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Abstract

To explore the various kind of matrices, matrix multiplication, identity ma-
trix, characteristic equation, minimal polynomial and diagonalization, my
paper investigates matrices and algebraic operations defined on them. These
matrices may be viewed as rectangular array of elements where each entry
depends on two subscripts. System of linear equations and their solutions
may be efficiently investigated using the language of matrices. Furthermore,
certain abstract objects introduced in the end of my papers, such as I-matrix,
J-matrix, Transprocal of certain matrix, transpose of transprocal matrix, ie.
transprocose matrix, super orthogonality, super unitary, trans othogonaliity,
and trans orthoprocal, can be represented by this matrix. On the other hand,
the abstract treatment of linear algebra presented later will give us a new in-
sight into the structure of these matrices. The entries in our matrices will
come from some arbitrary, but fixed, field K.

Keywords

I-Matrix, J-Matrix, Transprocal Matrix, Super Orthogonal Matrix,
Super Unitary Matrix, Transprocose Matrix

1. Introduction

In 1858, Cayley published his “A memoir of theory of matrices” in which he
proposed and demonstrated the Cayley-Hamilton theorem. An English mathe-
matician named Cullis was the first to use modern bracket notation for matrices
in 1913 and simultaneously demonstrated the first significant use of the notation
A = [a,] to represent a matrix where a;;and the ith row and the jth column. We
know matrix multiplication is defined as multiplying row of multiplicand matrix
with column of multiplier matrix. But why should not multiply column of mul-
tiplicand matrix with row of multiplier matrix. Also, we know the transpose of

matrix. In which row is transferred to column and vice versa. What will be hap-
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pened if matrix tilted 90°, 180°, 270° and 360°? Or what would be the images
(original image, mirror image, water image and water image of mirror image) of
a given matrix? We also know Identity matrix and its characteristics. Is there any
possibility do we define any other identity matrix? Is there any possibility does a
given matrix have two more characteristic equations or two more minimal po-
lynomials?

Seymour Lipschutz and Marc Lars Lipson [1] explained matrices and their al-
gebraic operations. Kenneth Kuttler [2] analyzed matrices and row operations.
Eric Jarman [3] described Jordan canonical matrices and Tom Denton and
Andrew Waldron [4] clearly explained eigen vectors. Peeyush Chandra, A.K. Lal,
V. Raghavendra, G. Santhanam [5] explained Eigen values and Eigen vectors.

In this paper, if a given matrix is /matrix (usual matrix), we can see mirror
image of a given matrix (/matrix), water image of a given matrix (transprocal of
I-matrix) and mirror image of a water image of a given matrix (transprocal of
J-matrix), other types of matrix multiplication, identity matrix, characteristic
equation, minimal polynomial and diagonalization.

We shall call certain matrix as Fmatrix. /matrix is mirror image of -matrix,
water image of Jmatrix is called transprocal of Imatrix and water image of
I-matrix is called transprocal of jmatrix. Transpose of Transprocal matrix or
Transprocal of Transpose matrix is Transprocose matrix.

Let A be a certain matrix. That is -matrix. We notate it as A, Now,

a b ¢ a b c
Let A=|d e f| thenwecansay 4, =|d e f| so
g h i g h i

¢c b a
A,=\f e d|,

i h g
we can categorize two groups of matrices. Such are 7 group matrices and J group

a d g i h g
matrices A' =|b e h| Transprocal of matrix Ais 4 =|f e d| and
c f i c b a

Transprocose (Transpose + Transprocal = Transprocose) of matrix A is

i f c
A =|h e b

g d a

a d g
Weknowthat 4" =|h e k| then Transprocose of A matrix is
c f i

i f c
A =|h e b].

g d a

We can categorize certain matrix as two groups. Such are / group matrices

and Jgroup matrices.
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a b c
Let A=|d e f| bea certain matrix.
g h i
We can define /-group matrices are:
a b c a d g i h g
A4 =\d e f|,A =|b e h|,4'=|f e d| 4 =
g h i c f i c b a
diagonal.

Trace and determinant of these matrices are the same.

We can define /-group matrices are:

c b a g d a g h i
A;=\f e d|.Aj=|h e b|,A4'=|d e f]|,
i h g i f c a b c

2. Main Diagonal

Trace and determinant of these matrices are the same.
(anspose + reciprocal)
Definition 1: Let A be a m x n matrix,

ay  ap a3 o,

Gy 4y Ay a,,
A=|a, ay, ay a,, | then,

aml amZ amB amn

amn . am3 am2 aml
A7 =\ a, a3 4y 4y
) Gyy Gy 4y
a,, a3 4 4y

A =

J

I &0

ST N

e =

where, A is called transprocal of A. Transprocal means, first elements to last

elements of a given matrix to be considered as last elements to first element of a

given matrix. Which means, let a;, be a first element and a,,, be a last element of

a given matrix then transprocal of matrix is transferring a certain place of a ma-

trix element to a certain placement. That is, a;; got a position at a,,, place, a,, got

a position at a,,, ,, place, ..., a,, got a position at a,, place, ..., a,, got a position

at a,, place, ..., a,,, got a position at a;, place.
Properties:
1) (Aﬁ)ﬁ =4.
2) I"=1.
3) (A+B) =4~ +B".
4) (kA) =kA™.

5) (AB) =A"B".
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6) tr(A)=1r(4 )
7) det(d)=det(4").
=(4

) 1 ; more generally

4')

9) elg( ) = ( )

10) X, (1)=X ().

11) mA()=m ().

12) (4") =(47)".

Proof:

1) Let A be a m x n matrix,
a, aqp a4y a,
Gy 4y Ay a,,

A=|ay ay, ay 4,
_aml am2 am} amn n

fay, s aln_
Gy Gy Gy 0 Gy,
(Aﬂ)ﬁ: A3 Gy Gy O,
L9m  Qua A3 a,,
1 00 1
2)Let I={0 1 O then I"=|0
0 0 1 0
a b c
3) Let A=|d e f| then A~
g h i
z y X
then B"=|w v
t s r
a+r b+s c+t
A+B=|d+u e+v f+w| then
g+x h+y i+z
[i+z h+y g+x
(A+B) =| f+w e+v d+u|=
| c+t b+s a+r
[a b ¢
4)Let A=|d e f| then kA=
g h i
ki kh kg i
Now (kA) =|kf ke kd|=k|f
ke kb ka c

then 47 =| a,

()

:(Aﬁ)n,neZ.

= A, thus (Aﬁ)ﬁ =4.

i h g z y x

f e d|+|w v u|=4"+B"
lc b al| |t s r
(ka kb ke

kd ke kf
| kg kh ki |

h g

e d|=kA".

b a

DOI: 10.4236/alamt.2019.93004

46

Advances in Linear Algebra & Matrix Theory


https://doi.org/10.4236/alamt.2019.93004

B. P. Rangasamy

ar+bu+cx as+bv+cy at+bw+cz
5)Let AB=|dr+eu+ fx ds+ev+fy dt+ew+ fz| then
gr+hu+ix gs+hv+iy gt+hw+iz

[gt+hw+iz
(AB)" =|di+ew+ fz
| at +bw+cz
[iz+hw+ gt
(AB)" =| fz+ew+dt
| cz+bw+at

gs+hv+iy
ds+ev+ fy
as+bv+cy
y+hv+gs
fr+ev+ds
cy+bv+as

gr+hu+ix |
dr+eu+ fx
ar+bu+cx |
ix+hu+ gr |
fx+eu+dr

cx+bu+ar |

h gllz y x
dilw v u|=4"B"

e
b allt s r

i
=/
| c
a b c i h g
6)Let A=|d e f| then A" =|f e d
g h i c b a
Now tr(A)=a+e+i then tr(Aﬁ):i+e+a:a+e+i=tr(A).
7) Now det(A) = aei +bfg + cdh— afh—bdi—ceg then
det(A4") =iea+ hde+ gfa— hfa —idb— gec
=aei+bfg+cdh—afh—bdi—ceg=det(A).
a b c ei—fh ch—-bi bf—ce
8)Let A=|d e f| then A’lzL fe—di ai—-cg cd-af
g h i | | dh—eg bg—ah ae—bd
ae—bd bg—ah dh—-eg
So (A_l)ﬁ:|17| cd—af ai-cg fe—di
bf —ce ch—-bi ei— fh
i h g
Now A" =|f e d| then
c b a
ae—bd bg—ah dh—eg
(Aﬁ)lzﬁ cd—af ai-cg fg—di
bf —ce ch—bi ei—fh
ae—bd bg—ah dh-eg
=ﬁ cd—af ai-cg fg—di =(A’1)ﬁ
bf —ce ch—bi ei— fh

-3 -5 -9 5 -3 -9

Let A=|-6 3 9 | then A7 =9 3 -6
-9 -3 5 -9 -5 3

Now
[-3-x -5 -9

|A-x=| -6 3-x 9
| -9 -3 S5-x
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=(-3-x)(x* =8x+15+27)+5(~30+6x+81)-9(18+27 - 9x)
=-3x" +24x-126—x" +8x” —42x +255+30x — 405 +81x
=—x" +5x* +93x-276
or x*—=5x*-93x+276=0 (1)
Eigen value of (A4)=x"-5x"-93x+276=0 is x =11.13, x,=2.78,

x, =-8.91
Also,

5-x 3 -9

[ —x7|=] 9 3-x -6

9 -5 3-x
=(5-x)(x* =9-30)-3(-27-9x - 54) - 9(-45+27 - 9x)
=5x" —195—x" +39x-243-27x+162 +81x
=—x’ +5x* +93x-276

or x’—5x*-93x+276=0 (2)
Eigen value of (Aﬂ)=x3—5x2—93x+276:0 is x,=11.13, x,=2.78,
x, =-8.91
Both cases we get,
9) eig(A):eig(Aﬁ)
100 X,(6)=X . (7)
1) m,(t)=m ()

12) Let A be a mx n matrix,

ay  dp 4 A, Dyun Ay Ay Gy
Gy Gy Oy Ay :

A=|ay ay ay a, | =>4 =|a, Ay 43 Gy
: sy, Gy Ay Gy
_aml amZ am3 amn L aln a13 alZ all
_ . _

L T T mn @G, Gy 4

(Aﬁ) =| Az Ay Ay | =) 4y, Ay dy A3

a, Gy Ay Uy ) a3y 4y 4

L Qin a3 4 4y L Dt a3 4y 4y

Definition 2: Transpose of Transprocal matrix is called TRANSPROCOSE
matrix. Let we assign (Aﬁ )T = A”. so now onwards we call A" is Transpro-
cose of matrix A.

Properties:

1) A4 :(/r)T

I
—_

A" )ﬁ.
T

o T T
2) A A~

~— ~——

=( A
3) A4 :(ATﬁ oA
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4 A" =[(AT)T e

5) A {(Aﬁ)T A",

6) We know that 4" =4 and 4~ =4,

A5 =(aY {[[ATTHT =[4"] =4.Thus 4" = 4.

3. Algebraic Properties of Certain Matrix, Transpose,
Transprocal and Transprocose Matrices

Let A be a matrix then A" is a transpose of matrix A, A4~ is a transprocal of
matrix Aand A" is a transprocose of matrix A.
Now we find some matrices by the combination of certain matrix, Transpose,
Transprocal and Transprocose matrices.
1) 44" =B,4"4=C
2) AA"=D,A"A=E
3) AA" =F,A"A=G
4) A"A" =R, A A" =S
5) ATA" =T, A"A" =U
6) A"A" =V, A4 =W.
Let we intend Transpose, Transprocal and Transprocose on above matrices.
1) Let B=AA".
Now we taking transpose on both sides. We get,
B =[AA"] =4 A" =44"=B
Now we taking transprocal on both sides. We get,
B =[Ad' | =ad” =44 =W
Now we taking transprocose on both sides. We get,
B =[Ad" | =a" 4 =44 =W
2) Let D= AA".
Now we taking transpose on both sides. We get,
D =[aa] =4 A" =4 4"=U
Now we taking transprocal on both sides. We get,
D =44 =44 =4 4=E
Now we taking transprocose on both sides. We get,
D =[Ad | =44 =44 =T
3)Let F=AA".
Now we taking transpose on both sides. We get,
Fi=[aa#] =44 =474 =5
Now we taking transprocal on both sides. We get,
Fo=[Ad ] =44 =4 4" =S

Now we taking transprocose on both sides. We get,
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F>=[Ad ] =4 4" = 44" =F

4)Let T=A"A".

Now we taking transpose on both sides. We get,
T =[4"4] =4 4" =4 4=E

Now we taking transprocal on both sides. We get,
=44 ] A" 4 =44"=U

Now we taking transprocose on both sides. We get,
T°=[d"4" | =4 4" =44 =D

5)Let R=A"A".

Now we taking transpose on both sides. We get,
R =[Aa] =a"4" =44=G

Now we taking transprocal on both sides. We get,
R=[Aa] =4"4 =44=6

Now we taking transprocose on both sides. We get,
R =[A"a [ =4"4" =4"4" =R

6)Let V=A"4".

Now we taking transpose on both sides. We get,
Vi[ga] =ata ==y

Now we taking transprocal on both sides. We get,
yre[aa] =44 =4 4=C

Now we taking transprocose on both sides. We get,
vi=[aa] =44 =4"4=C

From the above matrices, we concluded they are related with themselves.

4. Dominance Property

1)If 447 =C then A"4=C"

a b c i h g
Let A=|d e f| then A"=|f e d
g h i c b a
Now
a b clli h g ai+bf +cc ah+be+bc ag+bd+ac
A4 =|d e f||f e d|=|di+ef+cf dh+ee+bf dg+de+af |=C
g h ijlc b a gi+hf +ic gh+eh+bi gg+dh+ai
i h glla b ¢ gg+dh+ai gh+eh+bi gi+hf+ic
AA=|f e di|ld e f|=|dg+de+af dh+ee+bf di+ef+cf |=C"
c b g h i ag+bd+ac ah+be+bc ai+bf+cc

From the above matrices, we concluded the multiplic and matrix dominated
in product matrix.

Cayley—Hamilton theorem: Every square matrix satisfies its characteristic
equation.

Note: It is always true for matrix A and its transprocal matrix A~.
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-3 -5 -9 5 3 9
13)Let A={-6 3 9 | then 47°=|9 3 -6
-9 -3 5 -9 -5 3

Now the characteristic equation of Ais x> —5x> —93x+276=0.
We can write this equation as 4’ —54> —934+2761 =0;
Also, we can write this equationas A —547>-9347+2761" =0.

120 27 —63 45 -330 1152
A =|-81 12 126|, 4£°=| 963 63 1467 | and
0 21 79 837 —174 584
79 21 0 584 174 -837
(47) =|126 12 81|, (47) =| 1467 63 -963|.
63 27 120 _1152 330 45

Use above matrices and check those characteristic equations.
A =547 -934+2761

[45-600+279+276 —330—135+465  —1152+315+837
=| -963+405+558 63-60-279+276 1467 —630—837

| —837+0+837 —174-105+279  584—395—-465+276
[0 0 0

=0 0 0

10 0 0

A =547 -934"+2761"

[584-395-465+276 —174—105+279 —837+0+837

=| 1467-630-837  63-60-279+276  —963+405+558
| —1152+315+837  —330-135+465 45-600+279+276
[0 0 0

=0 0 0

10 0 0

Thus A —54>-93A4+2761 = A 54> —934" +2761".

5. J-Matrix

Definition 2:

I'matrix and Jmatrix: An m x n matrix is usually written as

ay  4p 4 a,,

Gy Ayp Ay ),

A=|ay ay, a5y 4,
_aml am2 am3 e amn _

we shall call this matrix as /~matrix (first element starts from North West cor-
ner).
If an m x n matrix is said to be Jmatrix (first element starts from North East

corner), it should be written as
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a, a3 4 4y
a,, Gyy Gy Ay
A=|a, a3 4y 4y
amn e am3 am2 aml

We define some type of / matrix.
1) Diagonal matrix: A square matrix is called diagonal matrix, if all its

non-diagonal elements are zero.

0 0 a
A= 0 a, O |,a,eN
a, 0 0

2) Scalar matrix: A diagonal matrix is called scalar matrix, if all the
non-diagonal elements are equal to zero and all the diagonal elements are equal
to scalar say 4.

N

I
> o o
o = o
oS o

3) Unit or identity matrix: a square matrix is said to be unit or identity
matrix, if all the diagonal elements are equal to unity and non-diagonal elements

are zero.
(0 0 1
0 1
J={0 1 0 ,[1 O} etc. are unit matrices.
11 00

Upper triangular matrix: A square matrix is said to be upper triangular
matrix, if all elements below the leading diagonal are zero.

(e d ¢ b d
i h g f O
A=|1 k j 0 0] isanupper triangular matrix.
n m 0 0 0
lo 0 0 0 0]
Leading diagonal.

4) Lower triangular matrix: A square matrix is said to be lower triangular

matrix, if all elements above the leading diagonal are zero.

00 0 0 a
00 0 ¢ b
A=|0 0 f e d| isalower triangular matrix.
0 j i g
o n m | kj

Leading diagonal.

5) Transpose matrix: If we interchange the rows and corresponding column
in a given matrix A, the matrix obtained is called transpose of the matrix 4 and
denoted by A" or A’
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c b a g d a
Let 4, =|f e d|then A"=|h e b
i h g i f c

6) Symmetric matrix: A square matrix A is said to be symmetric matrix, if
A" = 4. That is if for all the values of 7and j; a;=a;.
c b a
Let 4,=|d e b| isasymmetric matrix.
i d c
7) Anti-Symmetric matrix: A square matrix A is said to be symmetric matrix,
if A" =—A. Thatis if for all the values of jand j, a, =—a

i Ji -
-c -b 0

Let 4,=|-d 0 b| isananti-symmetric matrix
0 d ¢

8) Orthogonal matrix: A square matrix A is said to be orthogonal matrix, if
AA" =J = A" 4 Where Jis a unit matrix.

9) Hermitian matrix: A square matrix A is called Hermitian matrix, if
(Z )T = A . That is if every i-jth element of A is equal to complex conjugate j-ith
elementof A. ie. a; =a; .

Note. Every diagonal element of Hermitian matrix is real.

1-2i 2-3i 5

Ex:Let 4, =| 1+ 5 —4—j ,{

8 3—i 2+4i

1+i 3

are Hermitian matrix.
5 2-i

10) Skew-Hermitian matrix: A square matrix A is called skew-Hermitian
matrix, if
(Z)T =—A That is if every /-jth element of A is equal to complex conjugate
J-#th element of A. ie. a; =-a; .
Note: Diagonal element of a Skew-Hermitian matrix is either purely imagi-
nary or zero.
1-2i 2-3i 5-i
Ex: Let 4, =|14i 0 —4-

) {1” 3-2i
i,
8+i 3-i 2+

i | are skew-Hermitian ma-
S5+i 2-i

trix.

11) Unitary matrix: A square matrix A is said to be unitary matrix,
T

If A4"=J=A"A. Where 4" =(4) .
12) Involutary matrix: A square matrix A is said to be involutary matrix, if
A? =J . Unit matrix is always an involutary matrix, since
J=J
Note: Other definitions like nilpotent, idempotent, conjugate, etc. of ] matrix

as same as [ matrix.

6. Algebra of ] Matrix
6.1. Addition and Subtraction of J-Matrices

If two matrices A and B are same order, then addition and subtraction of ma-
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trices A + Bis defined as the matrix which is obtained by the addition and sub-
traction of the corresponding elements of 4 and B.
More clearly, we can say that
a3 G4 4y by b, b
Let A=|ay a, a, | then B=|b, b, b,
33 Ay 4y by by, by
aythy a, b, a, b,
A+B=|a,;*b,, a,, tb, a, tbh,
ay tby  ay, *by,  ay thy

6.2. Scalar Multiplication of ] Matrix

Let A be any matrix and & be any scalar, then the matrix obtained by multiplying
every element of the matrix a by & is called scalar multiplication of a by & and

denoted by kA.
a3 a4y 4ay 3a,; 3a, 3a,
Ex:Let k=3and 4A=|a,, a, a, | then 34=|3a,, 3a, 3a,
ay; Ay 4y 3a;; 3ay, 3ay,

6.3. Multiplication of ] Matrices

Definition 3: Suppose 4 =a,,B =5, be two matrices such that the number of
rows of A is equal to the of columns of B; say, A is p x m matrix and Bis n x p
matrix. Then the product ABis a n x m matrix whose zjth entry is obtained by

multiplying #th row of Bby jth column of A. that is

R Al L T
P A PN

_apm ea, apl_\_b”p bnj b”I_

_c,.m c].j cE,_

= C[.m CU Cy

P
where C; = bnau +bl.2a2j +---+bipapj2bl.ka,g. .
k=1

The product ABis not defined if Pis a p x m matrix and Bis an n X ¢ matrix,
where p#gq.
Ex:

2 0 4 1 2
1) Find ABwhere A= and B=
3 4 2 3 4

Because A is 2 x 3 matrix and Bis 2 x 2, the product ABis defined and ABis a
2 x 3 matrix. To obtain the first row of the matrix AB, multiply the first row (1, 2)
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of Bby each column of 4,

2)(0) (-4 . .
s Respectively. That is,
3)14 2

AB=(4+3 0+4 -8+2)=(7 4 -6)

To obtain the second row of AB, multiply the second row (3, 4)of B by each

column of A. thus,
AB = 4+3 0+4 -8+2 (7 4 -6
(849 0+12 -16+6) (17 12 -10)
2 1 1 2
2) Suppose A= and B= then
3 4 3 4

443 2+4 7 6 1+6 2+8 7 10
AB = = and BA= = .
8+9 4+12 17 16 4+9 8+12 13 20
The above examples show that matrix multiplication is not commutative. That
is, in general, AB # BA. However, matrix multiplication does satisfy the fol-

lowing properties.
Preposition 1: If all multiple and addition make sense, the following hold for

matrices A, B, Cand scalars x, y.
1) A(xB+yC)=x(AB)+y(AC)
2) (B+C)A=BA+CA
3) A(BC)=(4B)C
Proof: Using the definition of multiplication,
(A(xB+yC)), = X (xB+yC), 4,
k
= Zk:(XBik +Cy ) 4y
Y =szikAAy' +yzcikAkj
k k
= x(AB)U +y(AC)ij
- (x(48)+ y(4C)),
2) (B+C)A=BA+CA is easily claimed.
A(BC)=(4(50C)), =3(50), 4,
= Z]:CilBlka:Akj
3) = Z[:Cﬂ (4B),

=((4B)C),
~(4B)C

6.4. Determinant of ] Matrix

Every square matrix can be associated with an expression or a number which is
known as determinant. The determinant of a square matrix 4= (al.j) of order n

is denoted by |4| and is given by
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a,, a,, 4y
A B
ann an2 anl

Note: A matrix which is not square matrix does not possess determinant.
Determinants of orders 1 and 2.

Determinants of orders 1 and 2 are defined as follows:

a, a4

|a“| and = ay Ay — Ay,

Gy 4y

Thus, the determinant of a 1 x 1 matrix A=[a, ] is the scalar a,; that is,
det A =|a,| = a,, . The determinant of order two may easily be remembered by

using the following diagram:

= Ay ayy —Apay,; -

That is the determinant is equal to the product of the elements along the
plus-labeled arrow minus the product of the elements along the minus-labeled
arrow.

The determinant of a 3 x 3 matrix:

ay @, a

Let A=|ay a, a, | beasquare matrix of order 3, then |4| given by

a3 Ay Ay |

a4 4y

|A|=a23 Gy Ay

ay; 43 4y
= Ay Ay sy + Q0305 + 130y A3y — Ay o303y — Q505,033 — Q130003
Diagonal and Trace.

Let Az(a”) be an n-square matrix. The diagonal or main diagonal of A

consists of the elements with the same subscripts thatis a,,,a,,,a;,:*,a

>%nn *

The trace of A, written tr{A) is the sum of the diagonal elements. Namely,

n
r(A)=a, +a,+ay++a, =D.a,.
k=1

6.5. Some Working Models of ] Matrices

1) Orthogonal matrix: A square matrix A is said to be orthogonal matrix, if

AA"=J=A4"4.
where /is a unit matrix.
Proof:
2 1 =2 2 -1 2
Let A=l -2 2 —1| bea3 x 3 matrix, then ATzé 2 2 1
1 2 2 1 =2 2
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2 1 =22 -1 =2
a =Y 0 2 2
1 2 21 =2 2
[—4+2+2 —2-2+4 1+4+4

:l 2-4+2 1+4+4 -2-2+4
9_4+4+1 2—-4+4+2 —4+2+2
[0 0 9 0 0 1

:l 09 0(=|0 1 0|=J
9_9 00 1 00

(2 -1 22 1 =2

AAT:lZ 2 1 (-2 2 -1

91 -2 21|11 2 2

[—4+2+2 242-4 1+4+4
=l —2+4-2 1+4+4 2+2-4
| 4+4+41 —2+4-2 4-2-2

2) Unitary matrix: a square matrix A is said to be unitary matrix, if
AL =J =4 4.
Proof:

— 1+7 1—-j
} be a 2 x 2 matrix then A:l|: J ]}

Let A:l
21— 1+j

1-j 1+j
2

1+j 1-j

- 1+ 1-j
Moreover, A =(A)T=%L ] ) ]}
—J 1ty

Now
. I+j 1=j|1|1=j 1+ 2j+2j 4 0 1
e e N _ —J
201=j 1+j|2[1+j 1-j] 4 4 2j-2j 10
. I—j 1+ |1|1+j 1= 2j-2j 4 0 1
Py L A Y R A N e ) _ —J
20145 1—j|2|1—=j 1+j| 4| 4  —=2j+2j| |1 0
3) Involuntary matrix: A square matrix A is said to be involuntary matrix, if

A* = J . Unit matrix is always an involuntary matrix, since J> =.J .

Proof:
3 3 4

Let 4=|-1 0 -1| bea3 x 3 matrix, then
3 -4 4

A =|-1 0 -1{-1 0 -1
-3 4 4|3 4 4
[12-3-9  12+40-12 16-3-12
=| -3+40+3 -3+0+4 —4+0+4
|—12+4+9 —-12+40+12 -16+4+12
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Il
- o O
oS = O

6.6. Solve the System of Equations
Inverse method:
w+3x+2y+4z=21
w=3x-2y+4z=-5
2w—-3x+2y—-4z=-1
—2w+3x+2y-4z=1

Solution: The system of given equations can be written as B = X4 , where

4 2 3 1 w 21
4 -2 -3 1 x -5
= A 5 = X N = B
-4 2 -3 2 y -1
-4 2 3 =2 z 1
wil4 2 3 1 21
x| 4 -2 -3 1 -5
XA = = =B
yil-4 2 -3 2 -1
z||-4 2 3 =2 1

Therefore BA™ = X . Now

L -1| 48 16 64 0
T96|-72 24 -72 24
24 0 =36 -12

21 %% 0 9 0 ]

9% 0 9 0 ]

-5|-11 48 16 64 0
-1196|-72 24 -72 -24
1 -24 0 36 -12

BA =

Thus w=4,x=3,y=2,z=1.
Cramer’s rule:

Ex: Solve the following system of equation:
2x+y+3z="7

2y—z=3
x+2z=3

here determinant A of the coefficient matrix is given by

3.1 2

A={-1 2 0
2 01

Hence the system has a unique solution. By Cramer’s rule, we thus have
Ax AJ’ Az
= . =—, z =
A 4 A A
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where
317 3 7 2 7 1 2
A =-1 2 3/=1, A =-1 3 0[=2, A_= 2 0/=1
2 0 3 2 31 3 01

Hence the solutionis x=1,y=2,z=1.
Normal form
A matrix o order mx nis said to be in (fully reduced) normal form it is of the

o 6

Characteristic equation, Eigen values and Eigen vectors

form

The characteristic equation of a square matrix A is defined as the equation
|A—xJ | =0. The expression |A—xJ | is often referred to as the characteristic
polynomial. This will be usually denoted by y, (x).

a, 4 4
a Y a a
2 2 Ay
If A=| " . : 7| then
ann e anZ anl

24 (x)=(-1)"x" +(—1)H tr(A)x"" -i—(—l)'k2 (sum of principle minors of
order2) x" 7+ (—1)H (sum of principle minors of order 3) x" +---+det 4.

Cayley-Hamilton theorem

Every square matrix satisfies its characteristic equation.

Proof: Let A be a square matrix and let @, +a,x+a,x’ +---+a,x" =0 be its

characteristic equation. Then it is known that

(A=xJ)adj(A-x])=|A-xJ|'J =a,J +ax] +a,x*J +---+a,x"J =0

Since the matrix A—xJ is a factor (left) of the right hand side, by the re-
mainder theorem for matrix polynomials, if A is substituted for x/then the right
hand side must be satisfied.

Therefore, a,J+a,A+a,A*+---+a,4"=0.

Ex:
1 01

Let A4=|0 1 1| bea3 x 3 matrix then |A|¢0.
2 01

The characteristic equation of Ais x’ —4x> —4x—1=0.
By Cayley-Hamilton theorem, we get A4’ —44>—44-J=0.

30 2] 8§ 0 5
A=|11 2|, A£=|4 1 4
50 3] 13 0 8
A =44 +44-7
8§ 0 5 302 (1 0 1 0 0 1 000
=4 1 4|-4/1 1 2(+4/0 1 1(—-/0 1 O0|=l0 O O
13 0 8 50 3 12 01 1 0 0 0 0 0
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Remark 1: The characteristic is not only equation that a matrix satisfies.
There may be other equation may be satisfied.
Remark 2: the above theorem can be used successfully in computing the in-

verse of a non-singular matrix.

To find A™:
101 302
Let A=|0 1 1| bea3x3matrixthen |4|#0 and 4*=|1 1 2
2 01 503

The characteristic equation of Ais x° —4x> —4x—1=0.
By Cayley-Hamilton theorem, we get A4’ —44>-44-J =0.
Or (A2 —-44+4J )A =J , multiplying A~ both side we get,
Hence (4’ -44+4J)=A4".Thus
A=A -44+4J
302 1 01 0 0 1
=11 2|-4/0 1 1{+4/0 1 O0|={1 1 2
50 3 2 01 1 00

Eigen space

The vector space generated by the Eigenvectors corresponding to an Eigen
value of a matrix is called Eigen space of the eigenvalue. This will be sometimes
denoted by Z(A1), where A is an Eigen value of A. if xand y are two Eigen vectors
of an Eigen value of 4 and cis a scalar, then it is easy to verify that x + yand cx
are also Eigen vectors of the same Eigen value.

The dimension of the Eigen space of an Eigen value is called geometric mul-
tiplicity of that Eigen value. If an Eigen value has the same geometric multiplici-
ty as its algebraic multiplicity, then it is called regular.

Minimal polynomial

The minimal polynomial of a matrix is defined as the monic polynomial of the
lowest degree satisfied by the matrix. The minimal polynomial of a matrix 4 will
be denoted by m, (x).

Three results follow readily from the definition:

1) The minimal polynomial of a matrix divides every polynomial satisfied by
the matrix.

2) The characteristic polynomial and minimal polynomial have the same ir-
reducible factors.

3) A scalar is an Eigen value of a matrix A if and only if it is a root of the mi-
nimal polynomial of the matrix.

Ex: find the characteristic polynomials and the minimal polynomials of the

matrix.

~ Lo
N = ==
S O N

Solution: Let the given matrix be denoted by A. Then the characteristic equa-
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tionis |4-4J|=0.
Therefore the characteristic equation of the matrix is,
0 1 2-¢
-1 1=t 0{=0 or (1-2)"(¢-3)=0
4-t 2 0

The possible minimal polynomials are
(1-2)(t-3)=0 and (1—2)"(r-3)=0
We now observe
0 1 0jjo0 1 -1 0 -2 -1

(4-2J)(4-3J)=|-1 -1 Of-1 =2 0|=/0 0 0 |%0
2 2 0fl1t 2 0f |0 0 0

So, A does not satisfy the polynomial (r—2)(z—3). But by the Cay-
ley-Hamilton theorem, A satisfies the polynomial (¢-2)"(¢—3). Hence the
characteristic polynomial is also the minimal polynomial of A.

Diagonalization

From the point of view of application, it is often important to see whether any
square matrix is similar to a diagonal matrix, ie whether for a matrix A there

exists a non-singular matrix P such that D =P ' AP, where Dis a diagonizable

matrix.
3 -3 1
Ex: Diagonalize the following matrix |3 -5 3
|4 -6 6
Solution:
3 31 3 3 1-x
Let A=|3 -5 3| then |[d-xJ|=| 3 -5-x 3 |=0 or
4 -6 6 |4-x -6 6

(x+2)"(x-4)=0.
Eigenvalues of 4 are —2, -2, 4. The Eigenvectors corresponding to —2 are (0, 1,

1) and (1, 1, 0) and (2, 1, 1). Now we construct a matrix taking three Eigenvec-
tors without the scalars as three columns and obtain

11
1 01 1 01 7 2 2
P=|1 1 1| then |P|=|1 1 1/#0 so P'=|0 1 -l
210 210 1 -1 1
2 2 2
Now

-1

1 0 13 3 1|2 2 2

PAP' =1 1 1}|3 =5 3|0 1 -1

2 1 0[|4 -6 6[|1 -1 1

2 2 2
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Also,

33 -3 5 1
oo 1] E+E_2 7_5+3 5+5—3
=1 1 1|[-3+3+0 3-5+0 -14+3+0
2 rop3 3., 3.5 45134
12 2 2 2 2
(1 0 1][1 0-1 -1
= 1 1{j0 -2 2
2 1 0]|]2 -2 2
[-1-1+2 0-1+1 -1-1+0
=/2-240 0-2+0 2-2+0
|[2-2+4 0-2+2 2-2+0
[0 0 -2
=0 -2 0 |=D
14 0 0
Which is the required diagonal matrix.
11
2 2 2140 0 =21 0 1
P'DP=[0 1 -1|[0 =2 0|1l 1 1
1 -1 14 0 0210
2 2 2]
SRR
2 2 21/0+0+4 0+0+0 -2+0+0
=0 1 -1{{0+0+0 0-24+0 -2+0+0
1 -1 1]/0+0+8 0-24+0 0+0+0
2 2 2]
[=SREn
2 2 214 0 2
=0 1 -1/|4 2 2
1 -1 1}]8 -2 0
2 2 2]
[1+0+2 -1+0-2 —-1+0+2] [3 -3 1
=|1+40+2 -1-2-2 -1+2+42|=|3 -5 3|=4
10+0+4 0-2-4 0+2+4 4 -6

7.Jordan Canonical Form

We have seen that if the Eigen values of a matrix are all different, then the ma-

trix can be diagonalized by similarity transformations. If the Eigenvalues are not

different, the matrix can be diagonalized if the Eigenvectors whose number

equals the order of the matrix are linearly independent. If the Eigenvectors are

not linearly independent or if their number is less than the order of the matrix,

then A cannot be diagonalized by similarity transformations.

However, by similarity transformation, any square matrix can always be con-

verted into a matrix having Jordan blocks along the diagonal, called the Jordan
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canonical form.
A matrix is called a Jordan block if all the diagonal elements of the matrix are
the same scalar and always 1 occurs over the diagonal elements. The following

are examples of Jordan blocks:

0013
0 1 -2
12 0130
[5]. 1 2 0,
2 0 1300
8 0 0
3000

Theorem: Every square matrix A whose characteristic polynomial
2a(0)=(1=A)" (1=2)" (1= 4.)"

And the minimal polynomial
m (1) =(-2)" (=) (-4, )"

Can be reduced to the block diagonal matrix

0 B,

I
Which is called a Jordan canonical form, where B are Jordan blocks of the

form

0 0 - 0
1

A
0
o, i=1,2,r

1
z
A 0 - 0 0 O

And for each 4, the corresponding B, have the following properties:

1) There is at least one B of order m, all other B are of order less than m.
2) The sum of orders of By is 1,

3) The number of B, equals the geometric multiplicity of 4, .
4) The number of B of each possible order uniquely determined by A.

Ex: Reduce the matrix A to the Jordan canonical forms whose characteristic

polynomial y,(¢) and the minimal polynomial m,(¢) are respectively
2.(6)=(1=5) (¢=7)" and m,(t)=(t-5) (¢-7)

Then the Jordan canonical form is one of the following matrices.

0 1 5] K 1 5]
50 50
5
50 or 5
7
7 0 7 0
7 o] |7 0]

DOI: 10.4236/alamt.2019.93004 63 Advances in Linear Algebra & Matrix Theory


https://doi.org/10.4236/alamt.2019.93004

B. P. Rangasamy

Note that the first one is the desired canonical form if there are two indepen-
dent eigenvectors corresponding to the eigenvalue 5 but the second occurs if
there are three Eigen vectors corresponding to the Eigen value 5.

Remark: Observe that

1) The order of the matrix is 4 + 3, Z.e. 7

2) There is at least one block of order 5 [the index of the factor - 5in m, (t) ]
for the Eigen value 5 and at least one block of order 2 [the index of the factor ¢ —
7in m,(t)].

3) The sum of the order of the blocks corresponding to 5 is 2 + 2, i.e. 4 in first
form; the sum of the orders of the blocks corresponding to 7 is 2 + 1, ie. 3 in
both forms.

Real quadratic form

n n
An expression of the form ZZaijxl.xj , where a,er and aq;=a,, is
i=1 j=1

called a real quadratic form in the variables x,,x,,---,x,. A real quadratic form

. T . .
can be written as X'AX where X =(x,x,, X and A is a symmetric
1-%2 n Y

matrix, (called the matrix of the form) as

a,, a;  dp  dy
a a a a
2 23 22 21 :
" : with
ann an3 anZ anl

Determine the matrix of the following quadratic form:

Xy 2%y, + 4%, +2x,x, —4x,x; — 2x,X,

-1 1 1
here the associated matrixis |-2 2 1
4 -2 -1

Tand Joperation on a given matrix A

1) Super orthogonal matrix: a square matrix A is said to be super orthogonal
matrix, for both operations 7/ and J, product of matrix and its transpose gives
identity matrix.

ie. for Foperation 4,4 =1= A A, where I is a Iunit matrix and for

J-operation AJAJT =J= AJ.TAJ where Jis a J-unit matrix.

| 2 1 =2
Let A= 5 -2 2 —1| bea3 x 3 matrix, then
1 2 2

For I-operation:

[2 20
Al == 2 2

3

2 -1 2
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2 1 =2][2 21
A,AIT:% -2 2 -1)1 2 2
|12 2]-2 -1 2
[ 4+1+4 —4+2+2 2+2-4
=l —4+2+2 4+4+1 -2+44-2
9_2+2—4 -2+4-2 1+4+4
9 0 0] [1 0 O
:l 09 0(=0 1 0(=1
9_0 0 9] [0 01
(2 2 12 1 =2
A,TAI:é 1 2 2 {2 2 -1
-2 -1 2] 1 2 2
[ 4+441 2-442 44242
=l 2-44+2 1+4+4 -2-2+4
9_—4+2+2 -2-2+4 4+1+4
(9 0 0] [1 0 0
:l 09 0(=(0 1 0|=1
9_0 09 0 0 1
Thus 4,4 =1=A4]4,.
For J-operation:
| 2 -1 =2
AJT=5 2 2 1
-2 2
(2 1 =202 -1 =2
A,Afz% -2 2 -1f2 2 1
|12 2|1 -2 2
[—4+242 —2-2+4 1+4+4
=l 2-44+2 1+4+4 -2-2+4
9_ 4+4+1 2-4+42 —4+2+2
[0 0 9] [0 0 1
:l 09 0|=(0 1 0|=J
9_9 0 0 |1 00
(2 -1 =22 1 =2
A}AJ:% 2 2 1|2 2 -1
2 21 2 2
[—4+2+2 2+42-4 4+1+4
=l —24+44-2 1+4+4 2+2-4
9_ 4+4+1 -2+4-2 —4+2+2
[0 0 9] [0 0 1
_1 09 0|=(0 1 0|=J
9_9 00 1 00
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Thus AJA_I.T =J= A/TAJ .

2) Super unitary matrix: a square matrix A is said to be super unitary matrix,

for both operations 7 and /, product of matrix and its transpose of its conju-
gate gives identity matrix.

ie for Ioperation 4,4, =1= A, A, where I is a Iunit matrix and for
J-operation AJA; =J= A;AJ where Jis a J-unit matrix.

Proof:
1-k 1+k 1+k 1-k
:l * be a 2 x 2 matrix. Then A— "
2011+k 1-k -k 1+k

For I-operation

« =T 1|1+k 1-k
4=(4) :EL—k 1+k}

1[1-k 1+k][1+k 1-k

4|1+k 1—k}{ 1+k}

_l; 4 —2k+2k}_1{4 0}_[1 0}_1
4| 2k -2k 4 410 4| |0 1

. 1[1+k 1=-k|[1-k 1+k
A4 =—
4_1—k 1+k||1+k 1-k

_U[ 4 k=2 _1f4 0] f1oo]_,
4| 2k+2k 4 0 4| |0 1]

Thus 4,4, =1 = A, 4, , where [is an J-unit matrix.
. —\t 1|1+k 1-k
A =(4) ==
i=(4) ZL—k 1+k}

. 11—k 1+k][1+k 1-k
A4, =—
4_1+k 1-k 1+k
[ 2k+2k 1[0 4 _,
4] 4 2k-2k| 4|4 0 a
. 111+ 1-k 1+k
Ad, =—
J 41-k l1+k||l+k 1-k

C1[2k-2k 4 01,
4 4 2k+2k “4l4 o] |1 o]

Thus 4,4, =1=A4,A,,where Jis a J-unit matrix.

Now

For J-operation

Now

Theorem 1: Unit matrix satisfies involuntary condition in one manner only.
It would be either Fmatrix or /-matrix.

Proof:
3 3 4

Let A=|-1 0 —1| bea3 x 3 matrix, then
-3 4 4
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For I-operation:

33 4¢3 3 4

A4 =-1 0 -1{-1 0 -1

-3 4 4|3 4 4

[9-3-12 9+0-16 12-3-16 |[-6 -7 -7
=|-3+0+3 -3+0+4 -4+0+4 0 1 0 |=#1
| 9+4+2 -9+0+16 -12+4+16]| 7 7 8

3 3 443 3 4

A=|-1 0 -1||-1 0 -1

-3 4 4|3 4 4

[12-3-9  12+0-12 16-3-12 ][0 0 1

=| -3+0+3 -3+0+4 —4+0+4 ||0 1 O0|=J
|—12+4+9 -12+40+12 -16+4+12)|1 0 0

Theorem 2: Inverse of matrix and inverse of /-matrix are TRANSPROCAL

to each other.
Proof:
a, 4dp a4y
Let 4,=|a, a, a, | bean nx nmatrix, then

a3 4y Ay

|a22a33 _a23a32| |a13a32 —a12a33| |a12a23 _a13a22|

1
-1 _
4, _|A| |a23a31_a21a33| |a11a33_a13a31| |a13a21_a11a23|
'
_|a21a32 _a22a31| |a11a32 _a12a31| |a11a22 _a12a21|
| 4, A4 4
= 4, 4, 4y
4]
|4y Ay Ay

4y o G
Let A, =|a, a, a, | bean nx nmatrix, then
33

a3 A4y

| |a12a21_a11a22| |a12a31—a11a32| |a22a31—a21a32|
-1 _
4; _|A| |a11a23—a13a21| |a11a33_a13a31| |a21a33_a23a31|
5
_|a13a22 _a12a23| |a12a33 —a13a32| |a23a32 —a22a33|
| Ay, Ay Ay
= 4, A, A4
|4,
|4y Ay A

From above, we conclude that the inverse of /matrix and /Jmatrix is

TRANSPROCAL to each other.

8. Solving Linear Equations Using I-Matrix and J-Matrix

Inverse method:
Solve the following system of equation:
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2x+y+3z=7 (1)
2y—z=3 2)
x+2z=3 (3)

Solution: The given system of equations can be written as AX = B, where
2 1 3]« 7

ie AX=|0 2 -1||y|=|3|=B
1 0 2]z 3
Case 1
21 3 4 -2 -7
Let 4,={0 2 -1| then Allz 1 1 2
1 0 2 -2 1 4
x| [4 =2 -7)[7] [28-6-21
yl={-1 1 2 ||3|=| -7+3+6 |=|2
z -2 1 4]3 —-14+3+12
Case 2:
2 1 3] 4 1 =2
Let 4,=/0 2 —1| then A;lz 2 1 1
0 2| -7 =2 4
7 z|[2 1 3
B=3|=|y {0 2 —1|=X"4.
3 x|{[1 0 2
z 71 4 -2 -14+3+12 1
y|=(3|l2 1 -1|=| 7-3+6 |=|2
X 3//-7 -2 4 28—-6-21 1

Both ways we got the same solution for given equations.

Theorem 3: Every non-singular square matrix has two characteristic equa-
tions. One is from main diagonal (/matrix) and the other one is from an-
ti-diagonal (/J-matrix). Also, every non-singular square matrix satisfies its cha-
racteristic equations.

Proof:
1 01

Let A={0 1 1| bea3 x 3 matrixand |A|¢O,then
2 01

For I-matrix:

1 01
l[4,[=0 1 11=—-1
2 01
I-x 0 1
|A,—x|: 0 1-x 1 |.The characteristic equation of A, is
2 0 l-x

=32 +x+1=0.
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Eigen values: x, =2.41,x, =1,x; =-0.41.

By Cayley-Hamilton theorem, we get 4’ —34° + A+1=0

302 7 0 5
A =121 2|, £=[6 1 5
4 0 3 10 0 7
7-9+1+1 0-0+0+0 5-6+1+0 0 0 O
A =34 +4+1=| 6-6+0+0 1-3+1+1 5-6+1+0(=0 0 0
10-12+2+0 0-0+0+0 7-9+1+1 0 00
For J-matrix:
1 01
l4,|=]0 1 11=1
2 01
1 0 1-x
|A,—x|: 0 1-x 1| . The characteristic equation of A, is
2-x 0 1

X —4x" +4x-1=0.
Eigen values: x, =2.6,x, =1,x; =0.38.
By Cayley-Hamilton theorem, we get x’ =44 +44-J =0

30 2 8 0 5
A =11 2|, £=/4 1 4
503 13 0 8

A —44 +44-J
8-12+4-0 0-0+0-0 5-8+4+-1] [0 0 0
=| 4-44+0-0 1-4+4-1 4-8+4-0(=|0 0 0
13-20+8-1 0-0+0-0 8—12+4-0| [0 0 O

Hence proved.

Both forms of matrices I and J, we obtained different characteristic equations
and the given matrix satisfied both equations.

Orthoprocal matrix

A real matrix A is orthoprocal if 4™ = 47, thatis,if 44" = A"A=1.Thus A

must necessarily be square and invertible.

3 3 4 -4 -4 -3
Let A=|-1 0 ~—I| then A" =|-1 0 -l
3 -4 —4 4 3 3

(3 3 4][-4 4 3
AA"=|-1 0 -1||-1 0 -1
-3 -4 4] 4 3 3
[—12-3+16 —12+0+12 -9-3+12
=l 4+0-4 4+0-3 3+0-3
| 12+4-16 12+0-12 9+4-12
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A A=|-1 0 -1|-1 0 -1
|4 3 3|3 4 4
[—12+4+9 -1240+12 -16+4+12
=| -3+40+3 -3+0+4 —4+0+4
| 12-3-9  12+0-12 16-3-12

1 00
=10 1 0=/
0 0 1

Thus AA"=A"A=1.
Trans Orthoprocal matrices
A real matrix A is Trans Orthoprocal if (Aﬁ)il:Al> , that is, if

A" A" = A" A" =1 . Thus A must necessarily be square and invertible.

2 1 =2 2 2 1
Let A=l -2 2 —1] then Aﬁ:l -1 2 2| and
1 2 2 3—2 1 2
2 -1 2
ADZLZ 2 1
31 -2 2

2 2 1 2 -1 2
A4 =—|-1 2 —212 2 1
-2 1 2 31 -2 2
[ 44441 2+44-2 —4+242
=l —2+4-2 1+4+4 2+2-4
|—4+2+2 2+2-4 4+1+4

W | —

(9 0 0 1 00
:lO 9 0|=/0 1 0|=1
90 09 0 0 1
[2
A'>Aﬁ:1 1}{1 2
31 -2 2 1

[4+1+4 4-2-2 2+2-4
=—|4-2-2 4+4+41 2-4+2
|2+2-4 2-4+2 1+4+4
(9 0 0] [1 0 0

=—0 9 0(=|0 1 0|=1
10 0 9] [0 01

Thus 474" =A4"4"=1.
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Theorem 4:

A matrix A is said to be trans-orthoprocal matrix iff matrix A should be an

orthogonal matrix.
Proof:

Necessity:

Let /=AA" be an orthogonal matrix. Now we taking transprocal on both

sides we get,

I~ = [AAT T =A"A" Again we taking transpose on both side we get,

T - T T T
I :[A*AT J (4w =a"a" =4 a4 =1 Since 17 =1 =1

Sufficient:

Let /=A"A" be a Trans-orthoprocal matrix. Now we taking transprocal on

both sides we get,

I :[AﬂADT =4 A" =AA" =1 .Since " =1.

Or

Let /=A4"A" be a trans-orthoprocal matrix. Now we taking transpose on

both sides we get,

I"=[a4a] =4 4" =44" =1 Since I"=1.
Product between two transprocose matrice (A4B) = B" A"
-2

3 3 4 2 1
Let A=|-1 0 -1|, B=|-2 2
-3 4 4 1 2 2
-4 -1 4 (2 -1 2]
A =-4 0 3|, =2 2 1
-3 -1 3 |11 -2 2]
B matrices.
303 472 1 2]
Now 4AB=|-1 0 -1||-2 2 -1
-3 4 4|1 2 2]
6-6+4 3+6+8 —6-3+8
AB=|-2+0-1 -14+0-2 2+40-2
-6+8-4 -3-8-8 6+4-8
2 0 -1
(4B) =|-19 -3 17]|.
-2 -3 4
2 -1 2|4 -1 4
Now B°A"=|2 2 1|-4 0 3
1 -2 23 -13
—-8+4+6 -2+0+2 8-3-6
B"4"=|-8-8-3 -24+0-1 8+6+3
—4+8-6 -1+0-2 4-6+6

Hence proved.

-1

be two matrices then

are transprocose matrices of A and

4
-3
-2

17 -1
-3 0
-19 2

2 0 -l
-19 -3 17|=(4BY)
-2 -3 4
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