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Abstract 
In this paper, we define two versions of Untrapped set (weak and strong Un-
trapped sets) over a finite set of alternatives. These versions, considered as 
choice procedures, extend the notion of Untrapped set in a more general case 
(i.e. when alternatives are not necessarily comparable). We show that they all 
coincide with Top cycle choice procedure for tournaments. In case of weak 
tournaments, the strong Untrapped set is equivalent to Getcha choice proce-
dure and the Weak Untrapped set is exactly the Untrapped set studied in the 
litterature. We also present a polynomial-time algorithm for computing each 
set. 
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1. Introduction 

A common way to model a decision maker’s preferences is to consider a binary 
relation R over a set A of alternatives (teams, projects, candidates, goods, etc. …). 
In many different contexts (Sports league, Social Choice Theory, Economics, 
Operational Research, etc …), the binary relation R is used to make a choice 
between alternatives of A. Very often this relation is assumed to be complete and 
asymmetric (we say that R is a tournament) or sometimes complete (R is said to 
be a weak tournament). The general case concerning incomplete binary relations 
has received less attention (see [1] [2] [3]). Incomplete preferences have been 
increasingly recognized as important [4] [5]. The origin of these preferences is 
twofold: a lack of information about the alternatives or a lack of information of 
the decision maker about her own tastes on the alternatives [6] [7].  
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From the binary relation defined on A, many mechanisms (procedures) are 
defined in order to choose the set of ‘‘best alternatives’’ also called choice sets. 
Some familiar choice procedures studied in the literature are the Top cycle 
choice procedure [8], the Copeland choice procedure [9], the Uncovered choice 
procedure [10], etc. … These choice procedures have been extensively analysed 
(in terms of mathematical characterizations) for tournaments and weak tourna-
ments [see [11] [12]]. Sanni [13] has studied axiomatic characterizations of some 
pseudo tournaments i.e. reflexive and non necessary complete binary relations.  

Recent work has addressed the computational complexity of many choice 
procedures (see for example: [14] [15]) and the literature is full of choice proce-
dures that are difficult to compute [15] [16]. It is assumed that if computing a 
choice set is infeasible, the applicability of the corresponding solution concept is 
seriously undermined [17]. Most of the familiar procedures mentioned above are 
demonstrated to be tractable [17] i.e. belonging to class P of problems which can 
be solved by an algorithm whose running time is polynomial in the size of the 
problems instance. These procedures are then considered useful because if the 
computation of a choice set is intractable, the associated choice procedure is 
virtually rendered useless for large problem instances. 

In this article, we consider the Untrapped choice procedure (UT) defined by 
Duggan [18] for (weak) tournaments. The resulting set is composed of alterna-
tives x that are not directly beaten or that beat indirectly some other alternatives 
(especially alternatives that directely beat x). Duggan [18] proves that this choice 
procedure coincides with the Top cycle choice procedure in the case of tourna-
ments and is nested between the Getcha and the Gocha choice procedures for 
weak tournaments. UT strongly depends on the asymmetric part of the binary 
relation considered. 

We particularly focus, in this paper, on pseudo tournaments and we deduce 
another notion of the Untrapped (Strong Untrapped: SUt) choice procedure di-
rectely dependent on the pseudo tournament R studied. We also discuss the 
computational complexity of identifying the choice set for each of the choice 
procedures studied. 

The rest of this article is structured as follows. Concepts that are used 
throughout this paper are given in Preliminaries (Section 2). Section 3 introduc-
es the two extensions of the Untrapped choice procedures which are compared 
with two extensions of the Top cycle choice procedure. Computational complex-
ity of Untrapped choice procedures is then explored in Section 4. Section 5 ends 
with an overview of the results. 

2. Preliminaries 

A represents a finite set of alternatives and R a binary relation defined on A (i.e. 
R is a subset of A A× ). If ( ),x y R∈  we write xRy . If B is a non empty subset 
of A, R B  represents the restriction of R on B, i.e. ( ){ }, /R B x y B B xRy= ∈ × . 
The binary relation R is said to be reflexive if xRx , x A∀ ∈ . It is symmetric if 
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xRy yRx⇒ , ,x y A∀ ∈ . Relation R is asymmetric if ( )xRy not yRx⇒ , 
,x y A∀ ∈  with x y≠ . It is antisymmetric if xRy  and yRx x y⇒ = , 
,x y A∀ ∈ . It is transitive if ( xRy  and yRz ) ⇒  xRz , , ,x y z A∀ ∈ . It is 

complete if xRy  or yRx , ,x y A∀ ∈ . A tournament is a complete and anti-
symmetric relation1. A weak tournament is a complete relation. A pseudo tour-
nament is any reflexive binary relation (the relation may be complete or not)2. 

Three other binary relations (I: indifference relation, P: strict preference rela-
tion and J: incomparability relation) are defined from R as follow: ,x y A∀ ∈ , 
xIy  ⇔  ( xIy  and yRx ), xPy  ⇔  ( xRy  and ( )not yRx ) and  

( )xJy not xRy⇔  and ( )not yRx . It can be noticed that I is reflexive and sym-
metric, P is asymmetric (P is also called the asymmetric part of R) and J is sym-
metric. xPy  (resp. xIy ) can be interpreted as x beats or is better than (resp. x 
is indifferent to) y. 

A circuit is any subset { }1 2, , , kx x x  of A (with 2k ≥ ) such that 

1 2 kx Rx R Rx  and 1kx Rx . The subset { }1 2, , , kx x x  is a P-circuit if 

1 2 kx Px P Px  and 1kx Px . A is acyclic (resp. P-acyclic) if it contains no circuit 
(resp. no P-circuit). 

The transitive closure *R  of R is defined as follows: *, ,x y A xR y∀ ∈  if and 
only if k∃ ∈  with 1k ≥ , 1 2, , , kx x x A∃ ∈ , such that { }1,2, , 1i k∀ ∈ − , 

1i ix Rx + , 1x x=  et kx y= . In other words *xR y  if and only if there exists at 
least a path of length k from x to y (we also say that y is reachable from x). The 
transitive closure *P  of P can also be defined in the same way (we then say that 
y is P-reachable from x). 

The predecessor with respect to R (resp. with respect to P) of an alternative 
x A∈  is the set ( ) { }/Pred x y A yRx= ∈  (resp. ( ) { }/PPred x y A yPx= ∈ ). 

We also define the set ( )Cl x  (resp. ( )PCl x ) as ( ) { }*/Cl x y A yR x= ∈  (resp. 
( ) { }*/PCl x y A yP x= ∈ ). So ( )Py Cl x∈ ) if y is P-reachable from x. 

A choice procedure is a function C that maps each pseudo tournament R to a 
nonempty subset ( )C R  of A called the choice set. 

If R is a tournament (resp. a weak tournament) the choice procedure is called 
a tournament solution (resp. a generalized or weak tournament solution) (see 
[15]). 

We say that a choice procedure C is contained in a choice procedure C′  if 
( ) ( )C R C R′⊆  for every pseudo tournament R defined on A (we write 

C C′⊆ ). 
Many tournament or generalized tournament solutions have been studied in 

the litterature. A well known one is the Top Cycle choice procedure [8] [10]) de-
fined by the concept of dominant set. 

Definition 1. A non empty subset D of A is said to be a dominant set for a 
tournament R in A if xRy , x D∀ ∈ , \y A D∀ ∈ . 

 

 

1Tournaments are always supposed to be asymmetric. We suppose without lost of generality that 
tournament may be reflexive. 
2Pseudo tournaments should not be confound with partial tournaments for which binary relations 
are asymmetric and not necessarily reflexive. 
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D is a minimal dominant set if D is dominant and if no subset of D is domi-
nant. 

The Top Cycle choice procedure of a tournament R on A is defined as 
( )TC R D= , where D is the unique minimal dominant set for the tournament R. 

It is easy to show that ( ) { }/ ,TC R x A xR y y A∗= ∈ ∀ ∈ . It is also obvious that the 
asymmetric part of the transitive closure *R  is without circuit and because *R  
is complete we have ( ) ( )*TC R M R= . An attractive property of TC is that any 
alternative that beats another alternative in the Top Cycle is indirectly beaten by 
the latter. 

The notion of (minimal) dominant set has been extended to the case of weak 
tournaments in two directions. 

Definition 2. Let R be a weak tournament on A. A non empty subset D of A is 
a dominant (resp. undominated) set for R in A if ( )not yRx  (resp. ( )not yPx ), 

x D∀ ∈ , \y A D∀ ∈ . 
D is a minimal dominant (resp. minimal undominated) set if D is dominant 

(resp. undominated) and if no subset of D is dominant (resp. undominated). 
Contrary to the minimal undominated set, the minimal dominant set is 

unique. Schwartz [8] [19] then defined two choice procedures [Getcha and Go-
cha3 choice procedures] as follow:  

Definition 3. Let R be a weak tournament defined on A. 
The Getcha choice procedure of R is defined as ( )Getcha R D= , where D is 

the (unique) minimal dominant set for R in A. 
The Gocha choice procedure is defined by: ( ) iGocha R D=



, where iD  is 
a minimal undominated set.  

Both Gocha and Getcha choice procedures coincide with the Top Cycle (TC) 
when the binary relation R is a tournament. It is easy to show that 

( ) ( )Gocha R Getcha R⊆ . Moreover we have [20], ( ) ( )*Gocha R M P=  and 
( ) ( )*Getcha R M R= . 

For pseudo tournaments, we adopt the same definition for dominant and un-
dominated sets. It is then easy to see that the dominant set is no more unique, so 
we have the following definition. 

Definition 4. Let R be a pseudo-tournament on A4. 
The Gocha choice procedure is defined as the union of all minimal undomi-

nated sets for R in A. 
The Getcha choice procedure is defined as the union of all minimal dominant 

sets for R in A.  
Lemma 1. Let D be a minimal dominant (resp. minimal undominated) set for 

R in A. For all ,x y D∈ , we have *xR y  (resp. *xP y ).  
Proof. We give the proof for the case of the minimal dominant set. The proof 

for minimal undominated set is similar. 
Consider D a minimal dominant set for R in A. Suppose there exists ,x y D∈ , 

 

 

3Getcha set (resp. Gocha set) is also called Smith set (resp. Schwartz set) in the litterature. 
4Sanni (2010) has defined two extensions of the Gocha procedure and two extensions of the Getcha 
procedure. 
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such that ( )*not xR y . Since y D∈ , there exists 1y D∈  such that 1y Ry . We 
also have ( )1not xRy  [otherwise *xR y , a contradiction to ( )*not xR y ]. So 
there exists 2y D∈  such that 2 1y Ry . We have ( )2not xRy . Similarly, there ex-
ist 3 4, , , ny y y D∈  such that 1i iy Ry+  and ( )1inot xRy +  for all  

{ }1,2, , 1i n∈ − . Now consider the set { }*,U z D zR y= ∈ . For all z U∈  and 

0z U∉ , we have ( )0not z Rz . So U is a dominant set for R in A. This contradicts 
the minimality of D because x D∈  but x U∉ .  

The result of Deb [20] for pseudo tournaments is then generalized as follow.  
Proposition 1. For a pseudo tournament R defined on A, we have:  
1) ( ) ( )*Getcha R M R=   
2) ( ) ( )*Gocha R M P= .  
Proof. Consider ( )*x M R∈  and suppose ( )x Getcha R∉ . There exists 

1y A∈  such that 1y Rx . If ( )1y Getcha R∈ , then *
1 1y Rx y R x⇒  and since 

( )*x M R∈ , we have *xR y  (which is not possible). So ( )1y Getcha R∉ . There 
exists 2y A∈  such that 2 1y Ry . 

For the same reasons ( )2y WGe R∉ . Consider the set { }*
1,U z A zR y= ∈ , we 

have ( )U WGe R φ= . Moreover for all z U∈  and for all \z A U′∈ , we have 
( )not z Rz′ . So the set U contains a dominant set for R in A which contains a mi-

nimal weak dominant set (which is not possible). 
Now let ( )x Getcha R∈  and suppose there exists y A∈  such that *yR x . 

( )x Getcha R∈  implies that there exists a minima dominant set D such that 
x D∈ . Then we have y D∈  [otherwise 1 2, , , nx x x A∃ ∈  such that 

1 2 ny x Rx R Rx x= =  (which is not possible)]. so ,x y D∈  and according to 
the previous lemma, we also have *xR y .  

Example. Let R be the pseudo tournament defined on { }, , , , , ,A a b c d e f g=  
by aPb , aIc , bPc , cPd , cPe , dPe , eIf , ePg  and gPd . We also have 
xRx , x A∀ ∈ . The graph of R is represented by: 
 

 
 

We have ( ) { },Gocha R a f= , ( ) { }, ,Getcha R a b c= , ( ) { }, , , ,SUt R a b c f g=  
and ( ) { }, ,WUt R a f g= .  

3. Untrapped Choice Procedures 

We study in this section two choice procedures (strong and weak Untrapped 
choice procedures) for pseudo tournaments. These choice procedures generalize 
the concept of Untrapped choice procedure defined by Duggan [19] for weak 
tournaments. 

Definition 5. Let R be a pseudo tournament on A. We say that x weakly (resp. 
strongly) traps y with respsect to R and we write xTy  (resp xTy ) if xPy  and 
if ( )*not yP x  (resp. if xRy  and if ( )*not yR x ).  

Relation T (resp T ) is not necessary transitive but is P-acyclic (resp. acyclic) 
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[because if 1 2 nx Tx Tx  and 1nx Tx , we get 1 2 nx Px P Px  and 1nx Px , which 
implies *

2 1x P x : this is not possible since 1 2x Tx ]. So, we can define the set of its 
maximal elements. This leads to two choice procedures called weak Untrapped 
(resp. strong Untrapped) choice procedure, denoted by WUt  (resp. SUt ) and 
defined as follow: ( ) ( ){ }/ ,WUt R x A not yTx y A= ∈ ∀ ∈  (resp.  

( ) ( ){ }/ ,SUt R x A not yTx y A= ∈ ∀ ∈ ). 
It is easy to see that an element x of A is in ( )WUt R 5 if and only if ( )not yPx  

or *xP y , y A∀ ∈ . 
So any alternative x which is not directly beaten or which beats indirectly 

some other alternatives (specially alternatives that beat directly x) is in the weak 
Untrapped set. 

It is also easy to see that an element x of A is in SUt  if and only if 
( )not yRx  or *xR y , y A∀ ∈ . 

We can say that an alternative x strongly traps another alternative y ( xTy ) if 
xPy  and if ( )*not yR x ). So ( )x SUt R∈  if and only if ( )not yPx  or *xR y , 

y A∀ ∈ . 
When relation R is a tournament (resp. weak tournament) Duggan [19], 

shows that ( ) ( ) ( )WUt R SUt R TC R= =  (resp  
( ) ( ) ( )Gocha R WUt R Getcha R⊆ ⊆ ). It is obvious that for weak tournaments, 

we have ( ) ( )SUt R Getcha R= . 
The following proposition gives inclusion relations between the different 

choice procedures mentionned above. 
Proposition 2. For a pseudo tournament R defined on A, we have the follow-

ing relations (Table 1). 
Legend: The symbol ⊇  (resp.=, ∅ ) indicates that the choice set in column 

is always contained in (resp. is equaled to, intersects) the choice set in row.  
Proof. See Appendix.  
The previous proposition can be summarized by the following Hasse diagram. 

 

 
 

We can then notice that WUt  is nested between Gocha and Getcha 
( Gocha WUt Getcha⊆ ⊆ ) and that Getcha SUt⊆ . Missing arrows between two 
choice sets indicates that the two always intersect and none is included in the 
other. 

Lemma 2.  
1) ( ) ( )x SUt Pred x Cl x∈ ⇔ ⊆   
2) ( ) ( )P Px WUt Pred x Cl x∈ ⇔ ⊆   

 

 

5Duggan [19] also shows that ( )WUt R  is the union of all maximal sets of all maximal acyclic sub-
relations (w.r.t. set inclusion) of R. 
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Table 1. Comparison of choice procedures. 

 ( )SUt R  ( )WUt R  ( )Gocha R  ( )Getcha R  

( )SUt R  = ⊇  1. ⊇  2. ⊇  3. 

( )WUt R   = ⊇  4. ∅  5. 

( )Gocha R    = ∅  6. 

( )Getcha R     = 

 
Proof.  
1) (⇒ ): Let ( )x SUt R∈ .  

• If ( )Pred x = ∅  then ( ) ( )Pred x Cl x⊆ .  
• If ( )Pred x ≠ ∅  then for ( )y Pred x∈ , yRx . And since ( )x SUt R∈ , we 

then have *xR y ; which implies that ( )y Cl x∈ .  
( ⇐ ): Let x A∈  such that ( ) ( )Pred x Cl x⊆  and suppose that 

( )x SUt R∉ ; then y A∃ ∈  such that yTx . i.e. y A∃ ∈  such that yRx  and 

( )*not xR y . But ( )yRx y Pred x⇒ ∈  ( ( )Cl x⊆ ); which means ( )y Cl x∈ , i.e. 
*xR y : a contradiction.  

2) Similar to the previous one.  

4. Computational Complexity 

In this section we analyze the computational complexity of the weak (resp. 
strong) Untrapped set. The following algorithm (based on the previous lemma) 
describes how to get ( )WUt R  for a given pseudo tournament R defined on a 
finite set A. This algorithm can be considered for ( )SUt R  if ( )PPred x  (resp. 

( )PCl x )) is replaced by ( )Pred x  (resp. ( )Cl x )). 
Let us mention that deciding whether an alternative is contained in a choice 

set is computationally equivalent to finding the set [18]. 
 

Algorithm 1. Untrapped set 

for all x in A do 
if ( ) ( )P PPred x Cl x⊆  then 

( )x WUt R∈  

end if 
return ( )WUt R  

end for 

 
It has been shown that the transitive closure of each x A∈  is computable in 

polynomial time. The same holds for the computation of predecessors of x (see 
[21] page 137), we can then conclude that deciding whether an alternative is 
contained in the weak (resp. strong) Untrapped set is in P (class of problems that 
can be solved in polynomial time). 

5. Conclusions 

Duggan [18] has defined the concept of Untrapped choice procedure for weak 
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tournaments (complete binary relations). This notion depends on the asymme-
tric part of the given binary relation. In this paper, we have introduced two ver-
sions of the Untrapped choice procedures which have been extended to pseudo 
tournaments (reflexive and non necessarily complete binary relations). The weak 
Untrapped (WUt) choice procedure also depends on the asymmetric part of the 
pseudo tournament while the strong Untrapped choice procedure (SUt) is di-
rectly defined by the given pseudo tournament. 

We have shown that each of the new choice procedures coincides with the fa-
miliar Top cycle choice procedure for tournaments. In case of weak tournaments, 
the strong Untrapped set is equivalent to Getcha choice procedure and the Weak 
Untrapped set is exactly the Untrapped set studied by Duggan [18]. We know 
(see [18]) that for a weak tournament R, we have  

( ) ( ) ( ) ( )( )Gocha R WUt R Getcha R SUt R⊆ ⊆ = . When R is a pseudo tourna-
ment, we’ve seen (from proposition 2) that the three choice procedures (WUt, 
Getcha and Gocha) are all contained in SUt. 

In terms of computational complexity, we present an algorithm to compute 
both the strong and the weak Untrapped choice procedure. This algorithm al-
lows us to show that deciding whether an alternative is contained in the strong 
(or in the weak) Untrapped set is in P (class of problems that can be solved in 
polynomial time). 
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Appendix 
Proof of Proposition 2 

1) ( ) ( )WUt R SUt R⊆ . 
Let R be a pseudo tournament defined on A. ( )x WUt R y A∈ ⇒∀ ∈ , 
( )not yPx  or *xP y y A⇒∀ ∈ , ( )not yPx  or ( )*xR y x SUt R⇒ ∈ . 

2) ( ) ( )Gocha R SUt R⊆ . 
According to proof 4. and 1., we have respectively ( ) ( )Gocha R WUt R⊆  and 
( ) ( )WUt R SUt R⊆ . 

3) ( ) ( )Getcha R SUt R⊆ . 
Let R be a pseudo tournament defined on A and let ( )x Getcha R∈ .  
Suppose ( )x SUt R∉ . Then y A∃ ∈  such that yTx  i.e. yPx  and 

( )*not xR y . A contradiction since ( )x Getcha R∈  and ( ) ( )*Getcha R M R= . 
4) ( ) ( )Gocha R WUt R⊆ . 
Let R be a pseudo tournament defined on A and let ( )x Gocha R∈ . 
Suppose ( )x WUt R∉ . Then y A∃ ∈  such that yTx . i.e. yPx  and 

( )*not xP y : which is not possible since ( )x Gocha R∈  and  
( ) ( )*Gocha R M P= . 

5) ( ) ( )WUt R Getcha R∅ . 
Let’s show that any minimal weak dominant set intersects the weaak Un-

trapped set. 
Consider a minimal weak dominant set D′  and suppose that  

( )WUt R D′ = ∅ . Then for x D′∈  we have ( )x WUt R∉ . So ( )y WUt R∃ ∈  
such that yPx . Which is not possible because y D′∉  and x D′∈ . 

The above example shows that none of Getcha and WUt choice procedure is 
included in the other. 

6) ( ) ( )Gocha R Getcha R∅ . 
Note that every weak dominant set is a weak undominated set. So every mi-

nimal weak dominant set contains at least one minimal weak undominated set. 
We then have ( ) ( )Gocha R Getcha R ≠ ∅ . 

The above example shows that none of Getcha and Gocha choice procedure is 
included in the other. 
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