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Abstract 
In this paper, we study the functions with values in (β, p)-Banach spaces 
which can be approximated by a quadratic mapping with a given error. 
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1. Introduction 

The stability problem of functional equations originated from a question of 
Ulam [1] in 1940 concerning the stability of group homomorphisms. 

Give a group ( )1,G ∗  and a metric group ( )2 , ,G d⋅  with the metric ( ),d ⋅ ⋅ . 
Given 0ε > , does there exist a 0δ >  such that if 1 2:f G G→  satisfies 

( ) ( ) ( )( ),d f x y f x f y δ∗ ⋅ <  for all 1,x y G∈ , then there is a homomorphism 

1 2:g G G→  with ( ) ( )( ),d f x g x ε<  for all 1x G∈ ? 
Hyers [2] gave the first affirmative partial answer to the question of Ulam for 

Banach spaces. Hyers’s Theorem was generalized by Aoki [3] for additive map-
pings and by Rassias [4] for linear mappings by considering an unbounded 
Cauchy difference. The paper of Th. M. Rassias has provided a lot of influence in 
the development of what we call generalized Hyers-Ulam-Rassias stability of 
functional equations. Beginning around 1980, the stability problems of several 
functional equations and approximate homomorphisms have been extensively 
investigated by a number of authors and there are many interesting results con-
cerning this problem (see [5]-[18]). 

The functional equation 

( ) ( ) ( ) ( )2 2f x y f x y f x f y+ + − = +  

is called the quadratic functional equation. Every solution of the quadratic func-
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tional equation is said to be a quadratic mapping. The Hyers-Ulam stability for 
quadratic functional equation was first proved by Skof [5] for mappings acting 
between a normed space and a Banach space. P. W. Cholewa [6] showed that 
Skof’s Theorem is also valid if the normed space is replaced with an abelian 
group. 

Now we recall some basic facts concerning ( ), pβ -Banach spaces. We fixed 
real numbers β  with 0 1β< ≤  and p with 0 1p< ≤ . Let =   or  . Let 
X be linear space over  . A quasi-β-norm ⋅  is a real-valued function on X 
satisfying the following conditions: 

(i) 0,x x X≥ ∀ ∈ ; 0x =  if and only if 0x = ; 
(ii) , ,x x x X Kβλ λ β= ∀ ∈ ∈ ; 
(iii) There is a constant 1K ≥  such that ( ) , ,x y K x y x y X+ ≤ + ∀ ∈ . 
The pair ( ),X ⋅  is called a quasi-β-normed space if ⋅  is a quasi-β-norm 

on X. The smallest possible K is called the module of concavity of ⋅ . A qua-
si-β-Banach space is a complete quasi-β-normed space. 

A quasi-β-norm ⋅  is called a ( ), pβ -norm if p p px y x y+ ≤ +  for all 
x X∈ . In this case, a quasi- ( ), pβ -Banach space is called a ( ), pβ -Banach 
space. For more details and related stability results on ( ), pβ -Banach spaces, 
we refer to [19] [20]. Recently, L. Gǎvruta and P. Gǎvruta [21] studied the ap-
proximation of functions in Banach space. In this paper, we will consider this 
problem in ( ), pβ -Banach spaces and extend previous result for quadratic 
functional equations. 

2. Main Results 

Given 0 1β< ≤  and 0 1p< ≤ . Throughout this paper we always assume that 
X is a linear space, Y is a ( ), pβ -Banach space and :f X Y→  is a mapping. 

Definition 2.1. Let :f X Y→  be a mapping. We say f is Φ-approximable by 
a quadratic map if there exists a quadratic mapping :Q X Y→  such that 

( ) ( ) ( )f x Q x x− ≤ Φ                       (1) 

for all x X∈ . In this case, we say that Q is the quadratic Φ-approximation of f. 
The following result is our main result in this paper. 

Theorem 2.2. Let 1
1: : lim 4 0,
2

n p p
nn

V X x x Xβ
+ →∞

  = Φ → Φ = ∀ ∈  
  

  and 

suppose 1VΦ∈ . Then f is Φ-approximable by a quadratic map if and only if the 
following two condition hold: 

(i) 1 1 1 1 1 1lim 4 2 2 0
2 2 2 2 2 2

p
n p

n n n n n nn
f x y f x y f x f yβ

→∞

       + + − − − =       
       

, 

,x y X∈ ; 

(ii) There exists 1VΨ∈  such that 

( ) ( )1 1 1 1 , .
2 4 2 4

p
p p

n n n n pf x f x x x x Xβ
   − ≤ Ψ + Φ ∈   
   
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In this case, the quadratic Φ-approximation of f is unique and is given by 

( ) 1lim 4
2

n
nn

Q x f x
→∞

 =  
 

 

for all x X∈ . 
Proof. We first assume that f is Φ-approximable by a quadratic map. Then for 

,x y X∈ , we have 

( ) ( ) ( )f x y Q x y x y+ − + ≤ Φ +  

and 

( ) ( ) ( ).f x y Q x y x y− − − ≤ Φ −  

It follows that 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2

2 2 2 2

2 2

p

p p

p p

p p p p p p

f x y f x y f x f y

f x y Q x y f x y Q x y

f x Q x f y Q y

x y x y x yβ β

+ + − − −

≤ + − + + − − −

+ − + −

≤ Φ + +Φ − + Φ + Φ

 

for all ,x y X∈ . Hence 

1 1 1 1 1 14 2 2
2 2 2 2 2 2

1 1 1 14 4
2 2 2 2

1 14 2 4 2
2 2

p
n p

n n n n n n

n p p n p p
n n n n

n p p p n p p p
n n

f x y f x y f x f y

x y x y

x y

β

β β

β β β β

       + + − − −       
       

   ≤ Φ + + Φ −   
   

   + ⋅ Φ + ⋅ Φ   
   

 

for all ,x y X∈ . By letting n →∞ , we obtain condition (i) since 1VΦ∈ . Since 
Q is quadratic, we have 

( ) ( ) ( )

( )

1 1 1 1 1 1
2 4 2 2 4 4

1 1
2 4

p p p

n n n n n n

p p
n n p

f x f x f x Q x Q x f x

x xβ

     − ≤ − + −     
     

 ≤ Φ + Φ 
 

 

for all x X∈ . We take 1VΦ = Ψ∈  in the first position, then for all x X∈ , we 
have 

( ) ( )1 1 1 1
2 4 2 4

p
p p

n n n n pf x f x x xβ
   − ≤ Ψ + Φ   
   

 

and the condition (ii) holds. 
Conversely we suppose that (i) and (ii) hold. It follows from condition (ii) that 

for all x X∈ , we have 

( ) ( )1 14 4 .
2 2

p
n n p p p

n nf x f x x xβ   − ≤ Ψ +Φ   
   

           (2) 

Then 14
2

n
nf x  

  
  

 is a Cauchy sequence. Indeed, by using 1
2m x  replace x, 
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we get 

1 1 1 14 4 ,
2 2 2 2

p
n n p p p

n m m n m mf x f x x xβ
+ +

       − ≤ Ψ +Φ       
       

 

and by multipling 4m pβ , for all x X∈ , we have 

( )1 1 1 14 4 4 4 .
2 2 2 2

p
n m pn m m p m p

n m m n m mf x f x x xβ++
+ +

       − ≤ Ψ + Φ       
       

 

Hence, for all x X∈ , 

1 14 4 0
2 2

p
n m m

n m mf x f x+
+

   − →   
   

 

as ,m n →∞ . Since Y is a ( ), pβ -Banach space, the limit  

( ) 1: lim 4
2

n
nn

Q x f x
→∞

 =  
 

 exists. Let n →∞  in relation (2), we get condition (1). 

Now we show that Q satisfies the required conditions. From the hypothesis, 
for all ,x y X∈ , 

1 1 1 1 1 1lim 4 2 2 0.
2 2 2 2 2 2

p
n p

n n n n n nn
f x y f x y f x f yβ

→∞

       + + − − − =       
       

 

Hence for all ,x y X∈ , 

( ) ( ) ( ) ( )2 2 0.Q x y Q x y Q x Q y+ + − − − =  

Therefore 

( ) ( ) ( ) ( )2 2Q x y Q x y Q x Q y+ + − = +  

and Q is a quadratic map. Now we show the uniqueness of Q. We suppose that 
Q satisfies 

( ) ( ) ( )f x Q x x− ≤ Φ  

for all x X∈  and there exists a Q′  satisfying 

( ) ( ) ( ).f x Q x x′− ≤ Φ  

Since Q and Q′  are quadratic mappings, we have 

( )1 1 1 1 1
2 2 2 4 2n n n n nf x Q x f x Q x x       − = − ≤ Φ       

       
 

for all x X∈ . Hence for all ,x y X∈ , 

( ) ( ) ( ) ( )1 14 4
2 2

12 4 .
2

p p
p n n

n n

n p p
n

Q x Q x Q x f x f x Q x

xβ

   ′ ′− ≤ − + −   
   

 ≤ ⋅ Φ  
 

 

Since 1VΦ∈ , for all x X∈ , we have 

( ) ( ) 12 lim 4 0.
2

p n p p
nn

Q x Q x xβ

→∞

 ′− ≤ Φ = 
 
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Hence for all x X∈ , ( ) ( )Q x Q x′= . This completes the proof.           
Corollary 2.3. Let [ ): 0,X Xϕ × → ∞  be a mapping satisfying 

( )1 1 1
0

1 1, 4 ,
2 2

p n p p
n n

n
x y x yβ ϕ

∞

+ +
=

 Φ = < ∞ 
 

∑  

and 

1lim 4 0
2

n p p
nn

xβ

→∞

 Φ = 
 

 

for all ,x y X∈  where ( ) ( )1 ,x x xΦ = Φ . Suppose :f X Y→  a function with 
( )0 0f =  and satisfying 

( ) ( ) ( ) ( ) ( )2 2 ,
p pf x y f x y f x f y x yϕ+ + − − − ≤         (3) 

for all ,x y X∈ . Then there exists a unique quadratic function :Q X Y→  such 
that 

( ) ( ) ( ) ,f x Q x x x X− ≤ Φ ∈  

which is defined 

( ) 1lim 4
2

n
nn

Q x f x
→∞

 =  
 

 

for all x X∈ . 

Proof. Replace x and y by 1
2

x  in (3), we have 

( ) 4 , .
2 2 2

p
px x xf x f ϕ   − ≤   

   
 

Dividing by 4 pβ , we have 

( )1 1 , .
4 2 2 24

p
p

p

x x xf x f β ϕ   − ≤   
   

                (4) 

Replacing x by 1
2

x  in (4), we get 

1 1 , .
4 2 4 4 44

p
p

p

x x x xf f β ϕ     − ≤     
     

                (5) 

Then we have 

( ) ( )

( )

2 2 2 2

2

2

2

1 1 1 1 1 1
4 2 4 24 2 4 2

1 1, ,
2 2 4 44 4

1 , 4 ,
2 2 4 44

1
4

p p p

p p
p p

p p p
p

p
p

x xf x f x f x f f f x

x x x x

x x x x

x

β β

β
β

β

ϕ ϕ

ϕ ϕ

       − = − + −       
       

   ≤ +   
   

    = +        

≤ Φ

 

for all x X∈ . We claim that 
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( ) ( )1 1 1 .
4 2 4

p
p

m m m pf x f x xβ
 − ≤ Φ 
 

               (6) 

holds for all 1m ≥  and x X∈ . When 1m = , this is obviously by (4). Suppose 
(6) holds when m k= , i.e. for all x X∈ , 

( ) ( )1 1 1 .
4 2 4

p
p

k k k pf x f x xβ
 − ≤ Φ 
 

 

Then for 1m k= + , we have 

( )

( )

( )

( ) ( )

1 1

1 1

1

1

1 1
4 2

1 1 1 1
2 24 4 4 2

1 , 4
2 2 24

1
4

p

k k

p p

k k k k

p p p
k p

p
k p

f x f x

x xf x f f f x

x x x

x

β
β

β

ϕ

+ +

+ +

+

+

 −  
 

     ≤ − + −     
     

    ≤ + Φ        

≤ Φ

 

for all x X∈ . By induction, (6) is true for all 1m ≥  and x X∈ . Replacing 

( ),x y  by 1 1,
2 2n nx y 

 
 

 in (3) and multiplying both side by 4n pβ , we have 

1 1 1 1 1 14 2 2
2 2 2 2 2 2

1 14 , .
2 2

p
n p

n n n n n n

n p p
n n

f x y f x y f x f y

x y

β

β ϕ

       + + − − −       
       

 ≤  
 

 

Since 

( )1 1 1
0

1 1, 4 , ,
2 2

p n p p
n n

n
x y x yβ ϕ

∞

+ +
=

 Φ = < ∞ 
 

∑  

we have 

1 1

1 1lim 4 , 0
2 2

n p p
n nn

x yβ ϕ + +→∞

  = 
 

 

for all ,x y X∈ . Hence for all ,x y X∈ , 

1 1 1 1 1 1lim 4 2 2 0.
2 2 2 2 2 2

p
n p

n n n n n nn
f x y f x y f x f yβ

→∞

       + + − − − =       
       

 

It follows from Theorem 2.2 (with 0Ψ =  there) that there exists a unique 
quadratic function Q such that 

( ) ( ) ( )f x Q x x− ≤ Φ  

for all x X∈ .                                                     

Theorem 2.4. Let ( )2
1: : lim 2 0,

4
p n

n pn
V X x x Xβ+ →∞

 = Φ → Φ = ∀ ∈ 
 

 . Sup-

pose 2VΦ∈ . Then f is Φ-approximable by a quadratic map if and only if the 
following two condition 
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(i) ( ) ( ) ( ) ( )1lim 2 2 2 2 2 2 2 2 0
4

pn n n n n n
n pn

f x y f x y f x f yβ→∞
+ + − − − = ; 

(ii) There exists a 2VΨ∈  such that 

( ) ( ) ( ) ( )2 4 2 4
pn n p n n p pf x f x x xβ− ≤ Ψ + Φ  

hold for all ,x y X∈ . In this case, the quadratic Φ-approximation of f is unique 
and is given by 

( ) ( )1lim 2 , .
4

n
nn

Q x f x x X
→∞

= ∈  

Proof. The proof is similar to that of Theorem 2.2 and we omit it.          
Corollary 2.5. Let [ ): 0,X Xϕ × → ∞  be a mapping such that 

( ) ( ) ( )1
1

0
, 4 2 ,2n pp p n n

n
x y x yβ ϕ

∞
− +

=

Φ = < ∞∑  

for all ,x y X∈ . Let ( ) ( )1 ,x x xΦ = Φ . Suppose ( )1lim 2 0
4

p n
n pn

xβ→∞
Φ =  all 

x X∈ . Let :f X Y→  a function with ( )0 0f =  and satisfying 

( ) ( ) ( ) ( ) ( )2 2 ,
p pf x y f x y f x f y x yϕ+ + − − − ≤  

for all ,x y X∈ . Then there exists a unique quadratic function :Q X Y→  such 
that 

( ) ( ) ( )f x Q x x− ≤ Φ  

for all x X∈ . 
Proof. The proof is similar to that of Corollary 2.3 and we omit it.         
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