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Abstract 
The interacting comma 3-vertex for the bosonic open string in the full string 
basis is derived using the half string overlap relations directly. Thus avoiding 
the coherent states technique employed in earlier derivations. The resulting 
form of the interacting 3-vertex turns out to be precisely the desired expres-
sion obtained in terms of the full string oscillator modes. This derivation es-
tablishes that the comma 3-vertex and Witten’s 3-vertex are identical and 
therefore are interchangeable. 
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1. Introduction 

Here we are going to give a brief derivation of the transformation matrices 
between the half string coordinates and the full string coordinates needed for the 
construction of the half string interacting vertex in terms of the oscillator 
representation of the full string. For this we shall follow closely the discussion of 
reference [1] [2] [3] [4] [5]. To make this more concrete, we recall the standard 
mode expansion for the open bosonic string coordinate 
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where 1, 2, , 27µ = �  and ( )27x σ  correspond to the ghost part ( )φ σ . The 
half string coordinates ( ),Lx µ σ  and ( ),Rx µ σ  for the left and right halves of 
the string are defined in the usual way 
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where both ( ),Lx µ σ  and ( ),Rx µ σ  satisfy the usual Neumann boundary con- 
ditions at 0σ =  and a Dirichlet boundary conditions 2σ = π . Thus they 
have expansions of the form 
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Comparing Equation (1) and Equation (3) we obtain an expression for the 
half string modes in terms of the full string modes 
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where the change of representation matrices are given by 
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Since the transformation in (4) is non singular, one may invert the relation in 
(4). Inverting (4) we find 
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where 1,2,3,n = � . 
In the decomposition of the string into right and left pieces in (2), we singled 

out the midpoint coordinate. Consequently the relationship between nxµ  and 

( ), ,,L R
n nx xµ µ  does not involve the zero mode 0xµ  of ( )xµ σ . At 2σ = π , we 

have 
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and so the center of mass 0xµ  may be related to the half string coordinates and 
the midpoint coordinate 
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Equations (8) and (9) with Equations (4) and (7) complete the equivalence 
between nxµ , 0,1,2,n = � , and ( ), ,, ,L R

n n Mx x xµ µ µ , 1,2,3,n = � . 
For later use we also need the relationships between{ }, ,

1
, ,L R

n n M n
p p pµ µ µ ∞

=
, the 

half string conjugate momenta and { }
0n n

pµ ∞

=
, the full string conjugate momenta. 

Using Dirac quantization procedure 
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, ,r s rs
n m nmx p iδ δ  =                         (10) 

we find (thereafter; the space-time index µ  is suppressed), 
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and 

0Mp p=                            (13) 

To obtain the full string conjugate momenta in terms of the half string 
conjugate momenta, we need to invert the above relations; skipping the technical 
details we find 
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We notice that the existence of the one-to-one correspondence between the 
half string and the full string degrees of freedom guarantees the existence of the 
identification 

M L RH H H H= ⊗ ⊗                      (15) 

where H  stands for the completion of the full string Hilbert space and LH , 

RH , MH  in the tensor product stand for the two half-string Hilbert spaces and 
the Hilbert space of functions of the mid-point, respectively. 

2. The Half-String Overlaps 

The half string three interaction vertex of the open bosonic string ( HS
xV ) have 

been constructed in the half-string oscillator representation [2] [3]. Here we are 
interested in constructing the comma three interaction vertex in terms of the 
oscillator representation of the full string. Here we shall only consider the 
coordinate piece of the comma three interaction vertex. The ghost part of the 
vertex ( HSVφ ) in the bosonic representation is identical to the coordinate piece 
apart from the ghost mid-point insertions ( )3 2 2iφ π  required for ghost 
number conservation at the mid-point. To simplify the calculation we introduce 
a new set of coordinates and momenta based on a 3Z  Fourier transform1 
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where ( )exp 2 3e i= π  and r refers to the left (L) and right (R) parts of the 
string. The superscripts 1, 2 and 3 refers to string 1, string 2 and string 3, 
respectively. Similarly one obtains a new set for the conjugate momenta ( )r σ℘ , 

 

 

1This technique was first used by D. Gross and A. Jevicki in 1986. 
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( )r σ℘  and ( )3,r σ℘  as well as a new set for the creation-annihilation operators 

( )†,r r
j jB B . In the 3Z  Fourier space the degrees of freedom in the δ  function 

overlaps equations decouple which result in a considerable reduction of the 
amount of algebra involved in such calculations as we shall see shortly. Notice 
that in the 3Z  Fourier space the commutation relations are  

( ) ( ) ( ),r s rsQ iσ σ δ δ σ σ ′ ′℘ = −                 (17) 

( ) ( ) ( ),r s rsQ iσ σ δ δ σ σ ′ ′℘ = −                 (18) 

( ) ( ) ( )3, 3,,r s rsQ iσ σ δ δ σ σ ′ ′℘ = −                (19) 

Since ( ) ( ) ( ),r s rsQ iσ σ δ δ σ σ ′ ′℘ ≠ −  , then ( )rQ σ  and ( )r σ℘  are no 
longer canonical variables. The canonical variables in this case are ( )rQ σ  and 

( )r σ℘ . Thus the 3Z  Fourier transform does not conserve the original com- 
mutation relations. The variables ( )3,rQ σ  and ( )3,s σ℘  are still canonical 
however. This is a small price to pay for decoupling string three in the 3Z  
Fourier space from the other two strings as we shall see in the construction of 
the comma three interaction vertex. Recall that the overlap equations for the 
comma three interacting vertex are given by 

( ) ( ), 1, 1 , 0 2j r j rχ σ χ σ σ− −= ≤ ≤ π              (20) 

1 2 3
M M Mx x x= =                        (21) 

for the coordinates (where the mid-point coordinate ( )2Mx x≡ π  and the 
identifications 1 0 3j − = ≡  and 1 0r R− = ≡  are understood). The comma co- 
ordinates are defined in the usual way [1] 

( ) ( ), , 0 2
2

j L x xχ σ σ σπ = − ≤ ≤ π 
 

            (22) 

( ) ( ), , 0 2
2

j R x xχ σ σ σπ = π − − ≤ ≤ π 
 

           (23) 

The overlaps for the canonical momenta are given by 

( ) ( ), 1, 1 , 0 2j r j rσ σ σ− −℘ = −℘ ≤ ≤ π              (24) 

1 2 3 0M M M℘ +℘ +℘ =                      (25) 

where the mid-point momentum is defined in the usual way  

0 0M Mi x i x p℘ ≡ − ∂ ∂ = − ∂ ∂ = . The comma coordinates and their canonical mo- 
menta obey the usual commutation relations 

( ) ( ) ( ), ,, , , ,j r j s rsi r s L Rχ σ σ δ δ σ σ ′ ′℘ = − =           (26) 

In 3Z  Fourier space of the comma, the overlap equations for the half string 
coordinates read  

( ) ( ) , 0 2L RQ eQσ σ σ= ≤ ≤ π                (27) 

( ) ( ) , 0 2L RQ eQσ σ σ= ≤ ≤ π                (28) 

0M MQ Q= =                        (29) 
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( ) ( )3, 3, , 0 2L RQ Qσ σ σ= ≤ ≤ π                (30) 

3 3
M MQ Q=                          (31) 

where Equation (29) is to be understood as an overlap Equation (i.e., its action 
on the three vertex is zero). Similarly the canonical momenta of the half string in 
the 3Z  Fourier space of the comma translate into 

( ) ( ) , 0 2L Reσ σ σ℘ = − ℘ ≤ ≤ π                (32) 

( ) ( ) , 0 2L Reσ σ σ℘ = − ℘ ≤ ≤ π                (33) 

( ) ( )3, 3, , 0 2L Rσ σ σ℘ = −℘ ≤ ≤ π               (34) 

3 0MP =                          (35) 

The overlap conditions on ( )rQ σ  and ( )r σ℘  determine the form of the 
comma three interaction vertex. Thus in the 3Z  Fourier space of the comma 
the overlap equations separate into two sets. The half string three vertex 

( )1, 2, 3,, ,HS r r r
xV b b b† † †  

therefore separates into a product of two pieces one depending on 3,rB †  
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Notice that in this notation we have †r r
n nB B−=  and †r r

n nB B−=  (where the 
usual convention †

n nb b− =  applies). Observe that the first of these equations is 
identical to the overlap equation for the identity vertex. Hence, the comma 
3-Vertex takes the form 
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where C and H are infinite dimensional matrices computed in [6] and the 
integration over 3

MQ  gives ( )3
MPδ . However 3 3

0MP P=  and so ( )3
MPδ  is the 

statements of conservation of momentum at the center of mass of the three 
strings. Notice that the comma three interaction vertex separates into a product 
of two pieces as anticipated. The vacuum of the three strings, i.e., , ,3

1 0 0j L j R
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is however invariant under the 3Z -Fourier transformation. Thus we have 
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=∏ ∏ . If we choose to substitute the explicit 

values of the matrices, the above expression reduces to the simple form  
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where ,

1230 L R  denotes the vacuum in the left (right) product of the Hilbert space 
of the three strings. Here ( ),j L R

nb  denotes oscillators in the ( )L R  jth string 
Hilbert space. For simplicity the Lorentz index ( 0,1, , 25µ = � ) and the Min- 
kowski metric µνη  used to contract the Lorentz indices, have been suppressed in 
Equation (40). We shall follow this convention throughout this paper. 

Though the form of the comma 3-Vertex given in Equation (40) is quite 
elegant, it is very cumbersome to relate it directly to the SCSV 3-Vertex due to 
the fact that connection between the vacuum in the comma theory and the 
vacuum in the SCSV is quite involved. One also needs to use the change of 
representation formulas [1] to recast the quadratic form in the half string 
creation operators in terms of the full string creation-annihilation operators 
which adds more complications to an already difficult problem. On the other 
hand the task could be greatly simplified if we express the comma vertex in the 
full string basis. This may be achieved simply by re expressing the comma 
overlaps in terms of overlaps in the full string basis. Moreover, the proof of the 
Ward-like identities will also simplify a great deal if the comma 3-Vertex is 
expressed in the full string basis. Before we express the half-string 3-Vertex is 
expressed in the full string basis, we need first to solve the comma overlap 
equations in (27), (30) and (32), (34) for the Fourier modes of the comma 
coordinates and momenta, respectively. The modes in the 3Z  Fourier space are 
given by  

( ) ( )2 1
1 cos 2 1 d ,

2
r r
nQ Q nσ σ σ

π

− −π
= −
π ∫               (41) 

( ) ( )2 1
1 cos 2 1 d ,

2
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π
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( ) ( )3, 3,
2 1

1 cos 2 1 d
2

r r
nQ Q nσ σ σ

π

− −π
= −
π ∫               (43) 

where 1,2,3,n = � , and a similar set for the conjugate momenta. The overlap 
equations for the coordinates in (27) and (28) and the properties imposed in the 
Fourier expansion of the comma coordinates 

( ) ( ) ( ) ( )and ,r r r rQ Q Q Qσ σ σ σ= − = − π−            (44) 

( ) ( ) ( ) ( )and ,r r r rQ Q Q Qσ σ σ σ= − = − π−            (45) 

( ) ( ) ( ) ( )3, 3, 3, 3,andr r r rQ Q Q Qσ σ σ σ= − = − π−           (46) 

where 0 σ≤ ≤ π , imply that their 3Z  Fourier modes in the comma basis 
satisfy 

2 1 2 1,L R
n nQ eQ− −=                        (47) 

2 1 2 1
L R
n nQ eQ− −=                        (48) 

From the overlap in (30) we obtain  
3, 3,
2 1 2 1

L R
n nQ Q− −=                         (49) 

For the Fourier modes of the conjugate momenta one obtains 
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2 1 2 1,L R
n ne− −℘ = − ℘                         (50) 

2 1 2 1
L R

n ne− −℘ = − ℘                         (51) 

and 
3, 3,
2 1 2 1,L R

n n− −℘ = −℘                         (52) 

where 1,2,3,n = � . We see that the comma overlaps in the full string basis 
separates into a product of two pieces depending on 

( )3 1 2 31
3n n n nA a a a= + +† † † †                    (53) 
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( )† 1 1 2 31 ,
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( )2 1 2 31 ,
3n n n n nA A ea ea a≡ = + +† † † † †                (55) 

respectively, where the creation and annihilation operators †
nA  and nA  in the 

3Z -Fourier space are defined in the usual way 
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( )†
0 0 0

0

P i A A
Q
∂

= − = +
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                   (59) 

and similarly for †
nA , nA  and 3

nA † , 3
nA . Notice that in the 3Z -Fourier space, 

†
n nA A−= , †

n nA A−= . For the matter sector, the comma 3-Vertex would be 
represented as exponential of quadratic form in the creation operators 3

nA † , nA†  
and mA† . Thus the comma 3-Vertex in the full string 3Z -Fourier space takes the 
form  

( ) ( ) ( ) )3
123

d d , , 0HS HS
Q M M M M n n nV Q Q Q Q V A A Aδ δ= ∫ † † †       (60) 

where )
123

0  denotes the matter part of the vacuum in the Hilbert space of the 
three strings and  

( )
3 3

, 0
1

3 2, , e
mn nm m n nmn m A C A A F A

HS
n n nV A A A

∞
=
 − − 
 

∑
=

†† † †
† † †            (61) 

The ghost piece of the 3-Vertex in the bosonized form has the same structure 
as the coordinate piece apart from the mid point insertions. In the 3Z -Fourier 
space 0M MQ Qφ φ= =  and only 3 0MQφ ≠ . Thus the mid-point insertion is given 
by 33 2MiQφ . The effect of the insertion is to inject the ghost number into the 
vertex at its mid-point to conserve the ghost number at the string mid-point, 
where the conservation of ghost number is violated due to the concentration of 
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the curvature at the mid-point. Thus the ghost part of the 3-Vertex takes the 
form 

( ) )
,33 2 ,3

123
e , , 0MiQHS HS

n n nQ
V V A A A

φ

φ

φφ φ φ
φ= † † †              (62) 

where 1230 φ  denotes the ghost part of the vacuum in the Hilbert space of the 
three strings and ( ),3 , ,HS

n n nV A A Aφ φ φ
φ

† † †  has the exact structure as the coordinate 
piece ( )3 , ,HS

Q n n nV A A A† † † . The mid-point insertion ,33 2MiQφ  in (62) may be 
written in terms of the creation annihilation operators 
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2

,3 ,3 3 3
0

2

1 n

M n n
n even

Q Q i A A
n

φ φ
∞

= =

−
= + −∑ †               (63) 

If we now commute the annihilation operators in the mid-point insertion 
through the exponential of the quadratic form in the creation operators in the 
three-string ghost vertex ( HS

Q
V φ ), the three-string ghost vertex in (62) takes the 

form 
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We note that commuting the annihilation operators in the mid-point 
insertion ,33 2MiQφ  through ( ),3 , ,HS

n n nV A A Aφ φ φ
φ

† † †  results in the doubling of 
the creation operator in the mid-point insertion. 

3. The Half-String 3-Vertex in the Full String Basis 

We now proceed to express the half-string overlaps in the Hilbert space of the 
full string theory. The change of representation between the half-string modes 
and the full string modes derived in [1] is given by 

( )
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where 1,2 ,r L R= ≡ ; 1,2,3,n = � ; and the matrices 1M  and 2M  are given 
by 

( )
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= =
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and 
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Now the overlap equations in (47), (50) and (29) become 
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21 1
2 1n mn mn m

m

me Q e M M Q
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( ) ( ) ( ) ( )1 2
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( )0 2
1

2 1 0n
M n

n
Q Q Q

∞

=

= + − =∑                    (70) 

respectively. The overlaps for the complex conjugate of the first two equations 
could be obtained simply by taking the complex conjugation. Similarly from the 
overlaps in (49), (52) and (35) we obtain 

3
2 1 0nQ − =                             (71) 

( )1 2 3 3
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12 1 2 2 0
2 2 1

n

mn mn m
m

n M M P P
m n
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3 0M℘ =                              (73) 

We have seen in reference [1] the 3 3
0M P℘ =  and so the overlap conditions in 

(72) and (73) reduce to 

1 2 3
2

1

2 1 0
2 mn mn m

m

n M M P
m

∞

=

−  − = ∑                   (74) 

3
0 0P =                              (75) 

It is important to keep in mind that the equality sign appearing in Equations 
(68) through (75) is an equality between action of the operators when acting on 
the comma vertex except for Equation (75) which is the conservation of the 
momentum carried by the third string in the 3Z  Fourier space. 

The comma vertex ( )3 , ,HS
n n nV A A A† † †  in the full string basis now satisfies 

the comma overlaps in (68), (69), (70), (71), (74) and (74). First let us consider 
the overlaps in (68), (69) and (70), i.e., 

( ) ( ) ( )1 2
2 1 2

1

21 1
2 1n mn mn m

m

me Q e M M Q
n

∞

−
=

 
+ + − + 

− 
∑  

( )3 , , 0,HS
n n nV A A A =† † †                     (76) 

( ) ( ) ( )

( ) ( ) ( )

1 2
2 1 2

1

3
0

1 1 2 11 1
2 2 2

121 , , 0,
2 1

n mn mn m
m

n
HS

n n n

ne P e M M P
m

e P V A A A
n

∞

−
=

 −
− + + −


−

− + =
π − 

∑

† † †

        (77) 

( ) ( )3
0 2

1
2 1 , , 0k HS

k n n n
k

Q Q V A A A
∞

=

 + − =  
∑ † † †              (78) 

(as well as their complex conjugates), where 1,2,3,n = � . For the remaining 
overlaps, i.e., equations in (71) and (74), we have 

( )3 3
2 1 , , 0,HS

n n n nQ V A A A− =† † †                    (79) 

( ) ( )1 2 3 3
2

1

2 1 , , 0,
2

HS
mn mn m n n n

m

n M M P V A A A
m

∞

=

−
− =∑ † † †          (80) 
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( )3 3
0 , , 0HS

n n nP V A A A =† † †                      (81) 

where 1,2,3,n = � . We notice that these overlaps are identical to the overlap 
equations for the identity vertex [4] [5] [7] [8]. Thus 

( )1 , , 0,1, 2,n
nm nmC n mδ= − = �                  (82) 

The explicit form of the matrix F, may be obtained from the overlap equations 
given by (76), (77) and (78) as well as their complex conjugates. It will turn out 
that the matrix F has the following properties 

† 2, , 1F F F CFC F= = =                    (83) 

which are consistent with the properties of the coupling matrices in Witten’s 
theory of open bosonic strings [7] [8]. This indeed is a nontrivial check on the 
validity of the comma approach to the theory of open bosonic strings. 

Now substituting (61) into (76) and writing nQ  in terms of †
nA  and nA , we 

obtain the first equation for the matrix F  

( )( )1 2
2 1 2 1 2 2

1
3 0n k n k mn mn m k m k

m
F i M M Fδ δ

∞

− −
=

+ − + + =∑          (84) 

where 0,1,2, ; 1, 2,3,k n= =� � . Next from the overlap equation in (77) we 
obtain a second condition on the F matrix 

( ) ( )( )
( )

( )
( )

1 2
2 1 2 1 2 2

1

0 03 2

10
3

14
3 2 1

n k n k mn mn m k m k
m

n

k k

F i M M F

i F
n

δ δ

δ

∞

− −
=

= − + − −

−
− −
π −

∑
       (85) 

where 0,1,2, ; 1, 2,3,k n= =� � . The overlaps for the mid-point in (78) give 

( ) ( ) ( )0 0 2 2
1

22 1 0, 0,1,2,
2

k
m m k m k m

k
F F m

k
δ δ

∞

=

 
+ + − + = = 

 
∑ �     (86) 

Solving Equations (84) and (85), we have 

( ) ( )
( )

1

2 0 00 1 2 3 2
1

11 11
2 2 1

m
T T

n
m nm

F F M M
m

−∞

=

  − = − +  π   −  
∑          (87) 

( )
( )

1

2 2 0 2 1 2 3 2
1

1

1 2 1 2
1

1 1
2 2 1

1 1
2 2

m
T T

n k k
m nm

T T T T

m mknm

F F M M
m

M M M M

−∞

=

−∞

=

  − = +  π   −  

    − + +         

∑

∑
          (88) 

( )
( )

1

2 2 1 1 2

1

0 2 1 1 2 3 2
1

3 1
2 2

1 1
2 2 1

T T
n k

nk
m

T T
k

m nm

iF M M

F M M
m

−

−

−∞

−
=

  = − +  
   

  − + +  π   −  
∑

        (89) 

( )
( )2 1 2 1 1 2 2 2 1 0 2 13 2

1

2 1 2
23 3 2 1

n
T T

n k m k k
m nm

i iF M M F F
n

∞

− − − −
=

− = + +  π  −
∑      (90) 
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( )
( )

2 1 2 1 2 2 2 1 2
1

0 23 2

2 1 2 1
2 23 3

12
3 2 1

T T T T
n k m k

m nm nk
n

k

i iF M M F M M

i F
n

∞

−
=

   = + + +      

−
+
π −

∑
        (91) 

( )
( )

( )2 1 0 1 2 2 0 003 2
1

2 1 2 1
23 3 2 1

n
T T

n m
m nm

i iF M M F F
n

∞

−
=

− = + + × −  π  −
∑       (92) 

where all , 1, 2,3,n k = � . Finally Equation (86) leads to 

( ) ( ) 1

00 2 0
1

1
1 2 ,

2

n

n
n

F F
n

+∞

=

−
+ = ∑                    (93) 

( ) ( )1 1

0 2 2 2
1

1 1
2 2 ,

2 2

m k

m k m
k

F F
m k

+ +∞

=

− −
= + ∑                (94) 

( ) 1

0 2 1 2 2 1
1

1
2

2

k

m k m
k

F F
k

+∞

− −
=

−
= ∑                    (95) 

where 1, 2,3,m = � . 
Now the explicit form of the F matrix is completely given by the set of 

Equations (87), (88), (89), (90), (91), (92), (93), (94) and (95) provided that the  

inverse of the 1 2
1
2

T TM M + 
 

 exist. Now we proceed to compute the required 

inverse. 

4. Finding the Inverse 

In the half string formulation the combination 
1

1 2
1
2

T TM M
−

 + 
 

 is a special case 

of the more general expression, ( )1 2cosT TM k N M+ π , where 1,2,3, , 2k N= �   

and N is the number of strings2. For the case of interest, N corresponds to 3 and 
1k = . It is however more constructive to consider the generic combination 

1 2
T TM Mβ α+ . Again for the case of interest one has 1β =  and  

( )cos 1 2k Nα = π = . For the inverse of 1 2
T TM Mβ α+ , we propose the Ansatz 

( )

( ) ( ) ( )

1

1 2

1 1 1 1 1 1 1 1 1 1 1 1
2 2 1 2 2 1 2 2 1 2 2 11 2 2 1

2 2 1 2 2 1

T T

nm

p p p p p p p p
n m n m n m n m n m

M M

u u u u u u u u
n m

n m n m

β α

α β

−

− − − −
+ − − − −

 +  

 + −′ ′= − + − 
− − + −  

 (96) 

The coefficients 1 p
ku  and 1 1 p

ku −  are the modes appearing in the Taylor 

expansion of the functions 
11

1

px
x

+ 
 − 

 and 
1 11

1

px
x

−+ 
 − 

 respectively. For the  

three interaction vertex 3p =  and the Taylor modes 1 p
ku  and 1 1 p

ku −  reduce 
to 1 3

k ku a=  and 2 3
k ku b=  found in references [7] [8]. These coefficients are 

 

 

2The reason we are considering this more general expression is that this combination appears in 
computing the N-interaction vertex which will probe useful in future work and it does not add to the 
level of difficulty in finding the inverse. 
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treated in details in appendix A. The free parameters α′ , β ′  and p are to be 
determined by demanding that (96) satisfies the identities 

( ) ( )1

1 2 1 2
T T T TM M M M Iβ α β α

−
+ + =               (97) 

which implies that ( ) 1

1 2
T TM Mβ α

−
+  is left inverse and the identity 

( )( ) 1

1 2 1 2
T T T TM M M M Iβ α β α

−
+ + =               (98) 

which implies that ( ) 1

1 2
T TM Mβ α

−
+  is right inverse. Here I is the identity 

matrix in the space of N strings. 
Before we proceed to fix the constants α′ , β ′  and p, there are two special 

cases where the inverse could be obtained with ease with the help of the 
commutation relations of the half string creation annihilation operators  

( ) ( )( )†,r r
n nb b . They are given by 2k N=  and k N= . 
For 2k N= , the combination ( )1 2cosT TM k N M+ π  reduces to 1 2

T TM M+  
and the inverse ( ) 1

1 2 1 2
T TM M M M

−
+ = − . To see this we only need to verify that 

( )( ) ( )( )1 2 1 2 1 2 1 2
T T T TM M M M M M M M I+ − = − + = . We first consider 

( )( ) ( ) ( )1 2 1 2 1 1 2 2 1 2 2 1
T T T T T TM M M M M M M M M M M M+ − = − − −     (99) 

Using the commutation relations 
( ) ( )

 0,r s rs
n m n mb b δ δ− +

  =                     (100) 

(where ( ) ( )†s s
m mb b− ≡ ) for the half string creation annihilation modes  

( ) ( )( )†,r r
n nb b , one can show that the the combination inside the first bracket is the 

identity matrix I and the combination inside the second bracket is identically 
zero. To see this recall that the change of representation between the full string 
creation annihilation modes ( )†,n na a  and the half string creation annihilation 
modes is given by  

( ) ( ) ( )1 2
2 1 2 2

1

11 , 1,2,3,
2

rr
n n mn m mn m

m
b a M a M a n

∞

− −
=

= − + − =∑ �      (101) 

and ( ) ( )†r r
n nb b− ≡  is given by the same expression with k ka a− . Substituting 

(101) into (100) one obtains  

( ) ( ) ( ) ( ) ( ) ( )1 2 2 1
1

1 2 2 1

10 ,
2

1
2

r s rs T T
n q kq kqnk nkk

rs T T
nq

b b M M M M

M M M M

δ

δ

∞

=

  = = − −   

 = − − 

∑
    (102) 

for 0n >  and 0m q= − < . Since 0rsδ =  for r s≠ , then the above equation 
does not yield any information about the combination 1 2 2 1

T TM M M M−  for  
r s≠ . However, for r s= , Equation (102) yields 

1 2 2 1 0T TM M M M− =                      (103) 

Similarly one has 
( ) ( )

( ) ( ) ( ) ( ) ( )

( )

1 1 2 2
1

1 1 2 2

,

1 11
2 2
1 11
2 2

r srs
nm n m

r s T T
nm km kmnk nkm

r s T T
nm nm

b b

M M M M

I M M M M

δ δ

δ

−

∞
+

=

+

 =  

 = − + − 

 = − + − 

∑   (104) 
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for , 0n m > . In this case, the above expression gives the following identity 

1 1 2 2
T TM M M M I− =                     (105) 

for all possible values of r and s. Substituting Equations (103) and (105) into 
Equation (99) we arrive at 

( )( )1 2 1 2
T TM M M M I+ − =                  (106) 

Thus ( )1 2M M−  is the right inverse of ( )1 2
T TM M+ . To complete the proof 

one must show that ( )1 2M M−  is also a left inverse; that is we need to establish 
the following identity 

( )( )1 2 1 2
T TM M M M I− + =                  (107) 

The proof of the above identity follows at once from the change of repre- 
sentation between the half string creation annihilation modes ( ) ( )( )†,r r

n nb b  and 
the full string creation annihilation modes ( )†,n na a  given by 

( ) ( ) ( )( )1 2
2 2

1

1
, 1, 2,3,

2

n

n nm m nm m
m

a P M b M b n
n

∞
+ +

−
=

−
= + − =∑ �       (108) 

(where ( ) ( ) ( )( )1 21
2n n nb b b+ = + ) and the commutation relations 

[ ]  0, .n m n ma a δ− +=                     (109) 

Using Equations (108) and (109) and skipping the algebraic details, one 
obtains the following identities 

1 2 2 1 0T TM M M M− =                    (110) 

1 1 2 2
T TM M M M I− =                    (111) 

needed to prove that the combination ( )1 2M M−  is also a left inverse. This 
completes the proof. 

For k N= , the combination ( )1 2cosT TM k N M+ π  reduces to 1 2
T TM M−  

and the inverse ( ) 1

1 2 1 2
T TM M M M

−
− = + . The proof that 1 2M M+  is the right 

inverse follows at once simply by taking the transpose of the already established 
identity in (106). To show that the combination 1 2M M+  is also the left inverse 
of the combination 1 2

T TM M−  one only needs to take the transpose of (107); 
thus leading to the desired result. 

Now we proceed to fix the constants in (96) for , 2k N N≠ . From Equations 
(66) and (67), we have  

( )
( )

1 12 2
2 1 2 2 1

n m

nm
nM

m n m

+−
=
π − − −

               (112) 

and 

( )
( )

2 12 2
2 1 2 2 1

n m

nm
nM

m n m

+−
=
π − + −

               (113) 

respectively. First we proceed with the identity in (97). If we could solve for the 
free parameters α′ , β ′ , and p in terms of the known parameters α  and β  
then the Ansatz in (96) is the left inverse of the matrix 1 2

T TM Mβ α+ . For the off 
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diagonal elements; that is q n≠ , the identity in (97), yields, after much use of 
the identities in [9],  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1, 1, 1, 1,1 1 1 1 1 1
2 2 2 2 2 2 2 2

1, 1, 1, 1,1 1 1 1 1 1
2 2 2 2 2 2 2 2

1, 1, 1,1 1 1 1 1 1
2 2 2 2 2 2 2 2

2 2

2 2

u p u p u p p u p pp p p p
n n n q n n n q

u p u p u p p u p pp p p p
n n n q n n n q

u p u p u p pp p p p
n n n q n n n q

u O u O u O u O
n q

u O u O u O u O
n q

u O u O u O u O

α β

α α

β β

− −− −
− − − −

− −− −
− −

−− −
− −

− + −
′

−

− + −
′−

+

− − +
′+

( )

( ) ( ) ( ) ( )

1,

1, 1, 1, 1,1 1 1 1 1 1
2 2 2 2 2 2 2 2

2 2

0
2 2

u p p

u p u p u p p u p pp p p p
n n n q n n n q

n q

u O u O u O u O
n q

β α

−

− −− −

+

− − +
′− =

−

 

where the quantities 

( ),
2

2 1 1
, 0

q p
u q p m

n k
m l

u
O n

n m

∞

± =
= + =

≡ ≥
± +∑                 (114) 

have been considered in [9]. The quantities ( ),u q p
nO−  are related to ( ),u q p

nO  
through the identity ( ) ( ) ( ), ,cosu q p u q p

n nO q p O− = − π  [9]. The quantity ( ),u q p
nO  

has the value ( ) 22sin q p
nq p uπ π    [9]. In order for the right hand side of the 

above expression to vanish, the coefficients of 1 1 1
2 2

p p
n nu u− , 1 1 1

2 2
p p

n qu u−  and  
1 1 1
2 2

p p
n qu u −  must vanish separately. The vanishing of the coefficient of the  

1 1 1
2 2

p p
n nu u−  can be established explicitly by substituting the explicit values for 
( ),u q p

nO . The vanishing of the coefficient of 1 1 1
2 2

p p
n qu u−  term leads to the following 

conditions on the free parameters 

1cos 0
p

β α α β
 ′ ′+ π = 
 

                   (115) 

1cos 0
p

α α β β
 ′ ′+ π = 
 

                   (116) 

The vanishing of the coefficient of 1 1 1
2 2

p p
n qu u −  does not lead to new conditions 

on the free parameters but it provides a consistency condition. The equivalence 
between the half-string field theory and Witten’s theory of open bosonic strings 
will guarantee that this consistency condition will be met. In fact we have 
verified this requirement explicitly. 

For the diagonal elements ( q n= ), the identity in (97), after much use of the 
various identities in [9], yields 

( ) ( ) ( ) ( ) ( ){
( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( )

1 2 1 2 1, 1,1 1 1
2 2 2 2

1, 1, 1, 1,1 1 1 1 1 1
2 2 2 2 2 2 2 2

1, 1, 1, 1,1 1 1 1 1 1
2 2 2 2 2 2 2 2

2

2 1
1 2 2

2 2

2 2

n n
u p u p pp p

n n n n

u p u p u p p u p pp p p p
n n n n n n n n

u p u p u p p u p pp p p p
n n n n n n n n

n

n n u O u O

u O u O u O u O
n

u O u O u O u O
n

u

α β

α α

β β

β α

+
−−

− −

− −− −
− −

− −− −
− −

−  ′= + π
− + −′−

− − +′+

′+

� �

( ) ( ) }1, 1,1 1 1
2 2 2
u p u p pp p
n n nO u O −− − 
� �

   (117) 
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where 

( )

( )
,
2 2

2 1 1

q p
u q p m

n k
m l

u
O

n m

∞

± =
= + =

=
± +

∑�                   (118) 

has been considered in [9]. Using the explicit values of ( ),u q p
nO , ( ),u q p

nO− , ( ),u q p
nO�  

and ( ),u q p
nO−
�  which are given in [9] and imposing the conditions obtained in 

(116), the above expression reduces, after a lengthy exercise, otherwise a straight 
forward algebra, to 

( ) ( ) ( )1, 1,1 1 1
2 2 2 2

21 2 p p pp p
n n n nn u S u Sβ α −− ′= − π
� �             (119) 

where the quantities ( ),q p
nS±
�  were introduced in [9]. The above expression may 

be reduced further by expressing ( ),q p
nS−
�  in terms of ( ),q p

nS�  through the relations  

( ) ( ) ( ) ( )1, 1, 1, 1,
2 2 0 2cos 1 cosp p p p

n n nS S S S
p p−

  π π
= + +  

  
� �            (120) 

( ) ( ) ( ) ( ) ( ) ( )1, 1, 1, 1,
2 2 0 2

1 1
cos 1 cosp p p p p p p p

n n n

p p
S S S S

p p
− − − −

−

 − π − π 
= + +  

   
� �   (121) 

which have been established in [9]. Hence  

( ) ( ) ( )

( ) ( )

1, 1,1 1
2 0 2

1, 1,1
2 0 2

21 2 1 cos

1 cos

p pp
n n

p p p pp
n n

n u S S
p

u S S
p

α β −

− −

   π′= +   π    
  π + −   

    

           (122) 

In arriving at the above expression we used the fact that 

( )1 1cos cos 0
p

p p
α β β α α β β α

−   ′ ′ ′ ′π − = π + =   
  

        (123) 

Further simplification of (122) may be achieved by substituting the explicit 
values of ( )1,

0
pS  and ( )1,

0
p pS −  found in [9]. Thus Equation (122) reduces to 

( )

( ) ( )

( ) ( ) ( )

1,1 1
2 2

1, 1,
2 2

1, 1, 1,1 1/
2 2 2 2

11 2 1 cos tan
2

11 cos cot
2

2 sin

pp
n n

p p p
n n

p p p pp
n n n n

n u S
p p

S S
p p

n u S S S
p

α β

α β

−

−

−−

     π π′= +     
     

    π π + −     
      

 π  ′= +    

          (124) 

To compute the right-hand side of the above expression we need to evaluate 
the expression inside the square bracket. We will show that this expression has 
the explicit value 2/2n. Consider the matrix element defined by 

1 1 1 1 1 1p p p p
m n m n

mn
u u u u

W
m n

− −+
=

+
                  (125) 

The matrix element mnW  satisfies the following recursion relationship, which 
may be verified by direct substitution 
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( ) ( ) ( ) ( )1 1 1 10 1 1 1 1n m n m n m n mn W n W m W m W+ − + −= + − − + + − −     (126) 

for m n odd+ =  integer. Letting 2 1 1n n→ − ≥ , 2 2m m→ ≥  in (126), we 
obtain 

( ) ( ) ( )2 2 2 2 2 2 1 2 1 2 1 2 10 2 2 2 2 1 2 1n m n m n m n mnW n W m W m W− − + − −= − − + + − −  (127) 

Summing both sides of (127) over m, we have 

( ) ( )2 2 2 2 2 2 0 2 2 0 2 11
0 0

2 2 2 2 2 2n m n m n n n
m m

n W n W nW n W W
∞ ∞

− − −
= =

− − = − − +∑ ∑   (128) 

Substituting the explicit values for 2 02 nnW , 2 2 0nW −  and 2 11nW −  into (128) 
we obtain 

( )2 2 2 2 2
0 0

1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 1 2 1 2 1

2 2 2

2 1 2 1 2
2 2 2

n m n m
m m

p p p p p p p
n n n n n n n

n W n W

u u u u u u u
n n p n p

∞ ∞

−
= =

− − −
− − − − −

− −

= + − − + − +

∑ ∑
    (129) 

Recalling the recursion relations for the Taylor modes established in [9] 

( )1 1 1
1 1

1 2 1
1

p p p
k k ku u k u

k p+ −

 
= + − +  

                (130) 

( ) ( )1 1 1 1 1 1
1 1

1 2 1 1
1

p p p
k k ku p u k u

k p
− − −
+ −

 
= − + − +  

         (131) 

If we now set 2 1k n= −  in the recursion relations in (130) and (131) and 
then rearrange terms, we have 

( )1 1 1
2 1 2 2 2

1 2 1 2 2 ,
2 2

p p p
n n nu u n u

n p n− −= − −             (132) 

1 1 1 1 1 1 1 1
2 1 2 2 1 2 2

1 2 2 2 2
2 2 2

p p p p
n n n n

nu u u u
n p n n

− − − −
− − −

−
= − + +          (133) 

Substituting (132) and (133) in the above equations into (129), we find 

( )2 2 2 2 2
0 0

2 2 2n m n m
m m

n W n W
∞ ∞

−
= =

= −∑ ∑               (134) 

Repeated application of the above identity implies that 

2 2 2 2
0 0

2 2n m m
m m

n W W
∞ ∞

= =

=∑ ∑                   (135) 

Substituting the explicit form of nmW  into the above identity we have 

( ) ( ) ( ) ( )1, 1, 1, 1,1 1 1 1 1 1
2 2 2 2 2 2 2 2

2
2

p p p p p pp p p p
n n n nu S u S u S u S

n
− −− −   + = +          (136) 

where 

( )
1

1,

, 0
,

p
p m

n
n m even m

u
S

n m

∞

+ = =

≡
+∑                    (137) 

( )
1 1

1,

, 0

p
p p m

n
n m even m

u
S

n m

−∞
−

+ = =

≡
+∑                    (138) 

To complete the proof, it remains to show that the expression inside the 
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square bracket on the right hand side of Equation (136) is equal to unity. This 
we do by explicit computation. Consider 

( ) ( )1, 1,1 1 1
2 2 2 2

p p pp pu S u S− −+                    (139) 

Using the summation formulas for ( )1, p
nS  and ( )1,p p

nS − , which are given in [9], 
the above expression reduces to  

( ) ( )1, 1,1 1 1
2 2 2 2 1p p pp pu S u S− −+ =                  (140) 

and so Equation (136) yields 

( ) ( )1, 1,1 1 1
2 2 2 2

2
2

p p pp p
n n n nu S u S

n
− − + =                 (141) 

Substituting this result for the expression in the square bracket in (124) leads 
to one more condition on the parameters α′  and p 

1
12sin
p

α
β

′ =
 

π 
 

                    (142) 

Collecting all the conditions on the free parameters, and then solving for the 
parameters α′  and β ′ , and p in terms of the known parameters α  and β , 
we find 

2
2

2

1cos
1 1, ,cos

1 12sin 2sin

p
p

p p

α α β
β

β α

 
π    ′ ′= π = = −       π π   

   

       (143) 

The desired expression for the inverse of 1 2
T TM Mβ α+ , is therefore given by 

substituting the values of α′  and β ′  given by the above expressions into the 
Ansatz for ( ) 1

1 2
T TM Mβ α

−
+  in Equation (96). Hence,  

( )

( ) ( )

( )

1

1 2

1 1 1 1 1 1
2 2 1 2 2 1

1 1 1 1 1 1
2 2 1 2 2 1

2 2 1 11
2 2 112sin

1cos

2 2 1

T T

nm

p p p p
n m n m n m

p p p p
n m n m

M M

u u u un m
n m

p

p u u u u
n m

β α

β

α

−

− −
+ − −

− −
− −

 +  




+− = −  − −  π 
  

 
π   −  −

+ −



        (144) 

This shows that the above expression is the left inverse. To complete the proof 
we need to check that the identity in (98) is also satisfied and leads to the same 
conditions as in Equations (143). This in fact we did verify. The special cases of 
k N=  and 2k N=  have been treated earlier. This completes the construction 
of the inverse for the general case of the ( )1 2

T TM Mβ α+  matrix. 

In the particular case of 
1

1 2cosT TkM M
N

−π + 
 

, the parameters  
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( )cos k Nα = π  and 1β =  respectively, and the above relations in (143) be- 
come  

22 2

cos
1, ,cos cos

2sin 2sin cos

k p
kp N

p p N

α α β

π
 π π  ′ ′= = = = −    π π π  

   (145) 

For the particular case of ( )cos k Nα = π  and 1β = , the relations in (145) 
yield 

1
12sin
p

α β′ ′= − =
 

π 
 

                   (146) 

( )
, 1 1

1
2 , 1 2 1

k N k N
p

N k N N k N
≤ ≤ −=  − + ≤ ≤ −

             (147) 

If we choose 1 1k N≤ ≤ − , then we have  

( ) ( ) ( )

1

1 2

1 1 1 1 1 1 1 1 1 1 1 1
2 2 1 2 2 1 2 2 1 2 2 1

cos

2 2 11
2 2 1 2 2 112sin

T T

nm

p p p p p p p p
n m n m n m n m n m

kM M
N

u u u u u u u un m
n m n m

p

−

− − − −
+ − − − −

  π  +   
    

 + −−
= − − 

− − + −    π 
 

 (148) 

For the case of interest, that is, the three interaction vertex 3N =  and 1k =  
so that 3p = . This implies that the Taylor modes 1 p

nu  and 1 1 p
nu −  in the 

expansion of 
11

1

px
x

+ 
 − 

 and 
1 11

1

px
x

−+ 
 − 

 are na  and nb  in the expansion of  

1 31
1

x
x

+ 
 − 

 and 
2 31

1
x
x

+ 
 − 

 encountered in reference [7] [8]. Thus the inverse of  

1 2
1
2

T TM M + 
 

 now reads 

( ) ( ) ( )

1

1 2

2 2 1 2 2 1 2 2 1 2 2 1

1
2

1 1 2 2 1
2 2 1 2 2 13

T T

nm

n m n m n m n m n m

M M

a b b a a b b a
n m

n m n m

−

+ − − − −

  +  
   

 + −
= − − + 

− − + −  

  (149) 

This is the required inverse needed to finish the construction of the half-string 
three interaction vertex in terms of the full-string basis. The expression in (149) 
is indeed the right and left inverse of 1 2

1
2

T TM M+  as can be checked explicitly. 
See ref. [9]. 

5. Computing the Explicit Values of the Matrix Elements of  
the F Matrix 

To complete the construction of the comma 3-Vertex 

( ) ( ) ( )3 3
03 3d d d e , , 0,0,0MiP QHS HS

M M M M M n n nV Q Q Q Q Q V A A Aδ δ= ∫ † † †   (150) 
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in the 3Z -Fourier space of the full string, we need the explicit form of the F 
matrix. Here we shall give the steps involved in the computation of the matrix 
elements of F and relegate many of the technical details to appendix A. For the 
purpose of illustration consider 2 0nF . Substituting the explicit value of  

1

1 2
1
2

T TM M
−

 + 
 

 obtained in (149) into Equation (87) gives 

( ) ( ) ( )
( )

( ) ( )

2 0 00 3/2
1

2 2 1 2 2 1 2 2 1 2 2 1

11 11 1 2 2 1
3 2 1

2 2 1 2 2 1

m
n m

n
m

n m n m n m n m

F F n m
m

a b b a a b b a
n m n m

∞
+

=

− − − −

−
= − − − ⋅
π −

 + −
× + 

− − + −  

∑
      (151) 

where 1,2,3,n = � . Using partial fractions, the above expression becomes 

( ) ( ) ( )2 0 00 2 0 2 2

2 2 2 2 2 2

1 1 21 1 2
23

n b b
n n n n

a b a
n n n n n n

nF F a O a O
n

b O a O b O

−

−

= − − −π

− − + 

        (152) 

where the quantities appearing in the above expression are defined have been 
evaluated in [9]. Thus substituting the explicit values of these quantities into 
(152) and combining terms we find 

( ) ( ) 2
2 0 00

1
1

2

n
n

n

a
F F

n
−

= −                    (153) 

The explicit value of the 00F  may be computed by substituting (153) into 
(93). Doing that and rearranging terms we get  

( ) ( ) 2
00 00

1
1 2 1

2
n

n

a
F F

n

∞

=

+ = − − ∑                   (154) 

The sum appearing on the right-hand side has the value ( )3 2 ln 3 2ln 2− , so 
we obtain  

3
00

4
00

1 3ln
1 2

F
F

+
=

−
                       (155) 

which gives the explicit value of 00F  at once. This result is consistent with that 
given in [7] [8]. To obtain the explicit value of 0 2mF , we first need to evaluate 
the sum over k in Equation (94), i.e., 

( ) 1

2 2
1

1
2

k

k m
k

F
k

+∞

=

−
∑  

where the explicit expression for 2 2k mF  in terms of the change of repre- 
sentation matrices is given by Equation (88). Thus substituting (88) into the 
above expression we have 

( ) ( ) ( )
( )

( )

1 1 1

2 2 0 2 1 23 2
1 1 1

1 1

1 2 1 2
1 1

1 1 11 1
22 2 2 1

1 1 1
2 22

k k l
T T

k m m
k k l kl

k
T T T T

k l lmkl

F F M M
k k l

M M M M
k

+ + −∞ ∞ ∞

= = =

+ −∞ ∞

= =

 − − −  = +  π  −   

 −    − + +         

∑ ∑ ∑

∑ ∑
  (156) 
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If we commute3 the sums over k and l, we get  

( ) ( )
( )

( ) ( )
1

2 2 0 2 1 23 2
1 1 1 1 1

1 11 1
22 2 1

k l
T T

k m m
k l k l k lm

F F M M
k l

+∞ ∞ ∞ ∞ ∞

= = = = =

− −  = ⋅⋅ ⋅ − + ⋅⋅ ⋅ π  −
∑ ∑∑ ∑∑  (157) 

where 

( ) ( ) 1 1

1 2

1 1
22

k
T T

kl

M M
k

+ − −  ⋅⋅ ⋅ ≡ +  
   

                 (158) 

Substituting Equation (149) for the inverse of the combination ( )1 21 2T TM M+  
into the above expression and summing over k from 1 to ∞ , we obtain 

( ) ( )
( )

1 1
2 1

1 2 1 2
1

1 11 2
22 3 2 1

k l
lT T

k kl

a
M M

k l

+ −∞
−

=

 − − + = −  
  −  

∑           (159) 

In arriving at the above result we made use of the identities 

( ) ( )
2 2

2 1
0 0

1 1 1
2 2 1 2 2 2 1 2 3

k k
l

k k

a a
a

k l k l

∞ ∞

−
= =

= − = − π
− − + −∑ ∑          (160) 

which were derived in [9]. Similar expressions hold for the sums over 2kb ; see 
ref. [9]. Now substituting Equation (159) into (157) gives  

( ) ( )1 3
2 1

2 2 0 2 1 24
1 1

1 1 21 3 1ln
2 222 3 2 1

k l
T Tl

k m m
k l lm

a
F F M M

k l

+∞ ∞
−

= =

− −  = − + × + −  
∑ ∑   (161) 

Using the explicit value of 1M  and 2M  and rewriting ( )3 4ln 3 2  in terms 
of 00F , the above expression becomes 

( ) ( ) ( )
( )

1
200

2 2 0 2 1 2
1 00

1 11 11
2 12 2

mk
m

k m m
k

aF
F F

Fk m

+∞

=

− −−  +
= − + − 

∑        (162) 

Substituting this result into (94), we find 

( ) ( )
( )

2
0 2 00 1 2

1
1

2

m
m

m

a
F F

m

−
= −                    (163) 

which has the same form as 2 0mF  given in (153). Thus in this case we see that 
the property ( )†

0 0even even
F F=  holds. 

Next we consider the evaluation of 2 1 0nF − . If we replace 1 2,M M  and 2 0mF  
in (92) by their explicit values, given respectively by Equation (66), (67) and 
(153), we have  

( ) ( )
( )

( )
( )

( )
( )

2
2 1 0 00

1

2
003 2

1

12 2 11
2 2 2 13 2 1

12 1
2 2 1 3 2 1

n
m

n
m

n
m

m

aiF F
m nn

a i F
m n n

∞

−
=

∞

=

−
= − 

π − −− 

 −
+ + −

+ − π −

∑

∑
        (164) 

 

 

3Since both the sums over l and k are uniformly convergent, one may perform the sums in any order. 
We have carried the sums in the two different orders and found that the result is the same. However, 
it is much easier to perform the sum over k first followed by the sum over l rather than the reverse. 
Here we shall follow the former. 
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In order to benefit from the results obtained in [9] to help carry out the sums 
we first need to extend the range of the sums to include 0m = . Hence adding 
zero in the form ( ) ( )0 02 1 2 1a n a n− − + − , the above expression becomes 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )

0 2
2 1 0 00

0

000 2
3 2

0

12 2 1 11
2 2 1 2 2 2 13 2 1

2 1 1
2 1 2 2 1 3 2 1

n
m

n
m

n
m

m

a aiF F
n m nn

i Fa a
n m n n

∞

−
=

∞

=

−
= − +

π − − −− 
− −
− + +

− + − π − 

∑

∑
    (165) 

The sums in the square brackets have been evaluated in [9]. Thus one finds 

( ) ( ) 2 1
2 1 0 00

1
1 ,

2 1

n
n

n

a
F i F

n
−

−

−
= −

−
                 (166) 

where 1,2,3,n = � . To check if the property †F F=  continue to hold, we 
need to compute explicitly the value of 0 2 1nF − . It is important to verify that the 
matrix F is self adjoint for the consistency of our formulation. The matrix 
element 0 2 1nF −  involves the matrix element 2 2 1n kF −  which in turn is expressed  

in terms of the combination 
1

1 2
1
2

T TM M
−

 + 
 

 and the matrix element 0 2 1nF −   

itself. To carry out the calculation, unfortunately we first need to compute the 
explicit value of 2 2 1n kF − . The matrix element 2 2 1n kF −  is given by (89) 

( )
( )

1

2 2 1 1 2

1

02 1 1 2 3 2
1

3 1
2 2

11 1
2 2 1

T T
n k

nk
m

T T
k

m nm

iF M M

F M M
m

−

−

−∞

−
=

  = − +  
   

  − + +  π   −  
∑

         (167) 

Substituting the explicit value of 
1

1 2
1
2

T TM M
−

 + 
 

 into the above equation 
and summing over m, we find 

( )
( )

( )
( )

2 2 1 2 2 1
2 2 1

22 2 1 2 2 1
0 2 1

1 2 2 1
2 2 2 1

1
2 2 1 2

n k
n k n k

n k

n
nn k n k

k

n k a b b a
F

i n k

aa b b a
F

n k n

+
− −

−

− −
−

− − +
= 

− −

 −−
+ +

+ − 

           (168) 

where 1,2,3,n = � . Combining Equation (168) with Equation (95), leads to 

( ) ( )

( )

2 2 1 2 2 1
0 2 1

1

2 2 1 2 2 1 00
0 2 1

00

1 2 1
2 2 1

112
2 2 1 2 1

m k m k m
m

k

k m k m
m

a b b a
F i m

k m

a b b a F
F

k m F

∞
− −

−
=

− −
−

 +
= − − 

− −
  − +

+ −  + − −  

∑
          (169) 

To evaluate the sums appearing in (169) we first need to extend their range to 
include 0k = . Doing so and making use of the result of already established 
identities in appendix A, Equation (169) reduces to 

( ) 2 1 00
0 2 1 0 2 1

00

1
2 1

12 1
m m

m m
a F

F i F
Fm

−
− −

 +
= − −  −−  

              (170) 
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Solving the above equation for 0 2 1mF − , we obtain 

( )( ) 2 1
0 2 1 00 1 1

2 1
m m

m
a

F i F
m

−
− = − − −

−
                (171) 

which is precisely the adjoint of 2 1 0mF − ; see Equation (166). Thus we have  

( )†
0 0odd odd

F F=                        (172) 

as expected. 
The result obtained in (171) may be now used to find the explicit value of 

2 2 1n mF − . Thus substituting Equation (171) back into Equation (168), we find 

( )
( )

( ) ( ) ( )

2 2 1 2 2 1
2 2 1

2 2 12 2 1 2 2 1
00

1 2 2 1
2 2 2 1

1
1

2 2 1 2 2 1

n m
n m n m

n m

n m
n mn m n m

n m a b b a
F

i n m

a aa b b a
i F

n m n m

+
− −

−

+
−− −

− − +
= 

− −

 −−
+ − −

+ − −

      (173) 

where , 1, 2,3,n m = � . 
The computation of the matrix element 2 1 2n mF −  is indeed quite cumbersome. The 

difficulty arises from the fact that the defining equation of 2 1 2n mF − , which is given 
by (91), involves this summing over the matrix 2 2m kF  which is potentially diver- 
gent when the summing index m takes the k value. The limiting procedures involved 
in smoothing out the divergence are quite delicate and require careful consideration. 
Thus here we shall only give the final result; the details may be found in [9], 

( )
( )

( ) ( ) ( )

2 2 1 2 2 1
2 1 2

2 2 12 2 1 2 2 1
00

1 2 2 1
2 2 2 1

1
1

2 2 1 2 2 1

n m
m n m n

n m

n m
m nm n m n

m n a b b a
F

i m n

a aa b b a
i F

m n m n

+
− −

−

+
−− −

− − +
= − 

− −

 −−
+ + −

+ − −

      (174) 

Comparing Equations (173) and (174), we see that 

( )†
even odd even odd

F F=                      (175) 

as expected. 
To complete fixing the comma interaction vertex in the full-string basis we 

still need to compute the remaining elements, namely 2 2n mF  and 2 1 2 1n mF − − . 
The computation of the matrices 2 2n mF  and 2 1 2 1n mF − −  involve two distinct 
cases. The off diagonal case is given by n m≠  and the diagonal case is given by 
n m= . Though the off diagonal elements are not difficult to compute, the 
diagonal elements are indeed quite involved and they can be evaluated by setting 
n m=  in the defining equations for 2 2n mF  and 2 1 2 1n mF − −  and then explicitly 
performing the sums with the help of the various identities we have established 
in [9]. An alternative way of computing the diagonal elements is to take the limit 
of n m→  in the explicit expressions for the off diagonal elements. We have 
computed the diagonal elements both ways and obtained the same result which 
is a non trivial consistency check on our formalism. For illustration, here we 
shall compute the diagonal elements by the limiting process we spoke of as we 
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shall see shortly. But first let us compute the off diagonal elements. We first 
consider 2 2n mF . From Equation (88), we have 

( )
( )

1

2 2 0 2 1 2 3 2
1

1

1 2 1 2
1

11 1
2 2 1

1 1
2 2

m
T T

n k k
m nm

T T T T

m mknm

F F M M
m

M M M M

−∞

=

−∞

=

  − = +  π   −  

    − + +         

∑

∑
         (176) 

Substituting the explicit value of 
1

1 2
1
2

T TM M
−

 + 
 

 and 1 2
1
2

T TM M+  into the 
above equation, we have 

( )
( )

( ) ( ) ( )

( )
( ) ( )

( ) ( )

1 2 1 2
2 2 2 2 2

2 2 0 2 1/2

2 2 1 2 2 1

1

2 2 1 2 2 1

1

1 1 2 2
2 2 22

12 12 2
2 2 2 1 2 2 13

2 2 1 2 2 1

n n k
n n k n k

n k k

n k
n m n m

m

n m n m

m

a k n a b b a
F F

n kn

a b b a
k n

n m k m

a b b a
n m k m

+

+ ∞
− −

=

∞
− −

=

− − +
= −

+

− +− 
π − − − −       

− + 
+ − + −        

∑

∑

  (177) 

The difficulty in evaluating the sums arises from the fact in performing these 
sums one usually make use of partial fraction to reduce them to the standard 
sums treated in [9]; however partial fraction in this case fails due to a diver- 
gence arising from the particular case when n m= . Thus to carry our program 
through, we first consider the case for which n k≠ . For n k≠ , partial fraction 
can be used to reduce the sums in the above expression to the standard results 
obtained in [9]. Skipping some rather straight forward algebra, we find 

( ) ( )02 2 2 2 2 2 2 2 2 2
2 2

1 1 2 2
2 2 2 2 22

n n k
k n n k n k n k n k

n k

F a k n a b b a a b b a
F

n k n kn

+− − + − = − + + − 
 

(178) 

where , 1, 2,3,n k = � , and n k≠ . Substituting the value of 0 2kF , which is 
given by Equation (163), we have 

( ) ( )
( ) ( )

( ) ( ) ( )1 2 1 2
2 2

2 2 00 1 2 1 2

2 2 2 2 2 2 2 2

1 1 2 2
1

22 2

2 2 2 2

n k n k
n k

n k

n k n k n k n k

a a k n
F F

n k

a b b a a b b a
n k n k

+ +− −
= − −

+ − × + + − 

      (179) 

which is the desired result valid for , 1, 2,3,n k = � ,and subject to the condition 
n k≠ . Note that in this case we have 

( )†
even even even even

F F=                     (180) 

as expected. As we pointed earlier the diagonal element 2 2n kF  may be obtained 
by taking the limit of k n→  in Equation (177). Hence 

( )
( )

2 2 2 2 2
2 2 02 1 2

2 2 2 2 2 2 2 2

1
42

2 2 1 1
2 23

n
n n n n n

n n n

b a b a
n n n n n n n n

a a b b a
F F

n

n a S b S a S b S− −

− +
= −

 − + + − π  
� � � �

      (181) 
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This result may be simplified further with the help of the following identities 
derived in [9] 

2 2 2
1 1 3 , 0
2 4

a a a
n n nS S S n− = + π >� �                 (182) 

and 

2 2 2
1 1 3 , 0
2 4

b b b
n n nS S S n− = − + π >� �                (183) 

Hence 

( )
( )

( ) ( )

2 2 2 2 2
2 2 0 2 1 2

2 2 2 2 2 2 2 2

1
42

2 1 3
2 2

n
n n n n n

n n n

b a b a
n n n n n n n n

a a b b a
F F

n

n a S b S a S b S

− +
= −

π − + + − π  
� �

    (184) 

The generalization of the plus combination in the square bracket has been 
considered before; its value is given explicitly by setting 1 3p =  in Equation 
(141) 

2 2 2 2
2

2
a b

n n n nb S a S
n

+ =                     (185) 

Using this identity, we obtain 

( ) ( )2
2 2 0 2 2 2 2 2 2 2

1 1 1 2 3
2 2 22

n
n b a

n n n n n n n n n

a nF F b a a S b S
n

−
= − − − −

π
� �    (186) 

Using Equation (163) to eliminate 0 2nF , the above expression becomes  

( ) ( )2 2
2 2 00 2 2 2 2 2 2

1 1 2 31
2 2 2 2

b an n
n n n n n n n n

a a nF F b a a S b S
n

= − − − − −
π

� �    (187) 

which satisfies the property 

( )†
even even even even

F F=                    (188) 

as expected. 
Finally we consider the matrix elements odd oddF . From Equation (90), we 

have  

( )
( )2 1 2 1 1 2 2 2 1 0 2 13 2

1

2 1 2
23 3 2 1

n
T T

n k m k k
m nm

i iF M M F F
n

∞

− − − −
=

− = + +  π  −
∑   (189) 

The values of 2 2 1m kF −  and 0 2 1kF −  are given by Equations (173) and (171) 
respectively. Hence, substituting the explicit value of 1

TM  and 2
TM  in (189) 

and skipping some rather straightforward algebra, we find  

( ) ( )
( ) ( )

( )
( ) ( )

( )
( ) ( )

( ) ( )

00 2 1 2 1
2 1 2 1 1 2 1 2

2 1 2 1 2 1 2 1

2 2 1 2 2 1

0

2 2 1 2 2 1

1 1
3 2 1 2 1

1 2 1 2 1
2 2 1 2 1

2 1 2 1 2 1 1
2 2 2 1 2 2 13

2 2 1 2 2 1

n k
k n

n k

k n
n k n k

k n
m k m k

m

m k m k

F a a
F

n k
n k a b b a

n k

a b b ak n
m n m k

a b b a
m n m k

+

− −
− −

+
− − − −

+ ∞
− −

=

− −

− −
=

− −

− − − +
+

− + −
− +− −

+ 
π − − − −       

−
− 

+ − + −        

∑
(190) 
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Now there are two cases to consider k n≠  and k n= . For k n≠ , Equation 
(190) becomes  

( ) ( ) ( )

( ) ( ) ( ) ( )

00 2 1 2 1
2 1 2 1

2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1

1 1 1 2 1 2 1
3 22 1 2 1

2 1 2 1 2 1 2 1

n k k n
k n

n k

n k n k n k n k

F n ka a
F

n k
a b b a a b b a

n k n k

+ +
− −

− −

− − − − − − − −

− − − − −
= +

− −
 + −

× + 
− + − − − −  

  (191) 

where , 1, 2,3n k =  and we have made use of the results in [9] to evaluate the 
various sums. Thus for n k≠ , we see that  

( )† , forodd odd odd odd
F F n k= ≠                 (192) 

For k n= , Equation (190) becomes  

( )

( ) ( ) ( )

( ) ( )

2 1 2 1
2 1 2 1 00 2 1 2 1

2 1 2 12 1 2 1

2 1 2 12 1 2 1

1 11
3 2 1 2

2 12
23

n n
n n n n

a b
n nn n

a b
n nn n

a a
F F a b

n
b E a En

b E a E

− −
− − − −

− −− − − −

− −− −

= − +
−

 +− + 
π 

 − −  

� �

� �

       (193) 

where we have made use of the results in [9] to evaluate the various sums 
appearing in the steps leading to the above result. Using the identities  

( ) 2 1 2 12 1
1 1 3
2 4

a a a
n nnE E S− −− − = + π� �                (194) 

( ) 2 1 2 12 1
1 1 3
2 4

b b b
n nnE E S− −− − = − + π� �               (195) 

derived in [9], the above expression becomes 

( )

( ) ( ) ( )( )

2 1 2 1
2 1 2 1 00 2 1 2 1

2 1 2 12 1 2 1

1 1 11
3 2 1 2 2

3 2 1
2

n n
n n n n

b a
n nn n

a a
F F a b

n

n a E b E

− −
− − − −

− −− −

= − + +
−

+ − −
π

� �
       (196) 

which is clearly self adjoint. Thus from Equations (191) and (196) it follows that 

( )†
odd odd odd odd

F F=                     (197) 

as expected. With this result we, establish that †F F=  as anticipated. 
In the original variables, the comma three-string in (60) can be written in the 

form 

( )
3

1 2 3
0 123

1
, , 0HS r HS

x
r

V p Vδ α α α
=

 =  
 
∑ † † †            (198) 

where 

( )
3

, 1 , 0
1

1 2 3 2, , e
r rs s

n nm mr s n m a aHSV α α α
∞

− −= =− ∑ ∑
=

† † †             (199) 

The matrix elements ij
nm  may be obtained by comparing (199) to (60). For 
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example consider the terms involving 1a  and 2a  in (60) 

( ) ( )

( ) ( )

1 2 2 1 2 1 2 2 2 1

1 2

2 1

1 1 1 1 1
2 3 3 3 3

1 1 1 1 3
2 3 6 6
1 1 1 1 3
2 3 6 6

n nm m n nm m n nm m n nm m

T T
n m

nm

T T
n m

nm

a C a a C a e a F a e a F a

a C F F i F F a

a C F F i F F a

− − − − − − − −

− −

− −

   − + − +   
   

 = − − + + −  

 − − + − −  

  (200) 

Comparing this result with the terms 1 12 21
2 n nm ma a− −−   and 2 21 11

2 n nm ma a− −−  , we 
obtain 

( ) ( )12 1 2 3
6

C F F i F F = − − + −                (201) 

( ) ( )21 1 2 3
6

C F F i F F = − − − −                (202) 

where we have used the fact that TF F= . Likewise one expresses the remaining 
matrix element rs

nm  in terms of the matrix elements nmC  and nmF  and their 
complex conjugates. All in all we have 

( )

( )

1 0 0 0 1 1
1 0 1 0 1 0 1
3 2

0 0 1 1 1 0

0 1 1
3 1 0 1

2
1 1 0

F FC F F C

i F F

    
 +    = + + + −             

−  
 + − −  

 − 



      (203) 

which is the same result obtained in ref. [7]. Equation (203) gives completely the 
comma interaction three vertex in the full string basis in the representation with 
oscillator zero modes. 

Sometimes it is useful to express the comma vertex in the momentum 
representation. For a single oscillator with momentum p and creation operator 

†α , the change of basis is accomplished by 

) )0 0 0 0 0 0
1exp 0
2

p p p p pα α α α = − + + − 
 

† † † †           (204) 

with 0  being the oscillator ground state. Thus using the above identity and 
Equation (61) one finds the following representation for the Vertex in the 
momentum space 

3 3
0 0 0 0 0 00 0

, 0 , 1 0 0

1 1exp
2 2n nm m n nm m n n m m

n m n m n n
A C A A F A A F P P F A P F P

∞ ∞ ∞ ∞

= = = =

 ′ ′ ′ ′− − − − + 
∑ ∑ ∑ ∑† † † † † † (205) 

where the prime matrices nmF ′  are related to the unprimed matrices nmF  by 

00
00

00

1
1

F
F

F
+′ =
−

                         (206) 

0
0

00

, 1, 2,3,
1

n
n

F
F n

F
′ = =

−
�                    (207) 
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0 0

00

, , 1, 2,3,
1

n m
nm nm

F F
F F n m

F
′ = + =

−
�               (208) 

The property 2 1F =  in Equation (83) implies that in the momentum 
representation, the F ′  matrix satisfies 

1
, , 1, 2,3,nk km nm

k
F F n mδ

∞

=

′ ′ = =∑ �                (209) 

For 0n ≠ , we have r r
n na nα− −≡ , and so Equation (205) may be written as  

)

3 3

0 0 0
, 1 , 1 , 1

3

00 0 123
, 1

1exp
2

1 0,
2

HS r r rs s r rs s
x n nm m m m

r s n m r s

r rs s

r s

V p G p G

p G p p

α α α
∞

− − −
= = =

=


= +




+ 


∑ ∑ ∑∏∫

∑
     (210) 

where the matrix G is defined through the relation 

0 0

1 1rs rs
nm nm

n m

G
n mδ δ

′= −
+ +

               (211) 

The ghost part of the comma vertex in the full string basis has the same 
structure as the coordinate one apart from the mid-point insertions  

( )
( )

3

=1

1 2
2 ,1 ,2 ,3

123
3e , , 0, >
2

r

r
i

HS HS
ghostV V N

φ
φ φ φ φ

φ φ α α α
π∑

= =† † †      (212) 

where the α′ s are the bosonic oscillators defined by the expansion of the 
bosonized ghost ( ) ( )( ), pφφ σ σ  fields and ( ),1 ,2 ,3, ,HSV φ φ φ

φ α α α† † †  is the 
exponential of the quadratic form in the ghost creation operators with the same 
structure as the coordinate piece of the vertex. 

6. Conclusion 

We have successfully constructed the comma three interaction vertex of the 
open bosonic string in terms of the oscillator representation of the full open 
bosonic string. The form of the vertex we have obtained for both the matter and 
ghost sectors are those obtained in ref. [7] [8] [10]. This establishes the equi- 
valence between Witten’s 3-interaction vertex of open bosonic strings and the 
half string 3-vertex directly without the need for the coherent state methods 
employed in ref. [1]. 
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