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Abstract 
A Fast Fourier transform approach has been presented by Carr & Madan 
(2009) on a single underlying asset. In this current research paper, we 
present fast Fourier transform algorithm for the valuation of Multi-asset 
Options under Economic Recession Induced Uncertainties. The issue of mul-
ti-dimension in both finite and infinite case of Options is part of the focus of 
this research. The notion of economic recession was incorporated. An 
intuition behind the introduction of recession induced volatility uncertainty 
is revealed by huge volatility variation during the period of economic reces-
sion compared to the period of recession-free. Nigeria economic recession 
outbreak in 2016 and its effects on the uncertainty of the payoffs of Nigeria 
Stocks Exchange (NSE) among other investments was among the motivating 
factors for proposing economic recession induced volatility in options pric-
ing. The application of the proposed Fast Fourier Transform algorithm in 
handling multi-assets options was shown. A new result on options pricing 
was achieved and capable of yielding efficient option prices during and out of 
recession. Numerical results were presented on assets in 3-dimensions as an 
illustration taking Black Scholes prices as a bench mark for method effective-
ness comparison. The key findings of this research paper among other crucial 
contributions could be seen in computational procedure of options valuation 
in multi-dimensions and uncertainties in options payoffs under the exposure 
of economic recession. 
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1. Introduction 

In the history of options valuation, the work of Black-Scholes [1] (1973) cannot 
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be forgotten no matter the shortcomings we may find in their work such as the 
issue of constant values assumed by the volatility and interest rates. Divers fi-
nancial assets are traded in financial market. Some are risky assets while some 
are riskfree. Multi-asset options generally are a set of options whose pay-offs are 
governed by more than one underlying assets. A typical example of multi-asset 
option is a basket option. Basket option is based on two or more underlying as-
sets or stocks. There is European type basket call or put option whereby the 
overall value of a basket of assets plays the role of the price of the underlying as-
set in single-asset European. Likewise, we have American style basket options as 
well. Other types of multi-assets options include: spread option, exchange op-
tions, Quanto options, Rainbow options, etc. Various types of multi-asset op-
tions could be described based on their payoff function. Beom, J. K. et al. (2013) 
[2] presents a simple numerical approach for American put options valuation. 

The focus of most researchers is limited to two dimensions in the valuation of 
multi-asset options. Some authors such as Yuwei Chen [3] gave their formula-
tion in terms of Black Scholes Partial Differential Equation (PDE) and consi-
dered numerical method for obtaining the prices. The authors, Carol Alexander 
et al., (2009) [4] did not relent in their effort as they presented an analytic 
approximation for Multi-asset Options Pricing but their approach was different 
from the one we gave here. In recent time, an existence result of solutions for a 
multi-dimensional stochastic control problem with singular state constraint was 
presented by Ulrich Horst and Xiaonyu Xia, (2018) [5]. The problem at hand is 
not centered on the specialty of the type of multi-asset but how to handle the 
nature of multi-assets amidst other conditional forces of uncertainty and dimen-
sional challenges in the valuation process. According to Yuwei Chen [3], most 
multi-asset European options and all American options have no analytical for-
mula giving their prices, therefore, numerical methods are employed to ap-
proximate such prices. 

We consider challenges of uncertainty posed by instability of economic factors 
on the payoff of assets. The keen economic factor to us is recession. We consider 
volatility variation imposed on options prices during economic recession which 
we termed economic recession induced volatility in addition to other volatility 
uncertainties of options price from other sources. Fast Fourier Transform algo-
rithm is used in our formulation. Many authors have worked on Fourier trans-
form of some options valuation such as ([6] [7] [8] [9]) among others. We gave a 
framework for extending Carr & Madan [6] Fast Fourier Transform approach of 
valuating an option on a single underlying asset to valuation of multi-assets op-
tions. Our major contribution is seen in valuation of multi-assets option in both 
finite and infinite dimensions and incorporation of economic recession factor on 
the volatility of assets during the state of economic recession. 

The rest part of this paper is organized as follows. In Section 2, we gave pre-
liminaries on Fast Fourier Transform. Section 3 is the Main result, which con-
sists of subsections Fast Fourier Transform of multi-assets in finite dimension 
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and Fast Fourier Transform of multi-assets in infinite dimension. Section 4 is 
the application on three assets in 3-dimensional case while Section 5 shows Nu-
merical results on multi-assets in 3-dimensions. The last section is the 
conclusion part. 

2. Preliminaries 
2.1. Some Definitions on Fourier Transform 

Definition 1: Let :f R R→  be a real-value function for x R∈ , then the 
Fourier transform of f is defined as 

( )( ) ( ) ( )ˆ; e d ‍, ,i xf x w f w f x x Rω ω
∞ −

−∞
= = ∈∫

          
 (1) 

where 1i = −  and ω  is a parameter. We can recover ( )f x  from ( )f ω  
by the inverse Fourier transform. 

Definition 2: The inverse Fourier transform of the real valued function 
( )f x  is defined by 

( )( ) ( ) ( )1 1ˆ ˆ; e d ,
2π

i xf x f x f w x Rωω ω
∞−

−∞
= = ∈∫

         
 (2) 

which belongs to L2-spaces. 
Some certain axioms on Fourier transform exist in literature. Among such 

axioms are: convolution axiom, Translation axiom, Linearity axiom, Differentia-
tion axiom, Symmetric axiom etc. 

2.2. Some Axioms of Fourier Transform 

• Convolution axiom: This property is considered very crucial as convolution 
of functions is mapped into multiplication in Fourier space. 

Let 2,f g L∈ -space. 
Then their convolution is defined by 

( )( ) ( ) ( ) ( ) ( )d df g x f x y g y y f y g x y y
∞ ∞

−∞ −∞
= − = −∫ ∫

       
 (3) 

The Fourier transform of the convolution of the functions f and g with con-
volution operator   is given by 

( )( ) ( ) ( ) ( ) ( )ˆ ˆ; d e di xf g f x y g y y x f gωω ω ω
∞ −

−∞
= − =  ∫        (4) 

The proof of Equation (4) is given in what follows. 
Proof: 

( )( ) ( ) ( ); d e di xf g f x y g y y xωω
∞ ∞ −

−∞ −∞
 = −  ∫ ∫ 

          
(5) 

( )( ) ( ) ( ); e d di xf g f x y g y y xωω
∞ ∞ −

−∞ −∞
 = −  ∫ ∫ 

          
(6) 

( )( ) ( ) ( ); e d di xf g f x y g y x yωω
∞ ∞ −

−∞ −∞
 = −  ∫ ∫ 

         
 (7) 

https://doi.org/10.4236/ajcm.2019.93011


P. A. Bankole, O. O. Ugbebor 
 

 

DOI: 10.4236/ajcm.2019.93011 146 American Journal of Computational Mathematics 
 

( )( ) ( ) ( ); ‍ e d di xf g g y f x y x yωω
∞ ∞ −

−∞ −∞
 = −  ∫ ∫ 

          
(8) 

To this end, one will have 

( )( ) ( ) ( ) ( ); e e d di yi yf g g y f yω ζωω ζ ζ
∞ ∞ − +−

−∞ −∞
 =   ∫ ∫ 

        
(9) 

( )( ) ( ) ( ) ( ); e e d di y if g g y f yω ωζω ζ ζ
∞ ∞− −

−∞ −∞
 =   ∫ ∫ 

        
(10) 

( )( ) ( ) ( )ˆ; e di yf g f g y yωω ω
∞ −

−∞
= ∫ 

              
(11) 

( )( ) ( ) ( )ˆ ˆ; .f g f gω ω ω= 
                  

(12) 

Similarly, 

( ) ( )( ) ( )( ); ; ;fg f x g xω ω ω=   
              

(13) 

( ) ( ) ( )e e d; di x i xx xfg f x g xω ωω
∞ ∞− −

−∞ −∞
= ∫ ∫ 

           
(14) 

( ) ( ) ( )ˆ ˆ; .fg f gω ω ω=                     (15) 

The notion of Fourier transform is related to characteristic function in the 
following sense. 

Definition 3: Suppose ( )P x  is a probability distribution function with x R∈ . 
Then a characteristic function ( ) , IRφ ω ω∈  is defined as the Fourier transform 
of ( )P x  by 

( )( ) ( ) ( )ˆ; e d ei x i xP x P x ω ωω φ ω ω
∞

−∞
 ≡ ≡ =  ∫ 

          
(16) 

One can recover the probability distribution function ( )P x  by taking the 
inverse Fourier transform of the characteristics function just as the definition of 
inverse Fourier transform presented in Equation (2). 

This is given by 

( ) ( )( ) ( )1 1ˆ ˆ e d
2π

i xP x ωφ ω φ ω ω
∞− −

−∞
= = ∫

             
(17) 

The reader can see the reference ([10]) and other standard texts on Fourier 
transform for more information. 

There are available models for predicting economic recession probabilities 
especially on US recession (See [11]). The application of probability theory is 
found useful in such estimation [12]. Philip et al. [13] gave an intuition in pre-
dicting price dynamics in the presence of economic recession via recurrence re-
lation technique and further presented a simple model showing the future of an 
economy under the exposure of recession if strong strategies and policies were 
not put in place to revive the economy. Fabio, Fornari and Antonio, Mele in 
(2009) [14] showed some connections between Financial Volatility and Eco-
nomic Activity. 

In sequel, we examine uncertainty on options value pose by recession on the 
volatility parameter of an option. 

Assumption: Supposed that there are two sources of volatility variation on 
the assets. These are classified into economic recession induced volatility, recv , 
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and the usual volatility from other sources, *v , all assumed to be stochastic in 
nature. The volatility of the options is then given by 

( )
*

*

, if the economy is in recession;
, if economy is recession free.

recv v
V t

v
 +

= 


         (18) 

where recv  is economy recession induced volatility in the stock market which 
arises due to information flow from the recessed Economy while *v  is the vola-
tility in the market from other sources. The study of parameters uncertainties in 
some financial models has received attention in the past few years. Two of those 
authors are [15] and [16]. Unfortunantely, many authors are yet to consider 
uncertaianties parameters that focus on economic recession in most Financial 
models use especially in derivative pricing. This present research is believed to 
stand out in that regards as it is hoped that more attention of authors will be 
drawn to economic recession and its effects in options pricing. 

3. The Main Result 

1) The Fast Fourier Transform (FFT) algorithm goes thus. 
2) First get the characteristic function of the distribution. 2. Derive an analytic 

expression for the Fourier Transform of the modified options price wrt the cha-
racteristic function. 

3) Find the Fourier inversion of the pricing function. 
4) Perform Discrete Fourier transform in both step 2 and 3 above and apply 

Trapezoidal rule. 
5) Choose uniform grid size for the computation of the FFT in step 4. 
6) Make choices on the values assumed by other parameters such as N, the 

decay rate (α ), etc. for optimality purpose. 

3.1. Fast Fourier Transform of Multi-Assets in Finite Dimension 

Consider an n-factor underlying asset , 1, 2, ,jS j n=  . The payoff function 
( ),H S K  of the options at maturity time on the given underlying multi-assets is 

defined as 

( ) ( )( )
1

, .
n

j j
j

H S K c S K
+

=

= −∏                   (19) 

( ) ( ) ( ) ( ) ( )( )1 1 2 2 3 3, n nH S K c S K c S K c S K c S K+ ++ += − ⋅ − ⋅ − −    (20) 

where the jS  and jK  are respectively asset and strike prices. 
The 

( ) ( )( )  max ,0 , for each 1,2, ,j j j jS K S K j n
+

− = − =   

The parameter c is a control switch between call or put options. If c as defined 
in the Equations (19) and (20) is −1, then one has put option and if 1c = + , one 
has call option. 

Let , | 1, 2, ,j jk s j n=   be logarithm of the strikes jK  and assets jS  prices 
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respectively. Then, the option values computation in n-dimension is given by 

( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )( )
1 2

1 1 2 2

, , ,

e

T n

rT
n n

V k k k

E S T K T S T K T S T K T
+ + +−= − ⋅ − −







  

(21) 

where   is taken to be risk neutral measure while Tq  is the joint density 
function of each ( ) , 1, 2, ,js T j n=  . 

The integral representation of Equation (21) is given as 

( )

( )( ) ( )
( )

1 1 2 2

1 2

1 2

1 2 2 1

, , ,

e e e e e e e

, , , d d d

n n

n

T n

s ks k s krT
k k k

T n n

V k k k

q s s s s s s

∞ ∞ ∞ −= − − −

×

∫ ∫ ∫



 

            

(22) 

We gave the characteristic function corresponding to the joint density as 

( ) ( )( )1 2, , , e j jiu s T
nu u u Eϕ ∑=



                
(23) 

( ) ( )1 1 2 2
1 2 1 2 2 1, , , e , , , d d d .n niu s iu s iu s

n T n nu u u q s s s s s sϕ
∞ + + +

−∞
= ∫ 

  

    
(24) 

In order to ensure the square integrability of the right hand side of the Equa-
tion (22), we take its product and a decaying term α  over jk . 

This we expressed as 

( ) ( )1 1 2 2
1 2 1 2 1 2, , e , , , , , , , 0.n nk k k

T n T n nc k k k V k k kα α α α α α+ + += × >

     (25) 

For the call option, the Fourier transform of the modified option prices is 
given by 

( )
( ) ( )1 1 2 2

1 2

1 2 2 1

, , ,

e , , , d d dn n

T n

i u k u k u k
T n n

u u u

c k k k k k k

ψ
∞ ∞ ∞ + + +

−∞ −∞ −∞
= ∫ ∫ ∫ 



  

      

(26) 

( )
( ) ( ) ( )

( ) ( ) ( )
( )

1 1 1 2 2 2

1 1 2 2

2 1

1 2

1 2 2 1 2 1

, , ,
e‍

e e e e e e e

, , , d d d d d d

n n n
n

n n

n

T n
iu k iu k iu k

R
s ks k s krT

k k k

T n n n

u u u

q s s s k k k s s s

α α α

ψ
+ + + + + +

+∞ +∞ +∞ −

=

× − − −

×

∫
∫ ∫
∫
∫







  





        

(27) 

This is further simplified as follows 

( )
( )

( )( ) ( )( )
( ) ( ) ( )

2 1
1 1 2 2

1 1 1 2 2 2

1 2

1 2

2 1 2 1

, , ,

e , , ,

e e e e e e e

e d d d dd d

n

n
n n

n n n

T n

rT
T nR

s s s s ks k s krT

iu k iu k iu k
n n

u u u

q s s s

k k k s s sα α α

ψ
−

−

∞ ∞ ∞

+ + + + + +

=

× − − −

×

∫

∫ ∫ ∫

∫







 

 



       

(28) 

which reduces to 

( )
( )

( ) ( ) ( )( )
( )( )( )( ) ( )( )

1 1 1 2 2 2

1 2

1 2

1 1 1

2 1
1 1 1 1 2 2 2 2

, , ,

e , , ,

e
d d d

1 1 1

n

n n n

T n

rT
T nR

iu s iu s iu s

n
n n n n

u u u

q s s s

s s s
iu iu iu iu iu iu

α α α

ψ

α α α α α α

−

+ + + + + + + + +

=

 
 × + + + + + + + + + 
 

∫∫











(29) 
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For a known characteristic function or a calculated affine characteristic func-
tion Tϕ  of a given process, it is possible to derive an analytic close form for-
mula for ( )1 2, , ,T nu u uΨ   which is the Fourier transform of the multi-assets. 

Applying definition (2), we expressed the Fourier transform of (21) through 
(28)-(29) as 

( )
( )

( )
( ) ( )

1 1 2 2
1 1 2 2

1 2

1 2 2 1

-tuple

, , ,

e e , , , d d d .
2π

n n
n n

T n

k k k
i u k u k u k

T n kn

n

V k k k

u u u u u u
α α α

ψ
− + + +

∞ ∞ − + + +

−∞ −∞
= ∫ ∫







  



 (30) 

Rewriting the integrals in series form using trapezoidal rule, equation (30) is 
transformed to 

( )
( )

( )
( ) ( )

( )

1 1 2 2 1 2
1, 1 2, 21 2

1 2
1 2

1 2

1 2

1, 2, ,
1 1 1 1

-tupl

, , ,

, , ,

e e , , ,
2π

n n n
m m

n
n

n

T n

k k k NN N ni u k u k
T m m n m jn

m m m j

n e

k k k

V k k k

u u u h
α α α

ψ
− + + +

− +

= = = =

Ω

= ∑ ∑ ∑ ∏






 





‍ ‍ ‍

 

(31) 

where 

1 2
1
‍

n

j n
j

h h h h
=

=∏ 
, while , 1, 2, ,jh j n=   denote integration steps here 

For a single asset, Fast Fourier Transform (FFT) equation is defined in the 
form of 

( )
( )( )2π1 1 1

1
e , 1 .

N i j k
N

j
j

H k y k N
− − − −

=

= ≤ ≤∑               (32) 

Therefore, in the light of Equation (32), we gave an n-dimension version of 
, 1, 2, ,jy j n=  , such that in an effort to capture the imaginary part of the com-

plex form of jy , which is inclusive in Fourier transform, we have 

1 1 1 1 1 2 2
1 2

1 2

2π 2π 2π1 1 1

1 1 1
| 1, 2, , : e , 1, 2, ,

n n
n

n

N N N i j m j m j m
N N N

j j
m m m

j n y j nξ
 − − − − + + +  
 

= = =

= = =∑ ∑ ∑


  

 
(33) 

where 1 1 2 21, 2, , 1; 1,2, , 1m N m N= − = −   respectively. 
The integration steps , 1, 2, ,jh j n=  , in (31) is uniformly chosen such that 

1 2 ,1, 2,
1 2

1 2

, , ,

2 2 2

nn mm m
n

n

uu u
h h h

N N Nm m m
= = =
     − − −     
     


 

Considering a uniform grid size of N N×  array and set. 
The size of the uniform spacing ζ  between the N values of vector k with re-

spect to the integration steps , 1, 2, ,jh j n=   and Equation (33) has the fol-
lowing relation 

1 1 2 2
2π

n nh h h
N

ζ ζ ζ= = = =

                  
(34) 

The options prices TV  over log strikes from Equation (31) is now given as 
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( )
( )

( )
( )

1 2

1 1, 2 2, ,1 2

1 2

1, 2, ,

1, 2, ,
1

1 2

, ,

e , , , ,
2π

for 0 , , , 1.

,
n

p p n n pn

n

T p p n p

k k k n

p p n p jn
j

n

V k k k

k k k h

p p p N

α α α− + + +

=

≈ Ω

≤ ≤ −

∏








        

(35) 

where 

( )

( )

1 2

1 1 1 1 1 2 2

1 2

1, 2, ,

2π1 1 1
2 2 2 2 2 2

1 2
1 1 1

, , ,

e , , ,

n

n n

n

p p n p

N N N N N NN N N m p m p m p
N

T n
m m m

k k k

u u uψ
         − − − − − − + − − + + − −         
         

= = =

Ω

= ∑ ∑ ∑




 

 

Remarks: 
1) The Equation (35) above is fast Fourier transform formula which can be adopted 

to calculate the value of European call option prices on finite 𝑛𝑛-dimensional underly-
ing multi-assets. 

2) The corresponding European put option value can be obtained if we set the 
control parameter 1c = −  in the Equations (19)-(20) such that the sign attached 
to the log strikes and log assets changes in Equation (21) follow the same proce-
dure through to arrive at (35). Alternatively, the put values can be obtained via 
put-call parity. 

3.2. Fast Fourier Transform of Multi-Assets  
in an Infinite Dimension 

Following similar algorithm presented in finite dimensional case, the above 
formulation can be extended to an infinite dimension as follows. 

The payoff function ( ),H S K  of the options at maturity time on the given 
underlying multi-assets in an infinite dimension is given as 

( ) ( )( )
1

, j j
j

H S K c S K
∞

=

= −∏
                  

(36) 

( )
( ) ( ) ( ) ( ) ( )( )1 1 2 2 3 3 1 1

,

n n n n

H S K

c S K c S K c S K c S K c S K+ + ++ +
+ += − ⋅ − ⋅ − −⋅− 

(37) 

where the jS  and jK  are respectively asset and strike prices. The parameter c 
is a control in switching between call or put options as discussed earlier. 

Let , | 1, 2, , , 1,j jk s j n n= +   be logarithm of the strikes jK  and assets 

jS  prices respectively. Then, the option values computation in infinite-dimension 
is given by 

( )

( ) ( ) ( ) ( )( )
1 2 1

1 1 2 2 1 1

, , , ,

e
T T T T T T T T

T n

rT
n n n n

V k k k

E S K S K S K S K

+

+ + + +−
+ += − ⋅ − − ⋅ − 

 


(38) 

where   still remain as risk neutral measure and Tq  is the joint density func-
tion for each 

( ) , 1, 2, , , 1,js T j n n= +   
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The characteristic function corresponding to the joint density is given as 

( ) ( )( )‍
1 2 1, , , , e j jiu s T

nu u u Eϕ +
∑= 

  

( )
( )1 1 2 2 1 1

1 2 1

1 2 1 1 2 1

, , , ,

e , , , , d d d .n n

n

iu s iu s iu s
T n n

u u u

q s s s s s s

ϕ

+ +

+

∞ + + + +
+ +−∞

= ∫  

 

  

 

The Fourier transform of the modified call option prices is given by 

( )
( ) ( )1 1 2 2 1 1

1 2 1

1 2 1 1 2 1

, , , ,

e , , , , d d dn n

n

i u k u k u k
T n n

u u u

c k k k k k k

ϕ

+ +

+

∞ ∞ ∞ + + +
+ +−∞

+

−∞ −∞
= ∫ ∫ ∫  

 

   

  

(39) 

( )
( ) ( ) ( )

( ) ( ) ( )( )
( )

1 1 1 2 2 2 1 1 1

1 11 1 2 2

1 2 1

1 2 1

 

1 2 1 1 2 1 1 2 1

, , , ,

e

e e e e e e e

, , , d d d d d d,

n n n
n

n n

n

T n

iu k iu k iu k

IR

s ks k s krT
k k k

T n n n

u u u

q s s s k k k s s s

α α α

ψ
+ + +

+ +

+

+

+ + + + + + +

+∞ +∞ +∞ −

+ + +

=

× − − −

×

∫

∫ ∫

∫

∫

 

 

 

 







      

(40) 

Further simplification yields 

( )
( )

( )( ) ( )( )
( ) ( ) ( )

2 1
1 11 1 2 2

1 1 1 2 2 2 1 1 1

1 2 1

1 2 1

 
1 2 1 1 2 1

, , , ,

e , , ,

e e e e e e e

e d d d d d d

,

n n

n n n

T n

rT
T n

s s s ks k s krT

iu k iu k iu k
n n

u u u

q s s s

k k k s s sα α α

ψ

+ +

+ + +

+

−
+

−

∞ ∞

+ + + + + + +
+ +

=

× − − −

×

∫ ∫

∫ ∫
 

 



 

 

 

    

(41) 

which reduces to 

( )
( )

( ) ( ) ( )( )
( )( )( )( ) ( )( )

1 1 1 2 2 2 1 1 1

1 2 1

1 2 1

1 1 1

1 2 1
1 1 1 1 2 2 2 2 1 1 1 1

, , , ,

e , , ,

e
d d d

1 1

,

1

n n n

T n

rT
T nR

iu s iu s iu s

n
n n n n

u u u

q s s s

s s s
iu iu iu iu iu iu

α α α

ψ

α α α α α α

∞

+ + +

+

−
+

+ + + + + + + + + +

+
+ + + +

=

 
 × + + + + + + + + + 
 

∫∫
 

 



 

 

 

 

(42) 

Expressing the integrals in discrete Fourier transform and using trapezoidal 
rule, we have 

( )
( )

( )
( ) ( )

1 1 2 2 1 1

1 2
1, 1 2, 21 2

1 2 1
1 2

1 2 1

1, 2, 1,
1 1 1

e, , , ,
2π

e , , ,

n n

m m

n

k k k

T n n

N N N
i u k u k

T m m n m j
m m m j

V k k k

u u u h

α α α

ν

ψ

+ +

∞

+
∞

− + + +

+ +

∞−

=

+

+ +
+

= =

=

× ∑ ∑ ∑ ∏





 

  

   

(43) 

where 

1 2 1
1

j n
j

h h h h
∞

+
=

=∏  
, while jh , 1,2, , 1,j n= +   denote integration steps 

here and ν  is a very large integer. 
The options prices TV  over log strikes logk K=  are finally given as 

( )
( )

( )
( )

1 2 1

1 1, 2 2, 1 1,1 2 1

1 2

1, 2, 1,

1, 2, ,
1

, ,

e ,
2

,

, ,
π

n

p p n n pn

n

T p p n p

k k k

p p n p jn
j

V k k k

k k k h
α α α

ν

+

+ + +

+

− + + + + ∞

+
=

≈ Ω ∏
 

 



      

(44) 

https://doi.org/10.4236/ajcm.2019.93011


P. A. Bankole, O. O. Ugbebor 
 

 

DOI: 10.4236/ajcm.2019.93011 152 American Journal of Computational Mathematics 
 

where 1 2 10 , , , , 1np p p N+≤ ≤ −   and 

( )

( )

1 2 1

1 1 1 1 1 2 2 1 1

1 2 1

1, 2, 1,

2π1 1 1
2 2 2 2 2 2

1 1 1

1 2 1

, , , ,

e

, , ,

n

n n

n

p p n p

N N N N N NN N N m p m p m p
N

m m m

T n

k k k

u u uψ

+

+ +

+

+

         − − − − − − + − − + + − −         
         

= = =

+

Ω

=

×

∑ ∑ ∑


 

 

 

 

We acknowledge Carr & Madan (1999) [6] for providing a fast Fourier 
Transform framework on single underlying asset which we extended to mul-
ti-assets in both finite dimension and infinite dimension in this paper. 

4. Application on Three Assets in 3-Dimensional Case 

Let | 1, 2,3jS j =  be three underlying assets and strike prices  | 1, 2,3jK j =  
respectively. The payoff function is defined in the light of Equation (20) as  

( ) ( ) ( ) ( )( )1 1 2 2 3 3,H S K c S K c S K c S K ++ += − ⋅ − ⋅ − , 1c = +  for call option. (45) 

where the jS  and jK  are respectively asset and strike prices. 
The option values computation in 3-dimension is given by 

( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )( )
1 2 3

1 1 2 2 3 3

, ,

e

T

rT

V k k k

E S T K T S T K T S T K T
+ + +−= − ⋅ − ⋅ −

  

(46) 

where   is a risk neutral measure and Tq  is the joint density function of each 
( ) , 1, 2,3js T j = . 
The integral representation of Equation (46) is given as 

( )

( )( )( ) ( )3 31 1 2 2

1 2 3

1 2 3

1 2 3 3 2 1

, ,

e e e e e e e , , d d d .

T

s ks k s krT
Tk k k

V k k k

q s s s s s s
∞ ∞ ∞ −= − − −∫ ∫ ∫

   (47) 

The characteristic function corresponding to the joint density is given by 

( ) ( )( )‍
1 2 3, , e , 1, 2,3.j jiu s Tu u u E jϕ ∑= =              (48) 

( ) ( )1 1 2 2 3 3
1 2 3 1 2 3 3 2 1, , e , , d d d .iu s iu s iu s

Tu u u q s s s s s sϕ
∞ + +

−∞
= ∫         

(49) 

Multiplying the right side of Equation (47) and decaying term say α  over 

1 2 3, ,k k k  so as to have square integrable of the right side of (47). 
We expressed the result as 

( ) ( )1 1 2 2 3 3
1 2 3 1 2 3 1 2 3, , e , , , , , 0.k k k

T Tc k k k V k k kα α α α α α+ += × >       (50) 

For the call option, the Fourier transform of the modified option prices is 
given by 

( ) ( ) ( )1 1 2 2 3 3
1 2 3 1 2 3 3 2 1, , e , , d d di u k u k u k

T Tu u u c k k k k k kψ
∞ ∞ ∞ + +

−∞ −∞ −∞
= ∫ ∫ ∫      

(51) 

( ) ( ) ( ) ( )

( ) ( )( )
( )

1 1 1 2 2 2 3 3 3
3

3 31 1 2 2

3 2 1

1 2 3

1 2 3 3 2 1 3 2 1

, , e

e e e e e e e

, , d d d d d d

iu k iu k iu k
T IR

s ks k s krT
k k k

T

u u u

q s s s k k k s s s

α α αψ + + + + +

+∞ +∞ +∞ −

=

× − − −

×

∫

∫ ∫ ∫

    

(52) 
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Further simplification yields 

( ) ( )

( )( )( )( )
( ) ( ) ( )

3

3 2 1
3 31 1 2 2

1 1 1 2 2 2 3 3 3

1 2 3 1 2 3

3 2 1 3 2 1

, , e , ,

e e e e e e e

e d d d d d d

rT
T TIR

s s s s ks k s krT

iu k iu k iu k

u u u q s s s

k k k s s sα α α

ψ −

−

∞ ∞ ∞

+ + + + +

=

× − − −

×

∫

∫ ∫ ∫     (53) 

which reduces to 

( ) ( )
( ) ( ) ( )( )

( )( )( )( )( )( )

3

1 1 1 2 2 2 3 3 3

1 2 3 1 2 3

1 1 1

3 2 1
1 1 1 1 2 2 2 2 3 3 3 3

, , e , ,

e
d d d

1 1 1

rT
T TIR

iu s iu s iu s

u u u q s s s

s s s
iu iu iu iu iu iu

α α α

ψ

α α α α α α

−

+ + + + + + + +

=

 
 ×
 + + + + + + + + +
  

∫
(54) 

Consider a known characteristic function Tϕ  for the distributions, an ana-
lytical close form formula for ( )1 2 3, ,T u u uΨ  which is the Fourier transform of 
the 3-dimensional multi-assets is given by 

( )
( )

( )
( ) ( )

1 1 2 2 3 3
1 1 2 2 3 3

1 2 3

1 2 3 3 2 13

, ,

e e , , d d d .
2π

T

k k k
i u k u k u k

T

V k k k

u u u u u u
α α α

ψ
− + +

∞ ∞ ∞ − + +

−∞ −∞ −∞
= ∫ ∫ ∫

   (55) 

Rewriting the integrals in series form using trapezoidal rule, equation (55) is 
transformed to 

( )
( )

( )
( ) ( )

( )

1 1 2 2 3 3 31 2
1, 1 2, 21 2

1 2 3
1 2 3

1 2 3

1 2 3

1, 2, 3, 3 2 13
1 1 1

, ,

, ,

e e , ,
2π

m m

T

k k k NN N
i u k u k

T m m m
m m m

k k k

V k k k

u u u h h h
α α α

ψ
− + +

− +

= = =

Ω

= ∑ ∑ ∑


  (56) 

where 1 2 3h h h , is the product of the integration steps. 
The general form of Fast Fourier Transform (FFT) equation for a single asset 

has been given in the form 

( )
( )( )2π1 1 1

1
e , 1 .

N i j k
N

j
j

H k y k N
− − − −

=

= ≤ ≤∑                (57) 

Whence, 3-dimensional version of , 1, 2,3jy j = , in (57) so as to capture the 
imaginary part of the complex form of jy , we have 

1 1 1 1 1 2 2 3 3
1 2 3

1 2 3

2π 2π 2π1 1 1

1 1 1
| 1, 2,3 : e , 1, 2,3.

N N N i j m j m j m
N N N

j j
m m m

j y jξ
 − − − − + +  
 

= = =

= = =∑ ∑ ∑     (58) 

where 1 1 2 2 3 21, 2, , 1; 1,2, , 1; 1,2, , 1m N m N m N= − = − = −   , respectively. 
The integration steps , 1, 2,3jh j = , in (56) is uniformly chosen such that 

31 2 3,1, 2,
1 2 3

1 2 3

, ,

2 2 2

mm m uu u
h h h

N N Nm m m
= = =
     − − −     
     

 

Considering a uniform grid size of N N×  array and set. 
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The size of the uniform spacing ζ  between the N values of vector k with re-
spect to the integration steps , 1, 2,3jh j =  and Equation (58) has the following 
relation 

1 1 2 2 3 3
2πh h h
N

ζ ζ ζ== =                     (59) 

The options prices TV  over log strikes from Equation (56) is given by 

( )
( )

( )
( )

1 2 3

1 1, 2 2, 3 3,1 2 3

1 2 3

1, 2, 3,

1, 2, 3, 1 2 33

1 2 3

, ,

e , ,
2π

for 0 , , 1.

,
p p p

T p p p

k k k

p p p

V k k k

k k k h h h

p p p N

α α α− + +

≈ Ω

≤ ≤ −

          (60) 

where 

( )

( )

1 2 3

1 1 1 1 1 2 2 3 3

1 2 3

1, 2, 3,

2π1 1 1
2 2 2 2 2 2

1 2 3
1 1 1

, ,

e , ,

p p p

N N N N N NN N N m p m p m p
N

T
m m m

k k k

u u uψ
         − − − − − − + − − + − −         
         

= = =

Ω

= ∑ ∑ ∑
 

5. Numerical Results in 3-Dimensional Assets Case 
5.1. Parameters Specification 

Consider call option in European sense on an underlying vector of assets and 
Strikes prices given as 

1

2

3

100;
: 105;

110.

S
S S

S

=
= =
 =

                       (61) 

1

2

3

80;
: 85;

90.

K
K K

K

=
= =
 =

                       (62) 

respectively. 
Taking interest rate 0.04r = , dividend rate 0.015d =  and exercising time 
{ }0.5,1T =  for all the assets. The fast Fourier Transform algorithm was used to 

generate the results in the table below. Setting fineness of integration grid 
122N =  and maintain the same integrability parameter { }1 2 3: 0.25α α α α= = = = . 

For illustration purpose, we assumed the volatilities are stochastic and randn() 
function was used to generate 3 array of numbers between 1 and 3 for volatilities 
from the two sources explained by (18) in each case. The following results in the 
Tables were obtained. 

5.2. Tables of Results 

Using the same data for the parameters in Table 1 except that dividend parame-
ter is set to zero. We obtain Table 2. 

https://doi.org/10.4236/ajcm.2019.93011


P. A. Bankole, O. O. Ugbebor 
 

 

DOI: 10.4236/ajcm.2019.93011 155 American Journal of Computational Mathematics 
 

Table 1. Numerical value for a dividend paying multi-assets call options in 3-dimensions with two sources of volatility. 

3-underlying 
Assets Prices (S) 

Strike prices 
(K) 

Volatility 

{ }* , recσ σ  
Exercising 

Time (year) 
European call Options  

Prices (FFT) 
European call Options 

Prices (BSM) 
Output 
Metrics 

1 100S =  80 0.93001, 0.074916 0.5 36.5090918034085 36.36246996 0.1466 

2 105S =  85 −1.85574, −0.098738 0.5 58.4844133882581 58.84131851 −0.3569 

3 110S =  90 0.89337, 1.139327 0.5 62.3503964521184 63.03609669 −0.6857 

1 100S =  80 0.31079, −0.052239 1 23.8042830392887 23.66008671 0.14419 

2 105S =  85 −1.38470, 1.571944 1 22.5677094491566 22.61602268 −0.0483 

3 110S =  90 0.71091, −0.912938 1 22.9463648747717 23.18429634 −0.2379 

 
Table 2. Numerical value for a non-dividend paying multi-assets call options in 3-dimensions with two sources of volatility. 

3-underlying 
Assets Prices (S) 

Strike prices 
(K) 

Volatility 

{ }* , recσ σ  
Exercising 

Time (year) 
European call Options  

Prices (FFT) 
European call Options 

Prices ( BSM) 
Output 
metrics 

1 100S =  80 0.93001, 0.074916 0.5 37.0739574519076 36.92704398 0.1469 

2 105S =  85 −1.85574, −0.098738 0.5 59.1066925306292 59.47219301 −0.3655 

3 110S =  90 0.93001, 0.074916 0.5 55.6155902567383 55.89405735 −0.2784 

1 100S =  80 0.31079, −0.052239 1 25.0974529765726 24.95267554 0.1448 

2 105S =  85 −1.38470, 1.571944 1 24.0013372611456 24.05195616 −0.0506 

3 110S =  90 0.71091, −0.912938 1 24.4073616767388 24.65044343 −0.2431 

6. Conclusion 

Fast Fourier Transform algorithm for valuation of multi-assets in both finite and 
infinite dimension was presented in this research work. The notion of economic 
recession induced volatility uncertainty was introduced in our formulation. An 
intuition behind the introduction of recession induced volatility uncertainty is 
revealed by huge volatility variation during the period of Economic recession 
compared to the period of normalcy (recession-free). Nigeria economic reces-
sion outbreak in 2016 and its effects on the payoffs uncertainty of Nigeria Stocks 
Exchange (NSE) among other invetments were among the motivating factors for 
proposing economic recession induced volatility formulation in Options pricing. 
This work generalizes the Fast Fourier transform algorithm of Carr & Madan 
(2009) [6] in the valuation of European call options on a single underlying asset. 
The algorithm is extended further to include some other steps, then applied to 
value multi-assets European options in finite and infinite dimensions. Numerical 
experiment was presented taking Black Scholes model as a bench mark. It is be-
lieved that this research work will enhance better understanding of Fast Fourier 
Transform valuation of multi-assets options in multi-dimensions. We gave the 
Options output metrics between the two methods. The result obtained is still 
comparable with little errors hinged on parameters uncertainties. 
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