×∇× − =E E J                      (11) 

with Dirichlet boundary conditions on the green-black plane in Figure 1,  
( ){ }, , | 0x y z z∂Ω = =   

z

× =
=

n E 0
n e

                           (12) 

and a radiation condition at , nz = ∞ = ×J e H .  
Two independent vectors span the red-yellow plane in Figure 1. The basis 

vectors on the Fourier side, are given by  
2 2

2 2 2 2 2
ˆ x yx x

z

x y x y

k kk

k k k k k

+
=

+ − −




e
e e                  (13) 

and a basis vector perpendicular to the incident plane as  

2 2

2 2

ˆ ˆ x x
z

x y

y x

x y

k

k k

k

k k

⊥ = ×
+

= −
+

e
E e

e
                       (14) 

Tangential ˆ


E  satisfies the boundary condition on the surface at 0z = , i.e.,  

ˆ
z × =



e E 0                           (15) 

The perfectly conducting plane in Figure 1 where ( ){ }3, , | 0x y z zΩ = ∈ ≥ , 
is translationally invariant in the z-direction, so z∀  the arguments for ˆ ˆ,⊥ 

E E  
in the z-direction in the inverse transform of Equation (6) are given by  

( ) ( ) ( ) ( )


3

3
2

to satisfy radiation condition

ˆ2π e e dx y zi k x k y k z− +− ±
⊥ ⊥= ∫∫∫E r E k k



      (16) 

Equation (11) can be written in matrix form as  
2 2 2

2 2 2

2 2 2

ˆ ˆ

ˆ ˆ

ˆ ˆ

x xy z o x y x z

x y x z o y z y o y

x z z y x y o z z

E Jk k k k k k k
k k k k k k k E i J
k k k k k k k E J

ωµ

    + − − −     
− + − − =    

    − − + −        


A

    (17) 

Equation (17) consists of 3 equations in 3 unknowns yielding a consistent sys-
tem. On the Fourier side the EM problem for a region containing an object with 
induced currents, the solution reduces to solving a linear algebra problem. The 
inverse operator, 1−A  exists if and only if  

ˆ ˆ

ˆ ˆ

ˆ ˆ

x x

y y

z z

E E

E E

E E

   
   

= ⇒ =   
      
   

A 0 0                      (18) 

which occurs when we are “sitting on an eigenvalue” i.e., ( )( )pλ σ∈ A k . The 
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properties of the resolvent in the next section will demonstrate the different de-
scriptions of the spectrum.  

The inverse operator is given by  

( )

2 2

1 2 2
2 2 2 2 2

2 2

1 o x x y x z

x y o y y z
o o x y z

x z y z o z

k k k k k k
k k k k k k

k k k k k k k k k k k

−

 −
 

= − 
− − −  − 

A          (19) 

The inverse is singular when 2 2
ok k=  or 0ok = . The eigenvalues are  

2
1

2 3 0
okλ

λ λ
= −

= =
                             (20) 

where Equation (20) has algebraic multiplicity of 2 since the geometric multip-
licity is  

( )dim 1N Iλ− =A                          (21) 

An example of the variation of ( )det λ−A I  with λ  is shown in Figure 2 and 
the values of | k |  and ok  are shown in Table 1. 

3. The Resolvent 

The operator in this study is A  where  

( )( ): X→A A k                        (22) 

a complex variable. With A  we associate the operator  

λ λ= −A A I                            (23) 

where λ  is a complex varible. λA  is called the Resolvent Operator (Kreyszig 
[2]) because it solves the equation  
 

 

Figure 2. Variation of ( )det λ−A I  versus eigenvalue, λ .  
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Table 1. The values of | k |  and ok . 

ki Value 

k
x
 3/4 

ky 0 

kz 3/4 

|k| 3
2 2

 

ko 1 

λ1 = −1 2 3

1
8

λ λ= =  

 

( ) 1
λ

λ λ −

=

= −

A x y

R A I
                         (24) 

The determinant of ( )λ−A I  is a polynomial of Degree 4, with coefficients 
in   consisting of 78 monomials. After several attempts, I was able to factor 
the polynomial as  

( ) ( )( )
( )

( )
( ) ( )

2 2 2 2 2 2 2 2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2 2 2

denominator

2

y z o z x o x y o y z

x y x y x y o x y z

x z y x z x z x z o

o o o

k k k k k k k k k k k

k k k k k k k k k k

k k k k k k k k k k

k k k k k

λ λ λ

λ

λ

λ λ

 = + − − + − − + − − − 
 + − + − − − 
 − + + − − 

= − + − −

    (25) 

The denominator is a quadratic in λ  which factors as  

( ) ( )
( ) ( ) ( )2 2 4 2 2 4

2 2 2
1 , 2,3

2 4 4

2 4
o o o

o o

k k k k k k
k k kλ

− − +
= − ± − +        (26) 

Figure 2 shows a plot of the denominator versus λ , and as stated above 
2

1 okλ = − , 2 3 0λ λ= = , geometric multiplicity 1= .  
We now give the 9 elements in the matrix for λR ;  

2 2

2 2

2 2

1
denominator

o x x y x z

x y o y y z

x z y z o z

k k k k k k
R k k k k k k

k k k k k k
λ

λ
λ

λ

 − +
 

= − + 
 − + 

        (27) 

In Figure 3, I show a plot of the resolvent versus λ  for the parameters in 
Table 1. The singularity at 1λ  = 2

ok  = −1 is part of the point spectrum, pσ . 
The eigenvalues 2λ  = 3λ  = 0 do not produce a singularity because their alge-
braic is 2. 

In general, the spectrum [3], ( )( )σ A k  is partitioned into three disjoint sets:  

( )( )
( ) ( )( )
( )

(1) is an eigenvalue and in

(2) is unbounded and

(3) exists and may be bounded or unbounded
but the domain is not dense in .

p

c

X

λ λ σ

λ σ∈

A k

A k A k

A k
           (28) 
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Figure 3. The resolvent versus λ. 

 
In our problem we have 3 eigenvalues and an unbounded spectrum.  

The Fourier transform of the resolvent is  

( ) ( ) ( )3

3
2

12π e di
λ λ

− − ⋅=
−∫



k xR x k
A I

                  (29) 

The Fourier transform of the current, Ĵ  is  

( ) ( ) ( )
3

3
2 ˆ2π e di− − ⋅= ∫ k xJ x J k k


                    (30) 

Using the Convolution Theorem the general solution to our problem on the 
wave number side for arbitrary currents in the inhomogeneous equation is:  

( )


( ) ( ) ( )




3
3 33

3
2

d d d

ˆ2π e d
x y z

i

k k k
λ

− − ⋅

∈ ∈∈

= ∫ k xE x R k J k k


 

                (31) 

which is integrated one row at a time. The integration in the yk  direction in 
required for the geometry in Figure 1. 

The integrand in Equation (31) without J the Green’s function,  

( ) ( ) ( )

3

3
22π ( )e di

λ λ
− − ⋅ −− = ∫ k x y

k

G x y R k k                (32) 

and the solution is  

( )
3

(x) ( )dλ= −∫
R

E G x y J y y

 

                (33)  

For the geometry in Figure 1, 0yk =  and the resolvent simplifies to  

2 2

2

2 2

0
1( ) 0 0

denominator
0

o x x z

o

x z o z

k k k k
R k

k k k k
λ

λ
λ

λ

 − +
 

= + 
 − + 

k         (34) 

and Equation (29) becomes  
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( ) ( )
( ) ( ) ( )3

2 2

2

2 23
2

2 2 2 2 2 2 2 2

0
0 0

0
x 2π e d

2

o x x z

o

x z o z i x

o o o o

k k k k
k

k k k k

k k k k k k k
λ

λ
λ

λ

λ λ λ
− −

 − +
 

+ 
 − + =

 − + − − − − 
∫ k

k

R k (35) 

The zk  integration can be evaluated in closed form and the first row of Equa-
tion (35) becomes 

( ) ( )

2 2
02 2 2

2 2 2 2 2 2

e arctan d ,

10, ln 1
4

x zik x k z
z

x x x
o o x

o x z o x z

ki k k k
k k k

k k k k k k

λ λ
λ λ

λ λ

− − = − − +
+ − + −

 − − + + − − + + − −  


∫R e

       (36) 

with the xk  integration of the form  

arctan da u
u∫                           (37) 

4. The Resolvent as a Projector, P 

The matrix A , is the projector onto   along  . If n∈k , then ∈px  
and − ∈x Px , for an arbitrary x . Then  

2

, , .

L
Τ

= ⊕ ∈ ∈

=

 x u v u v

Px u x
 

Let G  be a simple contour in { }\ , ,λ λ  (the spectrum) which encloses 
the eigenvalues { }1, , rλ λ , and form the integral where Γ  encloses the first r 
eigenvalues, as  

1

2

3

1 1 d
2

1 0 0

1 10 0 d
2

10 0

i

i

λ
λ

λ λ

λ
λ λ

λ λ

Γ

−
π −

 
 − 
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  − 

=

∫

∫





A I
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From Equation (20), 2
1 2,3, 0okλ λ= − = . The residue at 1λ  yields,  

2

4 4
2

0
1 10 0 0 d

2 2 2
0

x x z

o o
x z z

k k k

i k k
k k k

λ
Γ

 −
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∫P 0  

and the residue at 2,3λ  yields,  
4 2 2 2 2 2 2 2 2

2 2 2
1

2

0

denom 2

2 2
d 1lim

d

o o x o z o x z

o x z

k k k k k k

r k k k

λ

λ λ λ λ

λ

λ
λ λ→

= − − + − − −

= − − +
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( ) ( )

( ) ( )

2 2 2 2 2 22
1 1

2 2

2

2 2 2 2 22 2
11

2 2

2 2
0

denom denom denomdenom denom
20 0

denom denom
22

0
denom denom denomdenom denom

0 0 0
0 0 0
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
 




 

and P  is projected ⊥  to  .  

5. Sobolev Estimates 

Weak derivatives [4], allow a periodic solution where the operators live in finite 
space. In order to introduce the Fourier series expansion for ( )Ê k , consider the 
domain of 4∈k , a torus, 3mod ; i.e.,  

( ) ( )2 4 3

domain

ˆ ∈ →


  E k                         (38) 

where 2  is a Sobolev space [4] of dimension 2 and has 2 derivatives in 2 . 
2  is a Hilbert space with an inner product, ,⋅ ⋅ . In order to develop the So-

bolev estimates, define the map as  

( )
3 4

2ˆ ˆ
ˆ

ˆ 0

o

V

k

i

 → =
  − × × − =  →  ⋅ =  



 

G k k E E 0
E

k E

                  (39) 

notation:  

2 2 2

2

2 2 2
2

2

2 2 2

2

Hessian

x y z
x y z

x y x zx

y x y zy

z x z y z

u u uDu
k k k

u u u
k k k kk

u u uD u
k k k kk

u u u
k k k k k

∂ ∂ ∂
= + +

∂ ∂ ∂

 ∂ ∂ ∂
 

∂ ∂ ∂ ∂∂ 
 

∂ ∂ ∂ = =
 ∂ ∂ ∂ ∂∂
 
 ∂ ∂ ∂
  ∂ ∂ ∂ ∂ ∂ 

e e e

            (40) 

Defintion: weak derivatives of order n in ( )1   are derived using integra-
tion by parts.  

The derivatives in Equation (40) are evaluated as:  

( ) ( )2 2

d d .
L L

f g x fg x′ ′= −∫ ∫
 

 

If ( )1f ∈  , then the linear functional ( ) ( )1
2:F L⊂ →    , φ  in 

( )1C  , is bounded. If ( )1f ∈  , then the weak derivative f ′  is f. Here   
is the space [ ]0,2π , and φ  is a test function of compact support, such that  
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( ) ( )2 2

d d
L L

f x f xφ φ′ ′= −∫ ∫
 

, φ∀  in ( )1  . 

We want to show that ( )Ê k  gains 2 derivatives in the Sobolev space 2L .  
Weak Derivatives in L2 1.  

( )Ê k  gains 2 derivatives in the Sobolev space 2L ,          

where ( ) ( ) ( )ˆ ˆ
λ=E k R k J k .                   (41) 

#1 Proof: From the definition of a finite Sobolev space 2 ,  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 3 2 3 3 3
2 2

2 2 22ˆ ˆ ˆ ˆ
H L L L

D D= + +
   

E k E k E k E k      (42) 

where ( )cC U∞  denotes the space of infinitely differentiable functions 3:φ →   
with compact support in 3 . These functions, φ , are called test functions, and 
the derivatives ( )ˆD E  are called weak derivatives. The proof is independent of 
the choice of ( )J k . Use the following  

( )
x

y

z

 
 =  
 
 

e
J k e

e
                         (43) 

Consider the first row of the matrix since the other 2 rows are similar, and 
depending on J  may not come into play. Differentiating under the integral 
sign is permissible since the integral is uniformly convergent,  

( )

( ) ( )

( ) ( )

2 2 2
1

2

2 2
0 1 122 2

2 2

2 2

2

2 2

1 1 2 2 22

eˆ

1arctan d 0 ln 1
4

arctan

0 d 0

arctan
1 ln 1 0 d

4

x z

x

o x z
ik x k z

k
o

z
x x

oo x

z

o x
x

o x

z
x

o xz
x

o o xo

r k k k

D x
k

kk k k r r
kk k

k
k k

k
k k

kk
k kkr r k

k k kk

λ

λ

λ
λλ

λ

λ

λ
λ λλ

− −

= − + + −

= −
+



 − + − −

+− + −

− + −

− + −

 
 

− + − − − + − + −+  
  

∫

∫

∫

E k

( ) ( )

( ) ( )

2 2 2
0 12 2 2

1

2 2
12 22 2

e 1ˆ arctan d ln 1
4

e 1arctan ,0, ln
4

x z

x

x z

ik x k z
z

k x x
o o x

ik x k z
z

o x x
o oo x

kD ix k k k r
rk k k

kx k k k r
k kk k

λ
λ λ

λ
λ λλ

− −

− −





 
 
 
 
 
 
 
 
 
 
 
 
  


= − + − −

+ − + −
     − − + −   + +− + −    

∫E k

(44) 

Equation (43) is substituted into 41 and the 2L  norms are then computed. 
The norms are locally integrable. The calculation of the 2L  norms requires ad-
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ditional work.  

6. Summary 

The resolvent provides insight into the spectrum of the operator [5]. The spec-
trum can have discrete eigenvalues and a continuous part. The discrete part cor-
responds to the eigenvalues and if λ  is not an eigenvalue, the Green’s function 
can be expanded in an eigenfunction expansion. These eigenfunctions corres-
ponding to nonzero eigenvalues form a complete set.  

I have shown that solving the vector Helmholtz equation on the wave-number 
side yields a relatively simple approach to the spectra ( )( )pσ A k  and ( )( )cσ A k . 
We demonstrated this approach by example and simple mathematical expres-
sions for the resolvent. The Sobolev approach using a finite series expansion for 
( )Ê k  is complex mathematically and requires as much work as the Green’s 

function approach for 3∈x . Also, the singularities are present in the Sobolev 
approach as in the Green’s function. EM and QM problems yield highly singular 
solutions. This is just the nature of these disciplines.  

Future research should examine numerical evaluations of the ( )3
2L R  norms 

using any ( )3
cCφ ∞∈ R , used in the Sololev estimates.  

An example testing function is  

( )
2
1

1e , < 1

0, 1

x xx
x

φ
−


= 
 ≥

 

Also, future work could involve the study of the resolvent as a function of the 
given wave-number ok .  
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Notations 

∇  Gradient operator 

2∇  Laplacian operator 

i  Sqrt(−1) 

ok  Wave-number 

Ê  Symbol of the operator 

⊕  Direct sum 

D ∂
=
∂k

 Derivatives in Sobolev space 

2H  Sobolev space with 2 derivatives 

( )λR k  Resolvent 

P  Projector 

( )λ −G x y  Green's function 
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