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Abstract 
Ordinal online schedule for jobs with similar sizes in [ ]( )1, 1 2r r≤ ≤  on two 
parallel machines system is considered. Firstly it is proved that the worst case 
performance ratio of the existing algorithm P2 cannot be improved even if the 
job processing times are known in [ ]1, r  for any 1r ≥ . Then a better algo-
rithm named S is developed and its worst case performance ratio is given for 
1 2r≤ ≤ .  
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1. Introduction 

The scheduling problem on m parallel identical machines is defined as follows: 
Given a job set { }1 2, , , nL J J J= �  of n jobs where job jJ  has non-negative 
processing time jp , assign the jobs on m machines { }1 2, , , mM M M�  so as to 
minimize the maximum completion times of the jobs on each machine. The 
earliest algorithm for on-line scheduling jobs on parallel machines is the List 
Scheduling (LS) algorithm, which was introduced by Graham [1]. Many models 
and algorithms for online scheduling are proposed later on. In classic scheduling 
problem, there is no constraints on the size of job. However, in practice, the size 
of job can neither be too large nor too small. This motivates researchers to study 
scheduling problems when the sizes of all jobs are known in [ ]1, r  with 1r ≥  
[2]-[7]. 

In this paper, we will consider ordinal online scheduling jobs with sizes in 
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[ ]( )1, 1 2r r≤ ≤  on two parallel machines. The model of ordinal online sche- 
duling was proposed by Liu et al. [8]. It is assumed that the values of the 
processing times are unknown, but that the order of the jobs by non-increasing 
processing time is known, i.e., without loss of generality that 1 2 np p p≥ ≥ ≥� . 
An algorithm named Pm was developed for the system of m machines and it is 
proved that the algorithm is the best online algorithm for 2,3m = . In current 
research, it will be proved that, for 2m = , the worst case performance ratio of 
algorithm P2 can not be improved even if the sizes of all jobs are known in [ ]1, r  
for any 1r ≥ . Then a better algorithm named S is proposed for [ ]1,2r∈  and 
its worst case performance ratio is given. 

The rest of the paper is organized as follows. In Section 2, some definitions 
and the algorithm S and P2 are given. Section 3 analyzes the competitive ratio of 
the algorithm S. Finally, some concluding remarks are given in Section 4. 

2. Some Definitions and Algorithms 

Definition 1. Given m parallel machines, let { }1 2, , , nL J J J= �  be any list of 
jobs. Algorithm A is a heuristic algorithm. Let ( )max

AC L  and ( )max
OPTC L  be the 

makespan of algorithm A and the makespan of an optimal off-line algorithm 
respectively. We refer to  

( ) ( )
( )

max

max

, sup
A

OPT
L

C L
R m A

C L
=  

as the worst case performance ratio of algorithm A.  
In the following of this paper, we always assume that the number of machines 

is two (i.e. 2m = ) and the sizes of job list { }1 2, , , nL J J J= �  satisfies  

1 2 np p p≥ ≥ ≥�  and [ ]( )1, 1, 2, , ,1 2jp r j n r∈ = ≤ ≤�  if no specific explana- 
tion is given. 

Algorithm P2 [8]. Jobs are assigned to machines as follows:  

{ }
{ }

1 3 1

2 3 1 3

: | 0 ,

: , | 1 .
k

k k

M J k

M J J k
+

−

≥

≥
 

i.e. 

1 1 4 7 10

2 2 3 5 6 8 9

:
:

M J J J J
M J J J J J J

�
�

 

Algorithm S. 
Jobs are assigned to machines as follows:  

{ } { }
{ }

1 1 4 4 1

2 4 2 4 1

: , | 1 ,

: , | 1 .
k k

k k

M J J J k

M J J k
+

− −

≥

≥

∪
 

i.e. 

1 1 4 5 8 9 12

2 2 3 6 7 10 11

:
:

M J J J J J J
M J J J J J J

�
�

 

The two algorithms are the same for assigning the first four jobs. The dif- 
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ferences are that P2 assign the first two jobs on M2 and the third on M1 for job set 

{ }( )| 3 2,3 3,3 4 1jJ j k k k k= + + + ≥ . However algorithm S assign the two conse- 
cutive job ( )2 1 2 2, 2k kJ J k+ + ≥  on two machines alteratively. 

In the following, we consider the worst case performance ratio of algorithm P2 
and S. We will show that algorithm S is better than P2 under the assumption of 

[ ]1,jp r∈  for 2r ≤ . 

3. Main Results 

Theorem 1. For algorithm P2, its worst case performance ratio is 4
3

. Fur- 
thermore, its worst case performance ratio can not be improved if  

( )1,2, ,jp j n= �  satisfy [ ]1,jp r∈  for any 1r ≥ . 
Proof: The first conclusion is a direct result from Liu et al. [8]. For the second 

conclusion, consider job list { }1 2 6 4, , , kL J J J += �  satisfying 

1 2 3 4 5 6 6 41, 1.kp p p p r p p p += = = = ≥ = = ⋅⋅⋅ = =  

By the rules of P2, we get  

1

2

: 1 1
: 1 1 1 1

M r r
M r r

�
�

 

It is obvious that ( )2
max 2 4PC L r k= +  and ( )max 2 3OPTC L r k= + . Hence  

( )
( )

( )
2

max

max

2 4 4 .
2 3 3

P

OPT

C L r k k
r kC L
+

= → →∞
+

 

In the following of this paper, let ( )1,2iL i =  to denote the completion time 
of machine Mi in the schedule assigned by algorithm S. 

Lemma 2. Given any job list { }1 2, , , nL J J J= � , the following inequality 
holds  

( )
( ) ( )

max

max max

1 .
2

S

OPT OPT

C L r
C L C L

≤ +  

Proof: By the rules of S algorithm, we get 

( )
( )

{ }
( )

{ } { }
( )

( )

max 1 2

max max

1 2 1 2 1 2

max

1 2

max

max ,

max , min ,
2

1 .
2

S

OPT OPT

OPT

OPT

C L L L
C L C L

L L L L L L
C L

L L
C L

=

+ + −
=

−
≤ +

 

That means it is enough to prove 1 2L L r− ≤ . We consider it according to 
the four cases of 4n k= , 4 1n k= + , 4 2n k= + , 4 3n k= + . 

Case 1: 4n k= . In this case, 

( ) ( )
1

1 1 4 4 1 4 2 4 2 4 1
1 1

; .
k k

j j k j j
j j

L p p p p L p p
−

+ − −
= =

= + + + = +∑ ∑  

Hence the following inequalities hold:  
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( )

( )

1

1 2 1 4 4 1 4 2 4 1 4 4 2 4 1 1
1

1

2 1 2 3 1 4 2 4 3 4 4 1 4 2
1

,

.

k

j j j j k k k
j

k

j j j j k
j

L L p p p p p p p p p r

L L p p p p p p p p p r

−

+ − − − −
=

−

+ + +
=

− = + + − − + − − ≤ ≤

− = + − + + − − − ≤ ≤

∑

∑
 

That means 1 2L L r− ≤ . 
Case 2: 4 1n k= + . In this case, 

( ) ( )1 1 4 4 1 2 4 2 4 3
1 1

, .
k k

j j j j
j j

L p p p L p p+ − −
= =

= + + = +∑ ∑  

Hence the following inequalities hold:  

( )

( )

1 2 1 4 4 1 4 2 4 1 1
1

1

2 1 2 3 1 4 2 4 3 4 4 1 4 4 1 2
1

,

.

k

j j j j
j

k

j j j j k k
j

L L p p p p p p r

L L p p p p p p p p p p r

+ − −
=

−

+ + + +
=

− = + + − − ≤ ≤

− = + − + + − − − − ≤ ≤

∑

∑
 

That means 1 2L L r− ≤ . Similarly it is easy to show that the conclusion is 
true for the case of 4 2n k= +  and 4 3n k= + . 

Theorem 3. For any job list { }1 2, , , nL J J J= �  with 1 2 np p p≥ ≥ ≥�  and 
[ ]( )1, 1 2jp r r∈ ≤ ≤ , algorithm S has worst case performance ratio  

( )
( )

max

max

2 3, 2
3 2

7 4 3  ,
6 3 2

1 4, 1
2 3

S

OPT

r r

C L
r

C L
r r

+ < ≤

≤ ≤ ≤


+
≤ <

                (1) 

Proof: Suppose (1) is not true. For 3 2
2

r≤ ≤  the following inequalities hold 
by Lemma 2: 

( )
( ) ( )

max

max max

2 1
3 2

S

OPT OPT

C Lr r
C L C L

+
< ≤ +  

That means ( ) ( )max
3 5

2 1
OPT rC L

r
< <

−
. Similarly ( )max 5OPTC L <  also holds for 

4 3
3 2

r≤ < . That means there are at most four jobs assigned on any machine in  

any optimal schedule, i.e., 8n ≤ . It is easy to prove that algorithm S is optimal if 
5n < . Now consider 5n = . In this case  

( )
1 1 4 5 2 2 3 2

max 3 4 5

2 ,

.OPT

L p p p p p p L

C L p p p

= + + ≥ + ≥ + =

≥ + +
 

Hence 

( )
( )

( )
( )

1 4 5max 1 4 5 1

3 4 5 3 4 5 3max

2 2 .
2 3

S

OPT

p p pC L p p p p r
p p p p p p pC L

+ ++ + + +
≤ ≤ ≤ ≤

+ + + + +
 

For the case of 6n = , there are exactly three jobs on each machine in any 
optimal schedule. If 1 2L L> , we get  
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( )
( )

max 1 4 5 4 1 5

1 5 6 6 1 5max

2
3

S

OPT

C L p p p p p p r
p p p p p pC L
+ + + + +

≤ ≤ ≤
+ + + +

 

If 1 2L L≤  we have  

( )
( )

( )
( )

2 3 6max 2 3 6 2

1 5 6 5 3 6 3max

2 2 .
2 3

S

OPT

p p pC L p p p p r
p p p p p p pC L

+ ++ + + +
≤ ≤ ≤ ≤

+ + + + +
 

For the case of 7n = , the following holds  

2 2 3 6 7 2 3 1 2 3 12 .L p p p p p p p p p L= + + + ≥ + + ≥ + + =  

In any optimal schedule, exactly four jobs are assigned on one machine and 
exactly three jobs are assigned on another. If the machine assigned four jobs in 
optimal schedule has at least one job from set { }1 2 3, ,J J J , then the following 
inequality holds: 

( )max 3 5 6 7 .OPTC L p p p p≥ + + +  

Hence we get  

( )
( )

max 2 3 6 7 2

3 5 6 7 5max

3 3 2 .
3 4 3

S

OPT

C L p p p p p r r
p p p p pC L
+ + + + + +

≤ ≤ ≤ ≤
+ + + +

 

Otherwise the optimal schedule is that { }1 2 3, ,J J J  and { }4 5 6 7, , ,J J J J  are 

assigned separately on two machines. Let 2 3

2
p p

a
+

= , 4 5

2
p p

b
+

= ,  

6 7

2
p p

c
+

= . It is easy to see that a b c≥ ≥  holds. We analyze the following two 

cases. In the case of 3 2 2a b c≤ + , we get  

( )
( )

max 2 3 6 7

4 5 6 7max

2 5 2 7 ,
3 3 3 6

S

OPT

C L p p p p a c b c c
p p p p b c b c b cC L
+ + + + +

≤ = ≤ = + ≤
+ + + + + +

 

the last inequality results from b c≥ . 
In the case of 3 2 2a b c> +  we get  

( )
( )

max 2 3 6 7

1 2 3max

2 2 2 2 2 2 7 .
3 3 3 3 2 2 6

S

OPT

C L p p p p a c c c
p p p a a b cC L
+ + + +

≤ = = + ≤ + ≤
+ + +

 

For 8n = , there are exactly four jobs assigned on each machine and there is a 
machine on which at least two jobs from { }1 2 3, ,J J J  are assigned in any optimal 
schedule. Hence the following inequality holds:  

( ) { }max 2 3 7 8 1 6 7 8max , .OPTC L p p p p p p p p≥ + + + + + +  

Therefore if 1 2L L≥  we get 

( )
( )

max 1 4 5 8 1 4 5 8

2 3 7 8 7 4 5 8max

3 2 .
4 3

S

OPT

C L p p p p p p p p r r
p p p p p p p pC L
+ + + + + + + +

≤ ≤ ≤ ≤
+ + + + + +

 

If 1 2L L≤  we get 

( )
( )

max 2 3 6 7 2 3 6 7

1 6 7 8 8 3 6 7max

3 2 .
4 3

S

OPT

C L p p p p p p p p r r
p p p p p p p pC L
+ + + + + + + +

≤ ≤ ≤ ≤
+ + + + + +
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By the conclusions above, we get 

( )
( )

max

max

2 3, 2
7 2 3 2max ,

7 4 36 3 ,
6 3 2

S

OPT

r rC L r
C L r

+ < ≤+  ≤ =  
   ≤ ≤



 

Hence (1) is true for 4 2
3

r≤ ≤ . 

Now we consider the case of 41
3

r≤ ≤  according to the four cases of  

4 1,4 2,4 3,4 4, 0,1,2,n k k k k k= + + + + = � . In the following, we will use iS   
and *

iS  to denote the job set assigned on machine Mi by algorithm S and optimal 
algorithm, respectively. 

For the case of 4 1n k= + , we have 1 2 1S k= + , 2 2S k= ,  

{ }* *
1 2max , 2 1S S k≥ + . Without loss of generality, suppose *

1 2 1S k≥ + . Then 
it is easy to see that there exists { }1,2i∈  satisfying *

1 1iS S k≥ +∩ . If  
*
1 1 1S S k≥ +∩ , then *

1 1\S S k≤ . By  

( )
1

2 1 2 3 1 4 2 4 3 4 4 1 4 4 1
1

0,
k

j j j j k k
j

L L p p p p p p p p p
−

+ + + +
=

− = + − + + − − − − ≤∑  

we get 1 2L L≥ . Therefore  

( )
( ) ( )

( )

* *
1 1 1 1 1

* * *
1 1 1 1 1

\max 1

max max
\

* *
1 1 1 1

* *
1 1 1 1

* *
1 1 1 1 1

\

\

2 1
1 1.

2 1 2

j jjS
j S j S S j S S

OPT OPT
j j j

j S j S S j S S

p pp
C L L

p p pC L C L

S S S S r

S S S S

S S S S S r

k
kr k r

k

∈ ∈ ∈

∈ ∈ ∈

+

= ≤ ≤
+

+
≤

+

+ −
≤

+
+ + +

≤ ≤
+

∑ ∑∑

∑ ∑ ∑
∩

∩

∩

∩

∩ ∩

 

If *
1 1S S k≤∩ , then *

1 2 1S S k≥ +∩ . By 

( )1 2 1 4 4 1 4 2 4 3 1
1

k

j j j j
j

L L p p p p p p+ − −
=

− = + + − − ≤∑  

we get 1 2 1L L p≤ + . Therefore  

( )
( ) ( )

( )

* *
2 2 1 2 1

* * *
1 2 1 1 2

1
\max 2 1

max max
\

* *
2 1 2 1

* *
2 1 1 2

* *
2 1 2 2 1

\

\

2 1
1 1.

2 1 2

j jjS
j S j S S j S S

OPT OPT
j j j

j S j S S j S S

p p pp
C L L p

p p pC L C L

S S S S r r

S S S S

S S S S S r r

k
kr k r

k

∈ ∈ ∈

∈ ∈ ∈

+ +
+

≤ ≤ ≤
+

+ +
≤

+

+ − +
≤

+
+ + +

≤ ≤
+

∑ ∑∑

∑ ∑ ∑
∩

∩

∩

∩

∩ ∩
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For the case of 4 2n k= + , we have 1 2 1S k= + , 2 2 1S k= + ,  

{ }* *
1 2max , 2 1S S k≥ + . Without loss of generality, suppose *

1 2 1S k≥ + . There- 
fore there exists { }1,2i∈  satisfying *

1 1iS S k≥ +∩ . In the following we con- 
sider this case according to the two subcases of 1 2L L≥  and 1 2L L<  . 

In this case of 1 2L L≥ , if *
1 1 1S S k≥ +∩  holds, then the following is true:  

( )
( ) ( )

( )

* *
1 1 1 1 1

* * *
1 1 1 1 1

\max 1

max max
\

* *
1 1 1 1

* *
1 1 1 1

* *
1 1 1 1 1

\

\

2 1
1 1.

2 1 2

j jjS
j S j S S j S S

OPT OPT
j j j

j S j S S j S S

p pp
C L L

p p pC L C L

S S S S r

S S S S

S S S S S r

k
kr k r

k

∈ ∈ ∈

∈ ∈ ∈

+

= ≤ ≤
+

+
≤

+

+ −
≤

+
+ + +

≤ ≤
+

∑ ∑∑

∑ ∑ ∑
∩

∩

∩

∩

∩ ∩

 

If *
1 1S S k≤∩  holds, we consider the following two subcases of *

1 2 1S k= +  
and *

1 2 2S k≥ + . 
For the case of *

1 2 1S k= + , *
2 2 1S k= +  holds by 4 2n k= + . By  

1 2 1S k= +  and *
1 1S S k≤∩  we get *

2 1 1S S k≥ +∩ . Therefore 

( )
( ) ( )

( )

* *
1 1 2 1 2

* * *
2 1 2 2 1

\max 1

max max
\

* *
1 2 1 2

* *
1 2 2 1

* *
1 2 1 1 2

\

\

2 1
1 1.

2 1 2

j jjS
j S j S S j S S

OPT OPT
j j j

j S j S S j S S

p pp
C L L

p p pC L C L

S S S S r

S S S S

S S S S S r

k
kr k r

k

∈ ∈ ∈

∈ ∈ ∈

+

= ≤ ≤
+

+
≤

+

+ −
≤

+
+ + +

≤ ≤
+

∑ ∑∑

∑ ∑ ∑
∩

∩

∩

∩

∩ ∩

 

For the case of *
1 2 2S k≥ + , by *

1 1S S k≤∩  we get *
1 2 2S S k≥ +∩ . By rules 

of S algorithm, we have  

( )1 2 1 4 4 1 4 2 4 1 4 2 1 4 2
1

.
k

j j j j k k
j

L L p p p p p p p p+ − − + +
=

− = + + − − − ≤ −∑  

That means 1 2 1 4 2kL L p p +≤ + − . Therefore  

( )
( ) ( ) ( )

( )

* *
2 1 2 1

* *
2 1 1 2

max 2 1 4 21

max max max

1 4 2 * *
2 1 2 1\

* *
2 1 1 2

\

* *
2 1 2 2 1

\ 1

\

1 1 1 1.
2 2 2 2 2 1 2

S
k

OPT OPT OPT

j j k
j S S j S S

j j
j S S j S S

C L L p pL
C L C L C L

p p p p
S S S S r r

p p S S S S

S S S S S r r kr k kr k r
k k k

+

+
∈ ∩ ∈

∈ ∩ ∈

+ −
= ≤

+ + −
+ + −

≤ ≤
+ +

+ − + − + + + + +
≤ ≤ ≤ ≤

+ + +

∑ ∑

∑ ∑
∩

∩

∩ ∩
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Similarly we can prove the case of 1 2L L< . 
By the same way used above, we can also show that (1) is true for the case of 

4 3n k= +  and 4 4n k= +  for 41
3

r≤ ≤ . Now we show the tightness of the 
bound. 

For 3 2
2

r< ≤ , Let ( ) { }1
1 2 3 4 5, , , ,L J J J J J=  with 1 , 1, 2, ,5ip r p i= = = � . By  

the rules of S algorithm, we have 1 22, 2L r L= + = , i.e., ( )( )1
max 2SC L r= + . It is 

easy to see that ( )( )1
max 3OPTC L = . Hence  

( )( )
( )( )
1

max

1
max

2 .
3

S

OPT

C L r
C L

+
=  

It is easy to show the tightness for 4 3
3 2

r≤ ≤  by job list  

( ) { }2
1 2 3 4 5 6 7, , , , , ,L J J J J J J J=  with 1 2 3

4
3

p p p= = = , 4 5 6 7 1p p p p= = = =  

and for 41
3

r≤ ≤  by job list with 1 2 3p p p r= = = , 4 5 6 7 1p p p p= = = = . 

4. Concluding Remarks 

In this paper, we consider ordinal on-line scheduling for jobs with known sizes 
in [ ]( )1, 1r r ≥  and non-decreasing processing times on two parallel machines 
system. Firstly it is proved that the worst case performance ratio of the existing 
algorithm P2 can not be improved even if the job processing times are known in 
[ ]1, r  for any 1r ≥ . Secondly, an algorithm named S is proposed and its worst 
case performance ratio is given as follow: 

( )

2 3, 2
3 2

7 4 32, ,
6 3 2

1 4, 1
2 3

r r

R S r

r r

+ < ≤

= ≤ ≤


+
≤ <

 

which is better than algorithm P2. Just two machines are considered here. It is an 
interesting problem to consider general m machines system to design better 
algorithm. 
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