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Abstract 

The Kepler 3rd law (K3L) was extended considering the gravitational field, in 
analogy to electricity and magnetism (E&M), produced from the circular mo-
tion of point masses of a binary system. Additionally the Newtonian accelera-
tion in the field equation was replaced with the relativistic acceleration 
(ENET). It was found out that the increase of the angular speed with the de-
crease of the mass separation is less drastic for the E&M analogy than for the 
K3L case. The use of the ENET acceleration however yielded a more drastic 
profile than the K3L results. A gravitational model (in analogy to E&M) for 
circular orbits reported previously was extended to cover relativistic speeds. It 
was found out that even for low speeds the linear-momentum term was not 
negligible. The extended model yielded faster orbital decay than the 
non-extended one. The use of the extended K3L using ENET yielded even 
faster orbit decay but slower than the results of the linearized general theory 
of relativity (LGR). Similar results were obtained when the gravitational radi-
ation fields were compared. The period decay (for circular orbit) of the Hulse 
and Taylor pulsar binary was simulated; the extended models yielded larger 
period decay than the non-extended one but smaller than the results of LGR. 
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1. Introduction 

The similarity between the Coulomb’s law for electrostatics and Newton’s law 
for gravitation triggers the question: Could the laws of electrodynamics be 
extrapolated to gravitation? Efforts in this direction have been made before by, 
for example, Maxwell and Heaviside in the 1800’s. One characteristic of classical 
electrodynamics is the generation of electromagnetic waves by accelerated 
charges which when it was experimentally demonstrated it revolutionized the 
communications and it is still the corner stone of the modern communication 
devices. There have been many attempts to develop gravitational models that 
generate gravitational waves in addition to the ingenious general theory of rela-
tivity (GR) of Einstein. The reasons for that, apart from just curiosity, could be: 
The complexity of the math (and also the physical concepts) involved in GR 
which can be avoided (and still giving students sound basis for understanding 
the wave generation process) using for example a gravitational analogy to clas-
sical electrodynamics, see for example [1] [2], where a gravitational model, in 
analogy to E&M, was developed for a binary system composed of point masses 
which produces relations in striking agreement with the LGR dependencies. The 
amplitudes of the relations are however significantly lower than the LGR’s ones. 
Another reason for developing other theories is the belief that GR is not the ul-
timate (if such a theory could ever be developed) theory, especially, if the prob-
lems of dark matter and dark energy (or alternatively dark physics) are consi-
dered. Note that [3] found that GR could be ruled out, in favor of a vector theory 
of gravity, based on the ratio of the strain signal of the three interferometers of 
LIGO-VIRGO from the GW170817 event. 

In this work an attempt was made to implement the suggested correction 
mentioned in [1] to the gravitational potentials to consider its impact on the de-
cay of a circular orbit. Extensions of the 3rd Kepler’s law (K3L) were derived and 
their impact on the orbit decay was also assessed. The objective of this work was 
to determine the impact of ENET [4] on the electromagnetic analogy of gravita-
tional orbits’ decay.  

2. Gravitational Decay of Circular Orbits as an Analogy of  
Classical Electromagnetism 

2.1. Extension of Kepler’s 3rd Law Using Gravitational Fields  
Analog to the Classical Electromagnetic Fields 

In analogy to the Lorentz force of classical electromagnetism, the gravitational 
force acting on a point mass am  due to another point mass bm  can be formu-
lated which when equated to the inertial force (2nd law of Newton), the following 
balance in polar coordinates is obtained: 

( ) ( ) ( )( )2
_ _2ba a ba a ba a a a a a a r a a a a a am m m r r e r r eθθ θ θ= − + × = = − + +F E v B a   

   (1) 

where 

baE : Gravitational equivalent of the electric field acting on body a 
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av : Velocity of body a 

baB : Gravitational equivalent of the magnetic field acting on body a 

aa : Acceleration of body a 
,a ar θ : Radial and azimuthal coordinates of body a respectively 

_ _,r a ae eθ : Radial (pointing from the origin of the laboratory reference frame 
to a) and azimuthal (counter clockwise from x to y) unit vectors of body a re-
spectively 

The number of dots on top of a variable represents the order of the time de-
rivative. 

The polar unit vectors are time and body dependent, unlike Cartesian unit 
vectors ( ˆ ˆ,x y ), which can be written as 

( ) ( )_
ˆ ˆcos sinr a a ae x t y tθ θ= + , ( ) ( )_

ˆ ˆsin cosa a ae x t y tθ θ θ= − +  

Note the minus sign in Equation (1) which is absent in electromagnetism 
(where the character of the force is determined by the sign of charges). This 
modification is made based on the still holding experimental evidence that the 
gravitational force is attractive in nature. By making this modification here, the 
need for defining a negative gravitational constant (G) is avoided. 

baE  is determined using G in place of 
0

1
4πε

 in equation 10.65 of [5]: 

( )
( ) ( )2 2

3
b ba

ba b ba ba ba b
ba ba

m r
G c v = − + × × ⋅

E u r u a
r u

           (2) 

1 ˆba ba bar
c

= ×B E                          (3) 

where, 

( ) ( ) ( )ba a b ba bar t t c t t= − = −r r , ( ) ( )ba a b bat t= −r r r , ( )ˆba ba b bacr t= −u v  

b̂a ba bar r= r , ( )d db b bat t=v r , b bv = v , ( )d db b bat t=a v  

c: Speed of light in vacuum 

bar : Separation distance between point mass a and b 

bat : Retarded time: Time needed to transmit the action (information) of the 
force from body b to body a 

Assuming that the point masses follow circular orbits with piece-wise constant 
angular speed (ω ) the following is obtained for the fields acting on mass a: 

( )
( )( ) ( ) ( ) ( )2 2

2 b b
b

ba b r ba b ba
m

G r c e t f c c r e t
rc

θω ω = ⋅ − + − ⋅  
E       (4) 

( )
( )2

1b
ba b z

m
G f c c r e

crc
ω = − + ⋅ B                 (5) 

( )3 3 2
b bf r rrω= −                         (6) 

where, 

bar r= : Separation distance between the point masses 
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ω : Angular speed of body b 
( ) ( )_ _,r b ba b bae t e tθ : Radial unit vector (pointing from the origin of the labor-

atory reference frame to b) and azimuthal (counter clockwise, from x to y) unit 
vector respectively. 

( ) ( ) ( )_
ˆ ˆcos sinr b ba ba bae t x t y tω ω= − − , ( ) ( ) ( )_

ˆ ˆsin cosb ba ba bae t x t y tθ ω ω= −  

Note that Equations (4) and (5) constitute the solution of a variant of the 
problem 10.20 of [5]. See [6] for the solution of the original problem. Note that 
the sign of the unit vectors were changed for consistency with the gravitational 
wave section. 

Equation (1) for circular orbit with a constant angular speed can be written as: 

( )
2

2
_ _

a
ba a ba a r a r a

a

v
r e e

r
ω− + × = − = −E v B  (7) ω θ=   

Substituting Equation (4) and (5) into Equation (7), considering small r 
( ) ( )( )_ _r b ba r be t e t≈ , a CM reference frame ( ) ( )( )_ _r a r be t e t= −  and ignoring 

in the left hand side the dependency on _ beθ  (the right hand side of Equation 
(7) does not depend on _ beθ ) leads to: 

( )
( ) ( )2

2 2 2
2 2

ab a
b a b

a

rm r f
G r c r r

rcrc

ωω
ω ω

⋅⋅ − ⋅ − − + ⋅ = 
 

, from which the fol-

lowing is obtained: 

( ) ( )3 2 4 2 2 3
4 2

4 2 1 0b a a b a ar r r
GMc c

η η η η η η
ω ω

 − +
 − + + − =
 
 

          (8) 

where, a am Mη = , b bm Mη = , .a bM m m= +  

The CM relations b
a

a b

m
m m

=
+

r r  and a
b

a b

m
m m

= −
+

r r  (9), were used to 

obtain Equation (8). 
Note that making c = ∞  Kepler’s 3rd law for circular orbits is recovered. Eq-

uation (8) is solved using the substitution 2ω ω′ = .  

2.2. Gravitational Wave as an Analogy to the Classical  
Electromagnetic Waves 

In this section the model presented in [1] is classically (prior Einstein’s relativity) 
extended to speeds comparable to the speed of light in vacuum following the 
correction therein indicated which contains the ratio of the binary velocity to the 
speed of light, the resultant equations constitute the gravitational equivalent of 
the Lienard-Wiechert potentials. 

The gravitational fields can also be written as [5] 
t

∂
= − Φ −

∂
AE ∇  and 

= ×B A∇   
where, ,Φ A  are the scalar and vector potential respectively. For the binary 
system in question the superposition of the gravitational-equivalent Lie-
nard-Wiechert potentials at the observation point R are written as 
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( ), a b

a a a b b b

Gm Gm
t

R c R c
Φ = +

− ⋅ − ⋅
R

R v R v
              (10) 

( ) 2 2, a a b b

a a a b b b

m mG Gt
R c R cc c

= +
− ⋅ − ⋅

v v
A R

R v R v
            (11) 

where, ,a bR R  are the distances from mass a and b respectively, to the observa-
tion point. The positions and velocities are evaluated at their respective retarded 
time: Ra at t R c= −  and .Rb bt t R c= −   

Note that the gravitational constant is kept positive in the potentials. The at-
tractive character of the gravitation was considered in the gravitation-
al-equivalent Lorentz force. 

The positions and velocities of the components of the binary system moving 
in circular orbit with piece-wise constant angular speed in the CM reference 
frame are written as 

( ) ( )ˆ ˆcos sina a Ra Rar x t y tω ω = ⋅ + ⋅ r              (12a) 

( ) ( )ˆ ˆcos sinb b Rb Rbr x t y tω ω = − ⋅ + ⋅ r             (12b) 

( ) ( )ˆ ˆsin cosa a Ra Rar x t y tω ω ω = ⋅ − ⋅ + ⋅ v            (13a) 

( ) ( )ˆ ˆsin cosb b Rb Rbr x t y tω ω ω = ⋅ ⋅ − ⋅ v             (13b) 

and  

( ) ( )ˆ ˆcos sinR Rr x t y tω ω= ⋅ + ⋅  r                (14) 

Rt t R c= −                        (15) 

The gravitational radiation field is determined as Trans
rad t

∂
= −

∂
A

g  which de-

pends only on the components of the vector potential TransA  that are transverse 
to the observation direction. The power radiated per unit area in the direction of 

a monochromatic wave propagation is determined as ( )2 ˆ
4π rad

c t S
G

=S g . Note 

that in this work the average value, which is optional in EM and required in GR 
[2]:, is not used for S .  

Expanding in Taylor series the velocities around Rt  Equation (11) becomes: 

( )
( )

( )

( )

( )

2

2

d
d

,
dˆ
d

d
d

dˆ
d

R

R

R

R

a
a a R a

t

a
a a a a R a

t

b
b b R b

t

b
b b b b R b

t

m t t
tGt

c
R R R t t c

t

m t t
tG

c
R R R t t c

t

 
+ ∆ 

  =
 

− ⋅ + ∆ 
  
 

+ ∆ 
  +
 

− ⋅ + ∆ 
  

vv

A R
vv

vv

vv

 

Using the binomial expansion in the law of cosines relating ,a bR R  with 
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,a br r , considering ,a bR r r  and assuming that a bR R R≈ ≈  (only for the 
quantities explicitly written in the denominator) the following is obtained: 

( )
( ) ( )

2 2

d d
d d

, R R

a b
a a R a b b R b

t t

a b

m t t m t t
t tG Gt

den denc R c R

   
+ ∆ + ∆   

      = +

v vv v

A R  (16a) 

( ) d1 ˆ1
d

R

a
a a a R a

t

den R t t
c t

 
= − ⋅ + ∆ 

  

v
v , ( ) d1 ˆ1

d
R

b
b b b R b

t

den R t t
c t

 
= − ⋅ + ∆ 

  

v
v (16b) 

1 ˆ
a at R

c
 ∆ = ⋅ r , 

1 ˆ
b bt R

c
 ∆ = ⋅ r                (16c) 

Equation (16a) is rearranged as ( ), t = +A R p F : the term containing the li-
near momentum plus the one containing the inertial force. 

( ) ( )( )
( ) ( )

2

1 2

1 1 ˆ ˆcos sin cosTran R R
a b

p

G r M t t
den denc R

c p t t

ω η θ ω θ ω φ
 

= − − ⋅ + ⋅ 
 

=

p

p
 (17) 

( )( ) ( )

( ) ( )

2 2

3

1 2

ˆ ˆsin cos 1 cos 2 sin 2
2

b a
Tran R R

a b

F

m mG r t t
den denc R

c F t t

ω η θ θ ω θ ω φ
   = − + + ⋅ + ⋅    

= −

F

F
(18) 

where, 

( ) ( )( )
2 2

2
21 sin sin sin 1 cos 2

2
a a

a R R
r r

den t t
c c

ω ω
θ ω θ ω

⋅
= + ⋅ + + ⋅      (19a) 

( ) ( )( )
2 2

2
21 sin sin sin 1 cos 2

2
b b

b R R
r r

den t t
c c

ω ω
θ ω θ ω

⋅
= − ⋅ + + ⋅     (19b) 

Equations (12)-(15) were used to obtain Equation (17)-(18). The Cartesian 
unit vectors were expressed in terms of the spherical ones with the choice of 

0φ =  as in [1]. To obtain Equation (19) it was assumed that ˆ ˆ ˆ
a bR R R≈ ≈ .  

Note that even for a br r= , a bden den≠ , which is consistent with having 
contribution from Tranp  for equal masses.  

ˆ ˆ,θ φ : Are the unit vectors (spherical coordinates) perpendicular to the direc-

tion of the observation vector R . 
( )2

a b

a b

m m
m m

η =
+

 

Note that if 1a bden den= = , Equation (47) of [1] is recovered except for the 
negative sign in Equation (18). 

Note also that for small v even though 1 1

a bden den
−  is small and 

b a

a b

m m
M

den den
+ ≈ , Tran

Tran

p
F

 is, unexpectedly, not necessarily negligible. 

The radiation field is therefore: 

1 2 1 2
2 1 2 1

Tran
rad p F

p Fc p c F
t t t t t

∂ ∂ ∂ ∂ ∂   = − = − + + +   ∂ ∂ ∂ ∂ ∂   

A p Fg p F       (20) 
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( ) ( )( )1
2 2 2

ˆ ˆcos sin cosa b
R R

a b

n np t t
t den den

ω θ ω θ ω φ
 ∂

= + − ⋅ + ⋅ 
∂  

p  

( ) ( )
2 2

2
2sin cos sin sin 2a a

a R R
r r

n t t
c c

ω ω
θ ω θ ω

⋅
= − ⋅ + ⋅  

( ) ( )
2 2

2
2sin cos sin sin 2b b

b R R
r r

n t t
c c

ω ω
θ ω θ ω

⋅
= − ⋅ − ⋅  

( ) ( )( )2
1

1 1 ˆ ˆcos cos sinR R
a b

p t t
t den den

ω θ ω θ ω φ
 ∂

= − − ⋅ − ⋅ ∂  

p
 

( )( ) ( )1
2 2 2

ˆ ˆsin cos 1 cos 2 sin 2b a a b
R R

a b

m n m nF t t
t den den

ω θ θ ω θ ω φ
 ∂  = − + ⋅ + ⋅   ∂  

F  

( ) ( )2
1

ˆ ˆ2 sin cos sin 2 cos 2b a
R R

a b

m m
F t t

t den den
ω θ θ ω θ ω φ
 ∂  = + − ⋅ + ⋅   ∂  

F
 

Note that , , ,a br r rω , were considered constants for the calculation of the de-
rivatives in Equation (20). If the terms containing the derivatives in Equation (20) 

are divided by ω , the quasi-constants are redefined as 
2

2p
G rc M
c R
ω η= , 

3 2

32F
G rc

c R
ω η=  which helps to see that making 0pc =  and ( )1F t M= , Equa-

tion (48) of [1] (with opposite sign) is obtained. 
The radiated power per unit area is 

( )2 2 2
ˆ ˆ_ _

ˆ ˆ
4π 4πrad rad rad

c cS S
G G θ φ

= = +S g g g , the total power radiated is 

d d
d
E
t
= ⋅∫ S A , 2 ˆd sin d dR Sθ θ φ=A   

ˆ ˆ

d d d
d d d
E E E
t t tθ φ

= + , 
π2

2
ˆ_

ˆ 0

d sin d
d 2 rad

E cR
t G θ

θ

θ θ= ∫ g , 
π2

2
ˆ_

ˆ 0

d sin d
d 2 rad

E cR
t G φ

φ

θ θ= ∫ g  

The integrals will be determined numerically. 

2.3. Gravitational Orbit Decay 

The total classical mechanical energy of the binary system is [1] 
2 21 1

2 2 2
a b a b

Tot a a b b
m m m m

U m v m v G G
r r

= + − = − . Kepler’s 3rd law for circular or-

bits was used to obtain the right hand side equality. Note that the classical EM 
potential energy is also written with an equation similar to the 3rd term of left 
hand side [7].  

From energy conservation follows 
d d

d d
totU E
t t

= −  so the orbit decay is deter-

mined from  
22 d

da b

r Er
Gm m t

= −                       (21) 

To consider the extended 3KL, the mechanical energy equation is written as  
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2 21
2

a b
Tot

m m
U M r G

r
η ω= − , therefore 

( )2 2
2

d
d

tot a bU m m
M r rr G r

t r
η ωω ω= + +                 (22) 

From Equation (8) 

( )

( )

( )

( ) ( )

3 2 4

4
2 4

2 2 2 23 3

2 2

4 4
0 4

1

1

b a a

b a a b a a

r

c
r rr r

GM GMc c
n f r f r

d d

η η η

ω ω
η η η η η η

ω ω

−

= +
+ +

+ +

= + = +

 

Taking the derivative in both sides: 

( ) ( ) ( )4 3
0 4 42 4f r f r f rωω ω ω ω= + + 

   ⇒  

( )( ) ( ) ( )3 4
4 0 42 4 f r f r f rω ω ω ω− = + 

  ⇒   

( ) ( )
( )

4
0 4

3
42 4

f r f r
f r

ω
ω

ω ω
+

=
−

 

 .  

where,  

( )
( )2 2

0 02 2 2

1 2 3b a a rd rf r r q r
GMd d c

η η η +
 = − = − + =
 
 





   

( )

( ) ( )3 2 3 2 2

4 2

4 42 2

4 2 3b a a b a ar r rdr n r r
GMc cnd ndf r q r

d d

η η η η η η − +
 − +
 −  = = =

  







 .  

Therefore 
( ) ( )

( )

4
0 4

3
42 4

q r q r
r

f r
ω

ω
ω ω

+
=

−
   substituting into Equation (22) leads to: 

( ) ( )
( )

4
0 4 2 2

3 2
4

d d
d d2 4

tot a bq r q rU m m EM r r G r qr
t tf r r

ω
η ω ω

ω ω

  +
= + + = = −    −  

     (23) 

2.4. Gravitational Wave Signal 

The acceleration of the beam splitter (x-arm) for the [1] model of the 
LIGO-VIRGO detectors is written as 

( ) ( ) ( )ˆ ˆ1 1 1 1_ _
ˆ ˆ sinrad rad radx t x t x t

θ θ
β= ⋅ = ⋅ =g g g            (24a) 

and for the mirror: 

( ) ( ) ( )ˆ ˆ2 2 2 2_ _
ˆ ˆ sinrad rad radx t x t x t

θ θ
β= ⋅ = ⋅ =g g g           (24b). 

where 
β : is the angle between the wave propagation direction and the interferometer 

x arm. 

1 2,t t : are the arrival time of the wave at the beam splitter and mirror respectively. 
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2 1 cost t L cβ= +  

L: is the interferometer arm. 
Equations (24a)-(b) are wished to be solved numerically. Assuming the exis-

tence of an undistorted convergent solution, the relative displacement of the two 
masses in the x arm is determined as 2 1xL x x∆ = − . It can be shown that the rel-
ative displacement for the Y arm is 2 1y xL y y L∆ = − = −∆ . The interferometer 

strain signal is then expressed as x yL L
h

L
∆ −∆

= . For simplicity the two arm 

lengths were assumed to be the same in the model of [1]. 

3. Impact of the ENET Relativistic Acceleration on the  
Gravitational Orbit Decay 

3.1. Extension of Kepler’s 3rd Law Using the ENET Acceleration in  
the Gravitational Fields 

When the speed of components of the binary system is a significant percent of 
the speed of light a relativistic theory should be used to address the problems 
that cannot be explained with Newtonian theory, for example, the intrinsic (two 
body problem) perihelion precession of the planets (specially Mercury).  

It is well-known that Einstein’s special theory of relativity (STR) does not 
yield precession values consistent with experiments, that is why (probably) 
Einstein, based on his concept of curved space-time (unlike the flat space-time of 
STR), developed the remarkable GTR which does yield results in agreement with 
experiments and predicted other currently verified phenomena. 

Ref [4] however derived a relativistic inertial acceleration (ENET), which is 
based on the application of two consecutive boosts of the apparent time dilation 
and length contraction (concepts which are supported by the Michelson-Morley 
experiment, the Lorentz-Fitzgerald transformation, and STR) to the Newtonian 
concept of time and space interval. The so obtained relativistic acceleration also 
yields results consistent with the experimental values of the precession of pla-
nets. 

The ENET acceleration is written as ( )321 Nβ= −a a  where Na  is the 
Newtonian acceleration and v cβ = .  

Using this acceleration in Equations (2)-(3), Equations (4)-(5) are reproduced. 

Equation (6) becomes ( )3 3 2
b b bf r rr gω= −  and Equation (8) becomes  

( ) ( )3 2 4 2 2 3
4 2

4 2 1 0b a a b b a a
a

g r r r g
GMc c

η η η η η η
ω ω

 − +
 − + + − =
 
 

     (25) 

( )
32

21 a
b

r
g

c
ω η ⋅ ⋅

 = −
 
 

, ( )
32

21 b
a

r
g

c
ω η ⋅ ⋅

 = −
 
 

 

Equation (25) is to be solved numerically. Note that making c = ∞  K3L for 
circular orbits is here also recovered. 

From Equation (25): 
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( )

( )

( )

( ) ( )

3 2 4

4
2 4

2 2 2 23 3

2 2

4 4
0 4

1

1

b a a b

b a a b a a
a a

g r

c
r rr rg g

GM GMc c
n f r f r

d d

η η η

ω ω
η η η η η η

ω ω

−

= +
+ +

+ +

= + = +

 

From which as before 
( ) ( )

( )

4
0 4

3
42 4

f r f r
f r

ω
ω

ω ω
+

=
−

 

  where, 

( )0 2

df r
d

= −


 , 
( )2 2 3

22 3b a a
a a

r r rd r rg g
GM GMc

η η η+
= + +

    

( ) ( ) ( )
222

2 26 1 bb
a a

r
g r r r k r r

c c
ωηη

ω ω ω ω ω
 
 = − − + = +
 
 

     

So ( )0 0 gaf r q r q ω= +

   

0q : is the resultant factor from collecting the multipliers of r  

gaq : is the resultant factor from collecting the multipliers of ω  

( )4 2

nd ndf r
d
−

=




 , ( )( )2 4 3 2 3
4 4b

a b a a bn g r g r r
c
η

η η η= − + −   , ( )b bg k r rω ω= +    

So ( )4 4 gbf r q r q ω= +

  
Therefore  

( )
( )

4
0 4

3
42 4

ga gbq r q q r q

f r

ω ω ω
ω

ω ω

+ + +
=

−

  

  ⇒  

( )( ) ( )3 4 4
4 0 42 4 ga gbf r q q q q rω ω ω ω ω− − − = +   

⇒  
( )

4
0 4

3 4
42 4 ga gb

q q
r

f r q q
ω

ω
ω ω ω

+
=

− − −
   Substituting into Equation (22) leads 

to: 

( )
4

2 20 4
3 4 2

4

d
d 2 4

d
d

tot a b

ga gb

U q q m m
M r r rr G r

t f r q q r

Eqr
t

ω
η ω ω

ω ω ω

 +
= + +  − − − 

= = −

  



  (26) 

4. Computational Results and Analysis 

Figure 1 shows the angular speed as function of radius (in units of 2

2
s

GMr
c

= ,  

the Schwarzschild radius, for a system of equal masses with total mass of 70 Msun. 
The mass separation values were just generated. NK1 is the Kepler’s 3rd law. NK2 
is the extended K3L considering the E&M analogy (Equation (8)). NK3 is the 
extended K3L considering the E&M analogy and replacing the Newtonian acce-
leration with the relativistic acceleration of ENET (Equation (25) was solved ite-
ratively by isolating the quadratic term). Note that only for mass separations 
significantly smaller than sr  they drastically differ among themself. It is curious 
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that NK2 curvature is smaller than the NK1’s one.  
Figures 2-5 show results also for a system of equal masses with total mass of 

70 Msun The total radiated power, 
d
d
E
t

, was calculated numerically using 100 

angular partitions.  
 

 
Figure 1. Angular speed (1/s) vs. mass separation (rs). 

 

 
Figure 2. Mass separation (rs) vs. time (s). 

 

 
Figure 3. Mass separation (rs) vs. time (s). 

 

 
Figure 4. Angular speed (1/s) vs. time (s). 
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Figure 5. Speed (c) vs. time (s). 

 

Figure 2 shows the mass separation as a function of time (orbit decay). NK0 is 
the model of [1] [2] where the mass separation is calculated from 

( )4 4 3
0 0sr r N cr t tη= − − , 2 5N =                 (27) 

Equation (27) does not consider the correction related with the ratio of the 
binary speed to the speed of light in vacuum. From that Figure can be seen that 
the extended models yield faster orbit decay than NK0 results. NK1 uses K3L in 
the extended gravitational model and the results were obtained by solving Equa-
tion (21). NK2 model is represented by Equation (23) and NK3 results are de-
termined from Equation (26). Numerical derivatives (finite difference) were 
used to solve Equation (21), (23), and (26) with an integration step of 1.0 × 10−5 
seconds.  

Figure 3 shows the results of the LGR (using the same equation used in NK0 
model but with 32 5N = . From that Figure can be seen a very fast orbit decay 
in just 0.2 sec.(compare it with Figure 2) For time slightly larger, the separation 
becomes negative probably an indication that the ring down and merger of the 
binaries should be considered. Figure 4 and Figure 5 show the angular speed 
(1/s) and the speed of the binaries respectively  

Figure 6 shows the radiation fields yielded by NK0:  

( )
3 2

ˆ 3_ sin 2 sin 2
2 Rrad

G M r t
c Rθ

η ω θ ω= ⋅g              (28) 

and NK1 (Equation (20): the same for NK2 and NK3) for a system of equal 
masses with total mass of 65 Msun and an initial mass separation of 5.3 sr . These 
data were inferred from the GW150914 black hole merging event [2] (except for 
the equality of the masses assume here). The following data were used also: 

pc410 MR = , 150θ =  , 4000 mL = , 45β =   [1] [8]. 
Note that not only the amplitude of NK1 is significantly larger than the NK0 

but the number of positive peaks is also greater (~31 vs. 23) which is an indica-
tion that the frequency increase is also larger. The results for NK2 and NK3 are 
as expected (NK2 amplitude smaller than NK1 and NK3 larger than NK1).  

A rigorous calculation of the wave form was not made because a convergent 
and correct numerical solution for the displacement has not yet been found (not 
even for NK0 which has an analytic simple solution). The reason for that has not 
yet been determined.  
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Figure 6. Radiation field (m/s2) vs. time (s). NK1 is the one with the largest amplitude. 

 
It could be worthy to check if the radiation field could be approximated as a 

generalization of the Equation (28) as  

( )
3 2

ˆ 3_ sin 2 sin 2
2aw kw Rrad

G M rn n t
c Rθ

η ω θ ω= ⋅g  to determine kan  kwn . If the ap-

proximation is reasonable then the solution is obtained as 
( )

( )
ˆ_

2

sin

2
rad

kw

x
n

θ
β

ω
= −

g
. 

Note that the objective is to obtain, if possible, an kwn  that makes the approx-
imated radiation field to be reasonably in phase with the original one. 

Figure 7 shows the results of the wave form (strain signal) calculation for 
NK0 and for a gross approximation of NK1 using 1kwn =  to have a tentative 
idea of the amplitude of the strain signal (h). The results for NK2 and NK3 are as 
expected. Note that the GR model predicts the beginning of the merger about 0.4 
sec. into the transient [1]. The calculation in Figure 7 was extended to 1 sec. just 
to see the trends better.  

It is notified that using the accumulated phase equation,  

( ) ( )
0 1 1

d
t Nt Nt

R i i i
t

t t t t tω ω ω′ ′Φ = ≈ ∆ = ∆∑ ∑∫ , in place of Rtω  in any trigonometric  

function in Equation (20), results in shapes and amplitudes similar to Figure 6 
and Figure 7, however a shift in phase is observed. 

For curiosity it was checked if values of N in Equation (27) can be obtained 
that reproduce the results of NK1, NK2, and NK3. The obtained (by trial and 
error targeting the final value of r) values are 7.55/5, 6/5 and 8.56/5 respectively. 
Those values reproduced the whole profile of the models accurately (at least up 
to the first digit after the decimal point). Using those values of N in the previous 
example good profiles are also obtained. These results encourage the search for 

kwn  and, if needed, the search for simpler equations for the mass separation, ir-
radiated power and the radiation field. 

The last application considered was the calculation of the period decay of the 
Hulse-Taylor binary pulsar (PSR 1913 + 16) assuming circular orbits. The data 
for this simulation are [9]: pulsar mass: 1.4408 Msun, companion mass: 1.3873 
Msunn, Orbital period: 0.323 days. The period decay was calculated numerical as 
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Figure 7. Strain signal (multiplied by 1021) vs. time (s). NK1 is the one with the largest 
amplitude. 

 

1d
d

i i

i

T TT
t t

−−
=

∆
, 2πi iT ω= . The time step used was 0.1 day. Even though the 

concept of derivative requires small time step, the change rate of the period is so 

small that if the time step is too small the compiler will produce 
d 0
d
T
t
= . The  

calculation span was 365 days. The results of the average values are: −1.26E−14, 
−5.02E−14, −6.72E−14, and −5.02E−14 for NK0 (N = 2/5), NK1, NK2, and NK3 
respectively. The LGR (N = 32/5) result was −2.02E−13 which coincides with the 
theoretical value calculated from [9] [10]  

( )

5 3

1 35

192πd 2π
d 5

a b

a b

m mT G
t Tc m m

 =  
 +

 

5. Summary and Concluding Remarks 

The Kepler 3rd law was extended considering the gravitational field (in analogy 
to E&M) produced from the circular motion of the masses of a binary system. 
The Newtonian acceleration in the field equation was replaced with the ENET 
acceleration. It was found out that the increase of the angular speed with the de-
crease of the mass separation is less drastic for the electromagnetic analogy than 
for the K3L case. The use of the ENET acceleration however yielded a more 
drastic profile than the K3L results. 

A previous gravito-electromagnetic model developed for non-relativistic 
speed was extended to cover relativistic speeds. It was found out that even for 
low speeds the linear-momentum term was not negligible. The extended model 
yielded faster orbital decay than the non-extended one. The use of the extended 
K3L using ENET yielded even faster orbit decay but slower than the results of 
LGR. Similar results were obtained when the gravitational radiation fields were 
compared.  

The period decay (for circular orbit) of the Hulse and Taylor pulsar binary 
was simulated; the extended models yielded larger period decay than the 
non-extended one but smaller than the results of LGR for circular orbit. It could 
be worthy to use elliptical orbits to see the impact on this comparison. It is noti-
fied that calculations (not described here) of the perihelion shift of the Hulse and 
Taylor binary pulsar using Newtonian gravitation with the ENET acceleration 
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yielded results in agreement with experiment and GR.  
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