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Abstract 
The effect of treatment on patient’s outcome can easily be determined 
through the impact of the treatment on biological events. Observing the 
treatment for patients for a certain period of time can help in determining 
whether there is any change in the biomarker of the patient. It is important to 
study how the biomarker changes due to treatment and whether for different 
individuals located in separate centers can be clustered together since they 
might have different distributions. The study is motivated by a Bayesian 
non-parametric mixture model, which is more flexible when compared to the 
Bayesian Parametric models and is capable of borrowing information across 
different centers allowing them to be grouped together. To this end, this re-
search modeled Biological markers taking into consideration the Surrogate 
markers. The study employed the nested Dirichlet process prior, which is eas-
ily peaceable on different distributions for several centers, with centers from 
the same Dirichlet process component clustered automatically together. The 
study sampled from the posterior by use of Markov chain Monte carol algo-
rithm. The model is illustrated using a simulation study to see how it per-
forms on simulated data. Clearly, from the simulation study it was clear that, 
the model was capable of clustering data into different clusters. 
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1. Introduction 

To model hierarchical data when the distribution is not known is a big problem 
and has affected many researchers dealing with big data [1]. This is because of 
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the disparity within the data, to account for the heterogeneity a Bayesian 
non-parametric model is necessary as it leads to flexible density estimates which 
are capable of identifying clusters of individuals with similar biomarker charac-
teristics. Bayesian non-parametric mixture model is a good fit to model biologi-
cal markers because it exhibits flexibility when modeling data which has a 
skewed and multi-modal distribution. The reason behind this is because data 
sets become bigger every day and require flexible models which can expand with 
the data. Mixture methods approach allows for probabilistic approach of clus-
tering data points to different clusters [2]. The model also gives support to out of 
sample cluster assignments through computing the posterior probabilities for 
new data points. 

In clinical trials, the importance of a treatment is either to decrease the burden 
of the disease for the patient or to eliminate the disease. To identify a biomarker 
which is changed by a treatment is not easy due to difficulties associated with the 
disease mechanisms. If a biomarker which is affected by the treatment has been 
identified, coming up with the association of the biomarker and the outcome is 
not easy because of the changes in the variability of the biomarker, patient re-
sponse, and evaluation methods used. Thus, it is important to identify the changes 
each individual exhibit and whether there are changes or no changes as a result 
of the treatment [3]. The responses of individuals to treatment may be related, 
and identifying of groups of individuals sharing similar characteristics is of im-
portant. 

Many authors have applied the Bayesian non-parametric procedures to study 
various categories of biomarkers ranging from prognostic, predictive, phamaco-
dynamic, and surrogate endpoints. For example, [4] studied the prognostic bio-
markers and showed how they related to the clinical outcome using the Bayesian 
non-parametric procedures. Additionally, [3] studied the prognostic biomarkers 
using Bayesian parametric procedures, and finally [5] studied the surrogate end-
points using the Bayesian methods. These studies identified the need to study 
biomarkers and determine how they are related with the clinical outcome. 

Bayesian non-parametrics have a wide application in many areas especially big 
data analytics. Bayesian non-parametric methods are widely used to solve prob-
lems where the size of the data changes leading to growth of the dimension of 
interest, for instance, in problems where the number of features varies with in-
crease in the observed data. Also, they are commonly used in clustering and the 
number of clusters depends on the data being used. In general, in Bayesian 
non-parametrics models the number of parameters increases as the size of the 
data grows.  

The study of [4] applied the Bayesian non-parametrics in modeling biological 
markers. In the study the model assumed measurements of the biomarkers were 
taken continuously before the subjects under study are introduced to treatment 
and after the patient has been given some treatment. In the study the measure-
ments were not depended on covariates and the survival result was due to mea-
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surement of the change, though, different distributions could give the same out-
come.  

Accordingly, [1] developed an integrative Bayesian predictive modeling frame-
work to identify individual pathological brain states depending on the choice of 
fluoro-deoxyglucose positron emission tomography (PET) imaging Biomarkers 
and evaluated the relation of the states with a clinical outcome. The study would 
identify patient subgroup characterized by different biomarkers to produce the 
clinical outcome. The strategy also identified imaging Biomarkers with patho-
logical states of the individuals and assumed that the latent individual state gets 
its values from one of the pathological states, and one of the states was a refer-
ence point. The latent random variables were independent and identically dis-
tributed taking a multinomial distribution. On the mixture weights a Dirichlet 
prior was used, considering a where the Gaussian distribution was considered, 
the mean was taken as one of the parameters to model the latent state specific 
random effect and to characterize the mean metabolic profile for individuals 
within the latent state. The Variance-covariance matrix captured the association 
between regions for individuals with latent state. A likelihood function was also 
established. 

Additionally, [6] developed a Bayesian model to sample inference with availa-
bility of inverse-probability weights. The study used a hierarchical method where 
the distribution of the weights from the non-sampled units was modeled and in-
cluded predictors in a non-parametric Gaussian process. Simulation study was 
used to check how the procedure performed and compared to the classical de-
sign-based estimator. The study concluded that Bayesian non-parametric finite 
population estimator is more appropriate compared with the classical estimator. 
Also, [7] compared the hierarchical Bayes model for biomarker subset effects in 
clinical trials to the profile likelihood method, to make references to the thre-
shold parameter using bootstrap. The method provided improved sample prop-
erties for probability coverage at 95% confidence interval. 

Therefore, the importance of modeling surrogate markers in this study is to be 
able to determine the relationship between the baseline biomarker and the samples 
taken after an individual has been given some treatment. Bayesian non-parametric 
methods are flexible methods and will accurately indicate the relationship to show 
whether there is any change and be able to identify groups of individuals which 
have similar characteristics through clustering [8]. Also, the method is capable of 
showing whether after treatment the distribution of the biomarker changed through 
increase, decrease or it did not change at all. 

The other parts of the paper are arranged as follows; in Section 2, discussion 
of the general modeling framework is done. Section 3, discusses the proposed model 
by detailing the nested Dirichlet process model for characterizing patient profiles. In 
Section 4, the hierarchical model is formulated. Section 5, describes the posterior 
computation. Section 6, is a simulation study to assess the performance of the 
model. Finally, the conclusion is in Section 7. 
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2. General Modeling Framework 

Let T denote the treatment effect, X represent the baseline biomarker, Y denote 
the post treatment values, and E the clinical outcome, and Z are the covariates 
which are present. If p(.) is a distribution, for instance, ( )| , , ,P E X Y Z T , is a 
conditional distribution. If the treatment impact T is put into consideration, 
then the biomarker distribution will be affected. To address this then the inpatient 
change from X to Y is necessary. To assess the inpatient change, then putting into 
consideration of the relationship between X and Y because of the inpatient ef-
fects is necessary. Due to the effect the treatment has on Y and the effect of the 
covariate to X or Y thus it leads to, ( )| , ,P Y X Z T  and ( )|P X Z , though the 
distribution can either be highly disperse and complex. The model in this study 
will involve representation of a biomarker profile as ( )( ), | ,p X Y Z T∆ = ∆ , to 
symbolize the change made on the biomarker because of treatment, incorporat-
ing them to the model to include the impact of the change on the outcome E. 
The model is also able to classify groups of individuals with various changes in 
Biomarker profiles depending on how the impacts of T and the change ∆ have 
on E. Thus, employing the probabilistic factorization then; 

( ) ( ) ( ), , | , | , , , , | ,p E X Y Z T p E X Y Z T p X Y Z T=            (1) 

From Equation (1), the following assumptions are made;  
1) ( ) ( )| , , , | , ,p E X Y Z T p E Z T= ∆ , which implies, with the effect of the co-

variates and the treatment, the impact of the (X, Y) on E is indicated by the 
change. 

2) Also, the distribution of X and Y may be depended on the covariate, then 
the study assumes that both do not depend on the covariates. 

A hierarchical Bayesian non-parametric model is employed for ( ), |p X Y T  
and for the ( )| , ,p E Z T∆ ; a non-parametric regression model in the Bayesian 
case is employed, to give adaptable cluster estimates for individual’s specific dis-
tributions of ∆ and their clusters. A hierarchical structure is obtained through 
making assumption of the individual’s specific Dirichlet processes being samples 
that are conditionally independent and obtained from a hyperprior which is also 
a Dirichlet process. 

3. Proposed Model 

Here the structure of the data is developed and the general model introduced. 
The subjects are indexed by 1, ,i N=  . Assuming Ei is time-to-event outcome, let 

0
iE  be the observed time of the event with 1iε = , if 0

i iE E= , and 0 if 0
i iE E< . 

For ( )0 0 0
1 , , NE E E=  , ( )1, , Nε ε ε=  , and ( )1 2, , ,i i i kiZ Z Z Z=   be the base-

line covariates with ( )1 2, , , NZ Z Z Z=  . For the ith individual let ni and mi be 
the measurement frequencies of the levels of the biomarker obtained before 
treatment and after. Let ( )1, ,i i iniX X X=   and ( )1, ,i i imiY Y Y=   be the indi-
viduals pre and post-treatment biomarker values, where, ( )1 2, , , NX X X X=   
and ( )1 2, , , NY Y Y Y=  . 

The functional ( )( ), |i i ip X Y T∆ = ∆ , is a representation of the individual 
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change for the levels of the biomarker before and after treatment. Where Ti is the 
treatment given to the ith individual and ∆ is some measure of distributional dis-
tance. The distributional distance is defined on a sample space cumulative den-
sity function (Cdf) of one-dimensional random variables, which is the distribu-
tional distance between the two cdf’s FX and FY in the space of cumulative densi-
ty function. The vertical quantile function is; 

( ) ( )( ) ( )1
, for 0,1X Y Y XQ p F F p p−= ∈                (2) 

where, Equation (2) is a quantile function of order p which is a representation of 
the functional for the density plot. The quantile function allows for comparison 
of various functions for all the distributions. For instance, ( ), 0.5X YQ p =  is 
used in median tests. Also, the vertical quantile function is associated with the 
Receiver Operating Characteristic (ROC) curve represented as  

( ) ( )( )1ROC 1 1Y Xp F F p−= − − , 

where FX and FY are the cdf’s of the diagnostic variables in the populations. Here, 
the interest is not to assess the diagnostic performance for a biomarker; however, 
to evaluate the targeted treatment, the vertical quantile function is estimated by 
taking into consideration the distribution functions FXi and FYi for the subject 
levels of biomarker for different individuals. Therefore, the distributional change 
is; 

( ) ( )( ) ( )1
,0

 dX Y Y XQ p p EF F Y p X Y∆ = = = <∫           (3) 

Equation (3) corresponds to the area under the curve which is majorly applied 
in diagnostic studies. Thus, ∆ represents the change of the distribution of the 
biomarkers for the ith individual, because of the treatment administered to the 
subject. A posterior estimate with ( )| data 0.5ij ikp X Y< > , means that the indi-
vidual’s distribution has moved to the right, that is, there is a biomarker increase. 
Also, ( )| data 0.5ij ikp X Y< < , shows a change to the left side, hence a decrease 
in the biomarker levels, and ( )| data 0.5ij ikp X Y< ≈ , indicates no remarkable 
change. Thus, from Equation (1) the patient level data likelihood is; 

( ) ( ) ( )0 0
 , , | , , , |, , , , , | ,i i i i i i i i i i i i ip T X Y Z T p T T p X Y Tε β θ ε β θ= ∆   (4) 

For β a vector of parameters for regression modeling and θ parameterizes the 
hierarchical model. 

( ) ( )0 0, | , , , , , | , , ,p T X Y Z T p T Z Tε β ε β∆=           (5) 

Thus, T0, follows one of the common distribution like the log-normal, where 
the linear component is a function of the change (∆), the treatment (T) and the 
covariates (Z). The model ( ), | ,P X Y T θ  should be adaptable so as to cover 
many biomarker distributions which are possible and can either be skewed or 
multimodal and take account of the variability between subjects. To explain the 
variability then a hierarchical Bayesian non-parametric framework is used. The 
model allows flexible density which can identify groups of subjects characterized 
by individual’s biomarker profile. Therefore, the study assumes that measure-
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ments of the biomarker are samples are obtained from unknown individuals 
distributions with 1, , ~i in

in
i

d
XiX X F  and 1, , ~i im

in
i

d
YiY Y F , Where Xi and Yi are 

vectors of subject specific measurements. FXi and FYi are modeled separately us-
ing mixtures of Gaussian distribution denoted by mean µ and standard deviation 
δ, that is ( ),N µ δ . The pdf and cdf are denoted by ( )., ,φ µ δ  and ( ), ,t δµΦ . 
The mixture components are defined as wi for each component with the con-
straint such that, 1 1k

ii w
=

=∑ , implying that the total probability distribution will 
normalize to 1. Thus, the Gaussian mixture model is represented as; 

( ) ( )1 | ,k
i i iip x w N x µ δ

=
= ∑                     (6) 

( ) ( )
2

2
1| , exp

2 2
i

i
i i

i

x
N x

µ
µ δ

δδ

− 
=


−
π





 

Assuming a DP with a concentration parameter α  and a base distribution G0. 
Then, for each individual 1, ,i N=   it follows that; 

( )| , , , 1~ , ,ind
ik Yik Yik Yik Yik iY N k mµ δ µ δ = 

 

( )1| , , , 1, ,~ind
ij Xij Xij Xi

p
j Xij ijX N j nµ δ µ δ

=
=∏              (7) 

( )0, , , | , ~ DP ,~iidYik Yik Xij Xij G G G Gµ δ µ δ α  

where, 1α = , and ( )0 ,G N µ δ= . 
Let ( ),Xij Xij Xijθ µ δ=  and ( ),Yij Yij Yijθ µ δ= . Under the mixture model Xijθ  

and Yijθ  are sampled from some mixing distributions GXi and GYi as follows; 

1

1

, , |

, , |

~

~

ind
Xi Xini Xi Xi

ind
Yi Yimi Yi Yi

G G

G G

θ θ

θ θ





                     (8) 

This means that the conditionals on the realizations of GXi and GYi, thus, the dis-
tributions for the Xi and Yi are the following mixtures; 

( ) ( ) ( )
( ) ( ) ( )

1

1

| ; d

| ; d

ni
X i Xi ij Xij Xi Xijj

mi
Y i Yi ik Yik Yi YiKj

f x G x G

f y G y G

φ θ θ

φ θ θ

=

=

=

=

∏∫
∏∫

           (9) 

To assess the change in the distribution of Yi verses Xi in terms of i∆  so as 
to be able to investigate the association of the change with the outcome and clas-
sify groups of subjects which have the same biological responses. Additionally, a 
prior model is defined on GXi and GYi and it involves the Dirichlet process (DP), 
which is commonly preferred prior probability model due to its clustering capa-
bility. [9] expressed this as ( )0~ DP ,G Gα , which is a random distribution G 
following a DP that has a base distribution ( ) 0E G G=  and a concentration 
parameter α . α  Shows significant properties, that is, how G varies about the 
mean (base distribution), where a smaller value of α  shows high uncertainty 
and vice versa. 

Since G are discrete samples, they have some positive probability ties, as some 

Yijθ ’s and Xijθ ’s in Equation (8) may be equal. A DP can be easily used to esti-
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mate GXi and GYi for each subject, though it lacks the clustering properties of the 
distributions for all individuals or among the pre and post treatment values ob-
tained. Clustering is necessary so as to identify the change after the treatment for 
all the individuals. Thus, the change is obtained by assuming that GXi and GYi are 
realizations of a common Dirichlet process mixture model (DPMM). In a DPMM 
the individual’s realizations of GXi and GYi are shared across and for each sub-
ject’s pre and post treatment values. Therefore, GXi and GYi are independent 
conditional samples from the same the Dirichlet process, then; 

1 1~ and ~
ok okXi k G Yi k Gk kG Gπ δ π δ∞ ∞

= =∑ ∑           (10) 

where G0k is a realization from a common DP prior that is ( )*
0DP ,Gγ  which 

has a base distribution *
0G  and a concentration parameter γ , then; 

( ) ( )* *
1. .

pokok pokpG w θδ
∞

=
= ∑                  (11) 

Here * *
0~pok Gθ . Therefore each GXi and GYi is automatically obtained from a 

collection of different distributions that is the G0k’s. 

4. Formulation of the Hierarchical Model 

The hierarchical model is formulated using the nested Dirichlet Process (nDP) 
which is as follows; 

( ) ( )*
0, ~ DP , ,Xi YiG G Gα γ                   (12) 

In the earlier discussions, it is clearly expressed that i∆  is a functional of 

( ), | ,i i i ip X Y Z T , which in the nDP is determined by the realizations GXi and GYi 
in Equation (10). Since the Dirichlet process given by Equation (10) has a dis-
crete support and kπ ’s in the equation cannot be neglected, then it shows a 
non-trivial probability where Xi YiG G= , which means that the treatment has no 
biological impact on patient i, this is clearly shown through the posterior esti-
mate of the i∆ . Additionally, there is also non-trivial probability that 
( ) ( ), ,Xi Yi Xi YiG G G G=  for i i′≠  which implies i i′∆ = ∆ , implying the bio-
markers profiles for individuals i and i' are in one cluster. 

To complete the model the base distribution *
0G  is specified and it is defined 

as a Normal-Inverse Gamma (N-IG) distribution for the mean and precision pa-
rameters in the Normal model and α  and γ  are assigned independent Gamma 
priors, thus, the hierarchical probabilistic model. 

4.1. Biomarker Profiles Likelihood 

The Biomarker Profiles Likelihood is as below; 

( )| , , , 1~ , ,ind
ik Yik Yik Yik Yik iY N k mµ δ µ δ =   

( )  1~| , , , 1, ,ind p
ij Xij Xij Xij Xij ijX N j nµ δ µ δ

=
=∏             (13) 

( )( ) ( )  i Yi ik ij ikE G Y p X Y∆ = = <  
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4.2. The Model and the Priors 

( ) ( ), and ,
E E

Xij Xij Xij Yik Yik Yikθ µ δ θ µ δ= =
 

| ~ and | ~Xij Xi Xi YiK Yi YiG G G Gθ θ  

( ) ( )*
0, ~ nDP , ,Xi XiG G Gα γ                    (14) 

( ) ( )~ Gam , , ~ Gam ,a b a bα α γ γα γ
 

( )*
0 0 0 0 0~ N-IG , , ,G k a dµ  

( ) ( )1 1 1 1, ~ N-IG , , ,E k a dβ δ µ  

where, the fixed hyper parameters are; μ0, k0, a0, d0, μ1, k1, a1, d1. 

5. Posterior Computation 

To compute the joint posterior distribution for model parameters, this is done 
computationally. Thus Markov Chain Monte Carlo (MCMC) algorithm for 
posterior inference is used. The full conditional to update the nDP are gotten 
using the method described by [10] depending on a truncated Dirichlet process. 
At each iteration, for the baseline distribution *

0G , parameters are continuously 
updated based on all the samples represented by the biomarker values. The algo-
rithm is developed using a truncation of a Dirichlet process to give approximate 
truncation to the stick breaking process of a Dirichlet process leading to method 
of computation in finite mixture models.  

This assumes that, individuals are clustered into K groups and for every indi-
vidual the observations on the biomarker level can be clustered into L groups. To 
provide support for the estimation of both clinical and biological effects together, 
the proposed model accounts completely for the uncertainty of the random 
quantities, together with variability of the i∆ ’s to express the variation of the 
population. In every iteration the Gibbs sampling algorithm gives samples of the 
distribution of the biomarker (GXi, GYi) for every individual, used to get the bio-
marker profile i∆ . This can be easily illustrated by Considering the model as in 
Equation (13) and Equation (14), to obtain samples from the posterior after the 
burn in, every value that is sampled ( *

i∆ ) is obtained by getting the average for 
the estimates of the posterior ( )* *,Xi YiG G  of the subjects distributions of biomark-
ers. From Equation (9) and Equation (10), it is clear that every mixing distribution 
G0k, ( ) ( ) ( ) ( )* *

0 0 1| ; ;k k lr lriF t G t G d w tθ θ θ∞

=
= Φ = Φ∑  for XiF G=  or YiG , to 

obtain the biomarker profile for the posterior then, Equation (15) is applicable; 

( )( ) ( ) ( )* * * * *
i Yi Xi ik Xi YiEG G Y G y dG y dy=∆ = ∫             (15) 

where * * *
1 lXi llG w θδ

∞

=
= ∑  and * * *

1 lYi llG w θδ ′

∞
′=

= ∑  thus the estimate of the post-
erior biomarker profile is obtained by dividing the mean with the posterior val-
ues which is; 

* *
* * *

2* 2*
1 l l

l l ll l
l l

w w
µ µ

δ δ
′

′′
′

  −  ∆ = −Φ
  +  

∑ ∑             (16) 
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6. Simulation Study 

In this section, a simulation study is presented to show the capability as well the 
ability of the nested Dirichlet Process when modeling biological markers to give 
accurate density estimates by obtaining strength from different centers. In the 
simulation, N samples are obtained from a mixture of four Gaussian distribu-
tion. 

( ) ( )k
i kif x w f x= ∑                       (17) 

Equation (17), is a representation of a mixture of Gaussian distribution with wi 
mixing weight for every component, and ( )kf x  is the component which can 
be represented by any distribution. Here, the components are represented by a 
normal distribution such that the mixture distribution becomes; 

( ) ( )2,k
i i iif x w N µ δ= ∑                    (18) 

The study generates J = 40 samples each of size 100, for 1, , 40j =  . Every 
sample is obtained from a mixture of k = 4 Gaussian mixtures summarized in 
Table 1, and plotted in Figure 1. 

The true distributions are plotted in Figure 1. 
Distribution S1 and S2 are asymmetric with a mixture of two Gaussian com-

ponents with different weights. For distribution S3 and S4, they share three  
 
Table 1. The components of various Gaussian distributions. 

Distribution Component 1 Component 2 Component 3 Component 4 

 w μ δ w μ δ w μ δ w μ δ 

S1 0.85 0 1 0.15 4 3 - - - - - - 

S2 0.65 0 1 0.35 4 3 - - - - - - 

S3 0.4 0 1 0.3 −2 3 0.3 3 3 - - - 

S4 0.39 0 1 0.29 −2 3 0.29 3 3 0.03 11 3 

 

 
Figure 1. Plot for the true distributions used in the simulation study. 
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mixture components which are located at the origin, with difference only on the 
fourth component of the distribution S4. 

The true cluster memberships are plotted in Figure 2. It represents the true 
cluster membership si for J = 40 samples through plotting I (si = sj) for all the 
pairs. The samples are ordered by their true clusters. Therefore, these are simu-
lation conditions with well separated true distributional clusters. 

The same number of samples has been simulated for the each of the four true 
distributions. To obtain the posterior simulation, then; the precision parameters 
α  and γ  are both fixed to 1 and the Normal-Inverse Gamma distribution 
which is the baseline measure (base distribution) are 0 0µ = , 0.01λ = , 3a = , 
and 1b = , such that; NIG(0, 0.01, 3, 1). Therefore, a priori ( )2| 0E µ δ = , 
( )2 2| 100V δµ δ= , ( )2 1E δ = , and ( )2 3V δ = . 
The algorithm described in Section 5 is used to obtain the samples of the 

posterior distribution using the nested Dirichlet Process. The study runs MCMC 
chain with 12,000 iterations, discarding the first 2000 iterations and thinning out 
to save one in every 10 iterations. 

The estimated distributions ( )|kE F y  for each distributional cluster are 
represented in Figure 3. Figure 3 is an image of Figure 1. This is a clear indica-
tion that the prior and the posterior samples obtained after the MCMC draws 
are the same and reflect the distribution where each of the observation has been 
obtained from. The posterior draws are drawn from all the distributions with all 
the components. Hence, the posterior and the prior distribution are the same. 
Thus, in this case when using the Bayesian non-parametric mixture model it re-
flects the individual biomarker distributions before treatment taking the same 
form as the after treatment measurements drawn from different centers. 

Also, the posterior cluster memberships takes the same form as the true clus-
ter memberships as clearly shown in Figure 4. 

The posterior co-clustering probabilities take the same form as the true cluster 
membership. The model developed is able to classify groups of individuals from 
different centers (distributions) to one group. The individuals are placed into the 
groups as per the prior information which is available. Hence, the diagram dis-
plays four clusters similar to the estimated distribution as shown in Figure 4. 

 

 
Figure 2. Representation of the true cluster membership. 
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Figure 3. Representation of the estimated distribution. 

 

 
Figure 4. Representation of the posterior co-clustering probabilities for all the distribu-
tions. 

7. Conclusions 

We introduced a model using the truncated nested Dirichlet process to identify 
groups of individuals who respond similarly to the same treatment for a speci-
fied biological marker. An MCMC algorithm has been used to estimate the 
posterior inference. Since the nDP is a non-parametric model, it has the capabil-
ity of grouping all the observations from the mixture depending on the entire 
distribution, rather than selecting particular features of the distribution. In the 
simulation study the proposed method for biological markers showed a good 
performance in differentiating the unimodal distributions from the multimodal 
distributions. 

The proposed procedure in this paper reveals that Bayesian non-parametric 
mixture model can be used to obtain flexible estimates of the individual bio-
markers and characterize the heterogeneity of how the subjects are responding 
to treatment. The proposed procedure only considers measurements taken be-
fore introduction of treatment and after the treatment. Biomarkers sometimes 
can change with time, thus a more structured model can be developed by use of 
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longitudinal biomarker values to account for individuals biomarker processes. 
This work can be extended to model the relationship between two or more 
groups of data after the individuals have been clustered. Also, the procedure did 
not take into consideration of the covariates which might affect the biomarkers. 
This can also be incorporated so as to see whether they have any effect. 
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