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Abstract 
The complex variable functions are used and analyzed for the solving the 
mechanic problem of composite plates. The stress boundary condition for 
composite material wedge is considered. By constructing new stress function, 
the mechanic analysis of the composite material wedge subjected to a con-
centrated moment is conducted. The stress boundary problem is studied and 
the basic governing equation is solved by using the complex function method. 
The formulae of the stress fields are derived for the wedge loaded with a con-
centrated moment.  
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1. Introduction 

The elasticity analysis of the plane stress problem is of great importance to the 
usual engineering application. The stress distribution depends on the forces act-
ing on the complete closed boundary. The complex variable theory provides a 
very powerful tool for the solution of many boundary value problems in the 
elastic body [1]. Such theory was originally found by some researchers for solv-
ing general boundary problems in isotropic materials. Furthermore, the complex 
variable technique has also been expanded to use for anisotropic materials [2] 
[3]. Complex variable methods prove to be very useful for the solution of many 
elastic solid loading problems. Fiber-reinforced polymer matrix materials are the 
most typical composites, which are also as anisotropic materials at the macros-
copic level [4] [5]. The orthotropic plate may have been the base of composites 
in common engineering use. Typical examples include concentrated force and 
moment systems applied to the boundary of the plate. The feasible method to 
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solve stress-field problems in anisotropic composites is to use the analytic func-
tion theory, and the results have been reported [6] [7]. The purpose of this paper 
is to focus attention on the general solution of the boundary-value problem for 
the orthotropic materials and to illustrate the method with examples. 

2. Typical Plane Problem and Basic Equations 

Let us now consider a composite wedge subjected to a concentrated moment M 
at its end as shown in Figure 1. The moment M is in the x-y plane and the 
thickness of the wedge in the direction perpendicular to the x-y plane is taken as 
unity, so that M is the moment per unit thickness. The load distribution along 
the thickness of the plate is uniform. The conditions along the boundary faces of 
the wedge are free (θ α= ± ) and can be satisfied by taking the values to be zero 
for the stress components, θσ , rθτ . Thus, the boundary conditions are given 
by: 

0, 0rθ θσ τ= =  (for θ α= ± )                 (1) 

The plane stress problems of composite materials are common and very im-
portance for the application. It is the key point to solve stress-field problems in 
orthotropic materials. Suppose the principal elastic directions of the plate coin-
cide with the coordinate directions (x, y), and let the directions 1, 2 parallel to 
the axes x, y, respectively.  

In the case of plane stress state, the equilibrium equations are as (nobody 
forces):  

0, 0xy xy yx

x y x y
τ τ σσ ∂ ∂ ∂∂

+ = + =
∂ ∂ ∂ ∂

               (2) 

Usually, the method of solving the equations is by introducing a typical func-
tion U of x and y, called the stress function. Through taking any real function U, 
it is easily checked that the equilibrium equations are satisfied by putting the 
following expressions for the stress components 

2 2 2

2 2, ,x y xy
U U U

x yy x
σ σ τ∂ ∂ ∂

= = = −
∂ ∂∂ ∂

             (3) 

By means of original stress and strain relations for orthotropic materials, the 
governing equation of the compatibility condition can be expressed by the stress 
function U(x, y), which is 
 

 
Figure 1. The wedge and boundary condition. 

https://doi.org/10.4236/msce.2019.78009


G. Wang et al. 
 

 

DOI: 10.4236/msce.2019.78009 79 Journal of Materials Science and Chemical Engineering 
 

4 4 4
1 1

124 2 2 4
12 2

2( ) 0
2
E EU U U
G Ey x y x

ν∂ ∂ ∂
+ − + =

∂ ∂ ∂ ∂
                (4) 

Thus, the solution of a plane problem can be reduce to finding a solution of 
Equation (4) that must also satisfy the boundary conditions.  

3. Complex Variable and Stress Function 

In order to solve the boundary loading problem about an orthotropic plate, the 
complex function shall be introduced for the convenience of stress investigation. 

3.1. Complex Variable and Coordinates 

In the solution of the partial differential Equation (4) and also in the construc-
tion of suitable stress functions, it is very advantageous to use complex variables. 
Generally, Two real numbers x and y form the complex number, z x iy= + , 
(with 2 1i = − ). And the conjugate complex number z x iy= −  must be used 
together. For the convenience of general investigation, now another complex va-
riable ( w ) and its conjugate ( w ) are also be introduced and defined by 

w x ihy X iY= + = + , w x ihy X iY= − = −              (5) 

And so that, X x= , Y hy= , where h is a real arbitrary constant. And we 
suppose the constant h to be positive ( 0h > ), also it can be called tensile or 
compressive ratio for the coordinate system. The partial derivative relation must 
be given by  

1 11, ,w w w w w w w wi i
X x X x Y h y Y h y
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= = = = = = = = −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

       (6) 

For the plane problem, rectangular and polar coordinates are shown in Figure 
2. In terms of the polar coordinates (in oxy-plane and OXY-plane), the complex 
variables can be written as: 

cos sin cos sinw r ihr R iRθ θ= + = Θ+ Θ               (7) 

Thus, there are following relations: 

cosx r θ= , siny r θ= , 2 2 2zz x y r= + =  

cos cosR r θΘ = , sin sinR hr θΘ = , tan tanh θΘ =  

tan tanhβ α= , 2w w x+ = , 2w w ihy− =  

2 2 2 2 2 2 2 2 2 2 2 2cos sin (cos sin )ww x h y r h r R Rθ θ= + = + = Θ+ Θ =  

 

 
Figure 2. Scheme of the coordinates in the wedge plane. 
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When 1h = , then , R rθΘ = = . The w-plane is also reduced to z-plane.  
On the basis of above definition, the stress function U can be expressed by the 

complex variables. The partial derivation of U with x or y can be transformed 
into other expressions with w  ( w ), namely  

U U w U w U U
x w x w x w w

∂ ∂ ∂ ∂ ∂ ∂ ∂
= + = +

∂ ∂ ∂ ∂ ∂ ∂ ∂
 

( )U U w U w U Uih
y w y w y w w

∂ ∂ ∂ ∂ ∂ ∂ ∂
= + = −

∂ ∂ ∂ ∂ ∂ ∂ ∂
 

Then we obtain  
2 2 2 2

2 2 2

2 2 2 2
2

2 2 2

2 2 2

2 2

2

( 2 )

( )

U U U U
w wx w w

U U U Uh
w wy w w

U U Uih
x y w w

∂ ∂ ∂ ∂
= + +

∂ ∂∂ ∂ ∂
∂ ∂ ∂ ∂ = − − +

∂ ∂∂ ∂ ∂
 ∂ ∂ ∂ = −
∂ ∂ ∂ ∂

                (8) 

By substituting above equations into the governing Equation (4), we obtain 
the partial derivative equation with complex variables in the following way  

4 4 2 2 2
4 2 4

4 4 2 2

4
4 2

2 2

( 2 )( ) 4( )( )

2(3 2 3 ) 0

U U Uh Bh C C h
w ww w w w

Uh Bh C
w w

∂ ∂ ∂ ∂ ∂
− + + + − +

∂ ∂∂ ∂ ∂ ∂
∂

+ + + =
∂ ∂

        (9) 

where, 1
12

122
EB
G

ν= − , 1

2

EC
E

= . Next, we shall solve this equation. We may di-

vide it into the following two cases.  

Case I: 
2

0U
w w
∂

≠
∂ ∂

, 
4

2 2 0U
w w
∂

=
∂ ∂

. 

In this case, the coefficient parts of other terms in Equation (9) must become 
zero. Thus, two characteristic equations are given as follows 

4 2 42 0, 0h Bh C C h− + = − =  

Obviously, the solution ought to be that 4h C= , 2h B= . Hence it leads to 

1 1412
12 22

E Eh
G E

ν= − =                     (10) 

Case II: 
2

0U
w w
∂

=
∂ ∂

. 

In this case, the coefficient part of the first terms in Equation (9) must become 
zero. Thus, the characteristic equation is given as 

4 22 0h Bh C− + =  

Obviously, the solution may be as  

2 2h B B C= ± −  (for 2B C> ) 

Let 1 2 0h h> > . Then we have  
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2 2
1 2,h B B C h B B C= + − = − −  

So that 

21 1 1
1 12 12

12 12 2

21 1 1
2 12 12

12 12 2

( )
2 2

( )
2 2

E E Eh
G G E

E E Eh
G G E

ν ν

ν ν


 = − + − −




= − − − −


             (11) 

In view of this, there are two complex variables 1 2( , )w w . 

1 1 1(cos sin )w x ih y r ihθ θ= + = + , 2 2 2(cos sin )w x ih y r ihθ θ= + = +  

Up to now, we complete the construction of the stress function U with com-
plex variables. In the following, we shall give an example to show the applica-
tion. 

3.2. Stress Expression by Complex Function 

The complex function ln w  shall be considered firstly to use for solving the 
boundary loading problem as shown in Figure 1. In terms of the boundary con-
dition and experimental knowledge, the real stress function U can be determined 
by different forms. 

For Case I, we may take the stress function U as 

1 2(ln ln ) ( )w wU A i w w A i
w w

= − + −                   (12) 

Thus the first order partial derivatives can be easily obtained as follows 

1 2 2 2

1 1 1 1( ) ( )U w wA i A i
x w w w w w w

∂
= − + − + −

∂
 

1 2 2 2

1 1 1 1( ) ( )U w whA hA
y w w w w w w

∂
= − + + + + +

∂
 

The second order partial derivatives are  
2

1 22 2 2 2 2 3 3

2
2 2

1 22 2 2 2 2 3 3

2

1 22 2 3 3

1 1 1 1( ) 2 ( )

1 1 1 1( ) 2 ( )

1 1( ) 2 ( )

U w wA i A i
x w w w w w w
U w wih A ih A
y w w w w w w
U w whA hA

x y w w w w

∂
= − + − + −

∂
∂ = − + − + −
∂

 ∂ = + − +
∂ ∂

        (13) 

On the basis of above equations, the stresses can be expressed as: 
2 2 2 2

3
1 22 2 2

2 2 2 2

1 22 2 2

2 4 2 2 2 4 4
2 2 2

1 22 2

34 ( 2 )

4 3( 2 )

2 6[ ( ) 2 ( )]

x

y

xy

U xy x h yh A A
wwy w w

U hxy x h yA A
wwx w w

U h x h x y h yA x h y A
x y www w

σ

σ

τ

 ∂ −
= = − ∂

 ∂ − = = − +
∂

 ∂ − +
= − = − − +

∂ ∂

  (14) 
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In order to solve the stress boundary problem of the wedge, we can consider to 
taking the relations between stresses in the two coordinate systems. It is common 
knowledge that the transformation of stresses can be expressed by the following 
relations: 

2 2

2 2

2 2

cos sin 2 sin cos

sin cos 2 sin cos

( )sin cos (cos sin )

r x y xy

x y xy

r y x xy

θ

θ

σ σ θ σ θ τ θ θ

σ σ θ σ θ τ θ θ

τ σ σ θ θ τ θ θ

 = + +
 = + −


= − + −

           (15) 

Substituting the stresses of the expression (14) into the above equations, and 
using two coordinate relations, cosx r θ= , siny r θ=  to simplify them, then 
the stress components , ,r rθ θσ σ τ  in the polar coordinate system can be ob-
tained by 

2 4
2 2 4 21 2

2 2 3 3

2 2

1 2 2 2

2 4
( 1)sin 2 [1 3 ( 1)sin ]sin 2

2 1 tan0, ( 2 )
1 tan

r

r

A hr A hrh h h
w w w w

h hA A
ww hθ θ

σ θ θ θ

θσ τ
θ

= − + − + −

−
= = − +

+

 

In order for the stress fields to meet the necessity of the free boundary condi-
tions at θ α= ±  shown in Figure 1, the shear stress must be zero. That is to 
say, ( ) 0rθτ α± = . Thus, we can obtain the relation of the constants A1 and A2 in 
the following 

2 2 2

1 2 2 22 2 2

1 tan 1 tan2 2 2 cos 2
1 tan 1 tan

hA A A A
h

α β β
α β

− −
= = =

+ +
         (16) 

where, tan tanhβ α= . Besides that, 0θσ = , other stress components are given 
by  

2 2 4 2
22

2 2 2 2 2

2 2
2

2 2

4 1 3 ( 1)sin[( 1)cos 2 ]sin 2
cos sin

4 1 tan( cos 2 )
1 tan

r

r

A hr h hh
w w h
A h h
ww hθ

θσ β θ
θ θ

θτ β
θ

 − + −
= − + +


− = − +

    (17) 

Next, the constant A2 ought to be determined. In terms of the loading condi-
tion and the coordinate systems, the moment must be in equilibrium. So the 
main equilibrant equation is given as 

2 0r r d M
α

θα
τ θ

−
+ =∫  

Pay the attention to 2 2 2 2(cos sin )ww r hθ θ= + . Then the equilibrant equa-
tion must be by 

2 2
2

2 2 2 2 2

4 1 tan( cos 2 ) 0
(cos sin ) 1 tan

A h h d M
h h

α

α

θ β θ
θ θ θ−

−
− + =

+ +∫  

By solving the integration (note that: 0h > ), the solution can be obtained as 
2

2 2 2 2 2
2

tan tan[( ) cos 2 arctan( tan )]
41 cos sin 1

h h h Mh
Ah h h

α
α

θ θ β θ
θ θ −− − = −

− + −
 

Because that, tan tanhβ α= , then arctan( tan )hβ α= . And finally, the con-
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stant is defined as 

24
2 cos 2 sin 2

MA
β β β

=
−

                   (18) 

Therefore, the stress components can be determined by the expression (17). 
For Case II, we may take the stress function U as 

1 1 1 2 2 2(ln ln ) (ln ln )U D i w w D i w w= − + −              (19) 

where, 1 1w x ih y= + , 2 2w x ih y= + , 1 1w x ih y= − , 2 2w x ih y= − . Thus the par-
tial derivatives can be easily obtained as follows 

1 2
1 1 2 2

( ) ( )U i i i iD D
x w w w w

∂
= − + −

∂
 

1 1 2 2
1 1 2 2

1 1 1 1( ) ( )U D h D h
y w w w w

∂
= − + − +

∂
 

2

1 22 2 2 2 2
1 1 2 2

( ) ( )U i i i iD D
x w w w w

∂
= − + −

∂
 

2
2 2

1 1 2 22 2 2 2 2
1 1 2 2

( ) ( )U i i i iD h D h
y w w w w

∂
= − + −

∂
 

2

1 1 2 22 2 2 2
1 1 2 2

1 1 1 1( ) ( )U D h D h
x y w w w w
∂

= + + +
∂ ∂

 

On the basis of above equations, the stress components can be determined by 
2

2 2
1 1 2 22 2 2 2 2

1 1 2 2
2

1 22 2 2 2 2
1 1 2 2

2

1 1 2 22 2 2 2
1 1 2 2

( ) ( )

( ) ( )

1 1 1 1( ) ( )

x

y

xy

U i i i iD h D h
y w w w w

U i i i iD D
x w w w w

U D h D h
x y w w w w

σ

σ

τ

 ∂
= = − + − ∂

 ∂ = = − + −
∂

 ∂ = − = − + − +
∂ ∂

          (20) 

Substituting above stresses into Equation (15), and using two coordinate rela-
tions, cosx r θ= , siny r θ= , the complex variables become of  

1 1(cos sin )w r ihθ θ= + , 2 2(cos sin )w r ihθ θ= + , 1 1(cos sin )w r ihθ θ= − ,  

2 2(cos sin )w r ihθ θ= − . And also to simplify some functions, then the stress 
components , ,r rθ θσ σ τ  in the polar coordinate system can be obtained as 

2 2
1 1 1 2 2 2

2 2 2 2 2 2 2 2 2
1 2

( 1) ( 1)4sin cos [ ]
(cos sin ) (cos sin )r

D h h D h h
r h h
θ θσ

θ θ θ θ
− −

= +
+ +

 

0θσ = , 1 1 2 2
2 2 2 2 2 2 2

1 2

2 ( )
cos sin cos sinr

D h D h
r h hθτ θ θ θ θ

= − +
+ +

 

In order for the stress fields to meet the necessity of the free boundary condi-
tions at θ α= ± , the shear stress must be zero, ( ) 0rθτ α± = . Thus the relation 
of the constants can be obtained by  

1 1 2 2
2 2 2 2 2 2

1 2

0
cos sin cos sin

D h D h
h hα α α α

+ =
+ +

             (21) 
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This shows that, 

2 2 1 1
2 2 2 2 2

2 2
2 2 2 2 2

1 1

cos sin 1 tan
cos sin 1 tan

D h D h

h h
h h

λ

α α α
λ

α α α

= −


+ + = = + +

              (22) 

Thus the stress components are given by  
2 2

1 1 1 2
2 2 2 2 2 2 2 2 2

1 2

1 1
2 2 2 2 2 2 2

1 2

4 ( 1)sin cos ( 1)sin cos
[ ]
(cos sin ) (cos sin )

0
2 1( )

cos sin cos sin

r

r

D h h h
r h h

D h
r h h

θ

θ

θ θ λ θ θ
σ

θ θ θ θ
σ

λτ
θ θ θ θ

 − −
= − + + =


 = − −

+ +

      (23) 

Next, the constant D1 ought to be determined. The moment must be in equi-
librium, and also the main equilibrant equation is given as 

2 0r r d M
α

θα
τ θ

−
+ =∫  

1 1 2 2 2 2 2 2
1 2

12 ( ) 0
cos sin cos sin

D h d M
h h

α

α

λ θ
θ θ θ θ−

− − + =
+ +∫  

Hence the moment equilibrant equation must be by 

1 1 1 2
1 2

14 [ arctan( tan ) arctan( tan )]D h h h M
h h

λα α− =  

That is to say, 

1 2
1 1

2 1 1 2

1 1 2 2

4

arctan( tan ) , arctan( tan )

Mh hD h
h h

h h
β λ β

β α β α

 = −
 = =

           (24) 

Therefore, the stress components can be determined by 
2 2

1 2 1 2
2 2 2 2 2 2 2 2 2

2 1 1 2 1 2

1 2
2 2 2 2 2 2 2

2 1 1 2 1 2

( 1)sin cos ( 1)sin cos
[ ]

( ) (cos sin ) (cos sin )
0

1( )
2( ) cos sin cos sin

r

r

Mh h h h
h h r h h

Mh h
h h r h h

θ

θ

θ θ λ θ θ
σ

β λ β θ θ θ θ
σ

λτ
β λ β θ θ θ θ

 − −
= − − + + =


 = − −

− + +

 

Obviously, the expressions of the stress field distribution are also complex. 
For the isotropic materials ( 1h = ), the expressions will be simplified greatly. 

4. Conclusion 

The mechanical analysis of the composite material wedge subjected to a concen-
trated moment is conducted by constructing new stress function. The stress 
boundary problem is studied and the basic governing equation is solved by using 
the complex function method. The stress fields of the wedge loaded with a con-
centrated moment are derived, and the general expressions can be simplified for 
isotropic materials. 
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