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Abstract 

This article investigates a stochastic filtering problem whereby the borrower’s 
hidden credit quality is estimated using ego-network signals. The hidden cre-
dit quality process is modeled as a mean reverting Ornstein-Ulehnbeck 
process. The lender observes the borrower’s behavior modeled as a conti-
nuous time diffusion process. The drift of the diffusion process is driven by 
the hidden credit quality. At discrete fixed times, the lender gets ego-network 
signals from the borrower and the borrower’s direct friends. The observation 
filtration thus contains continuous time borrower data augmented with dis-
crete time ego-network signals. Combining the continuous time observation 
data and ego-network information, we derive filter equations for the hidden 
process and the properties of the conditional variance. Further, we study the 
asymptotic properties of the conditional variance when the frequency of ar-
rival of ego-network signals is increased.  
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1. Introduction 

In this article we propose a filtering technique that uses ego-network signals to 
estimate a hidden process. Consider a financial market with a single lender and 
borrowers, who are represented by nodes in a dynamic social network. For a 
particular borrower, let the process tX  modeled as a mean reverting 
Ornstein-Ulehnbeck process capture her1 true credit quality. On account of the 
information asymmetry between the borrower and the lender, the lender is una-
ble to directly observe tX . However through interactions with the borrower, 
the lender gets to observe a continuous time process tY , modeled as a linear 

 

 

1In this article we refer to the borrower as female and the lender as male. 
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diffusion process. tX  drives the drift of tY . This is a continuous time linear 
state space model with tX  being the state process and tY  the observation 
process. Kalman-Bucy filtering can thus be used to obtain the “optimal” estimate 
of tX  in the mean square sense. 

We assume that network ties are based on homophily. Homophily [1], is the 
idea that individuals with similar characteristics are likely to be friends than in-
dividuals with different characteristics. Thus social network ties are based on 
closeness in credit type: the probability that two individuals will create/maintain 
a network tie between them is proportional to the distance between their credit 
types. The probability of a network tie formation/termination is conditional on 
the parties meeting. The meeting process is modeled as a random event whose 
probability is a deterministic function of the population size of the network, 
large population leading to sparse networks. Individuals know their credit type 
and can also observe the credit type of their direct friends (alters) in the network. 
The social network is thus modeled as a dynamic latent space network. The 
lender’s view of the network is restricted to ego-network signals of borrowers at 
fixed discrete times. At times 0 1 10 Nt t t T−= < < < < , the lender observes the 
particular borrower’s ego network and receives unbiased signals related to her 
credit quality and the credit quality of her alters. Thus at the information times 

,  0,1, , 1 kt k N= − , the lender gets to observe the vector kZ  constituting the 
unbiased signals of the credit quality of the borrower and her alters. The dimen-
sion of the vector is a function of the actual degree (number of alters) of the 
borrower at the time kt . 

Our model proposes the inclusion of the ego-network signals kZ  into the 
filtering of the process tX . The lender’s observation filtration is augmented by 
the filtration generated by kZ  at discrete time points. In the proposed model, 
Bayesian updating at times kt  is used to incorporate the information from the 
ego-network signals into the estimation of tX . We note that by the Gaussian 
nature of the processes ,t tX Y  and kZ  and the formulation of the 
ego-network likelihood, the updated estimate of tX  at times kt  remains 
Gaussian and we derive explicit results for its mean and variance. We also derive 
results showing that the inclusion of the signals kZ  leads to lower conditional 
variance for the filtered process. By introducing the meeting probability in net-
work tie formation, our model is an extension of [2], where the conditional ex-
pected number of friends was treated as a constant. Further, we study the 
asymptotic behavior of the conditional variance as the frequency of network in-
formation arrivals N →∞ . Increasing the frequency of network information 
arrival times leads to clearer signals, and in the limit as N →∞ , we get to the 
full information scenario. 

There exists several studies on the statistical modeling of social network. Some 
of the models proposed in these studies include the coevolution model of [3] 
whereby the authors proposed a continuous time network model. The nodal 
attributes modeled as Markov chains influence the formation of network ties, 
which in turn influence the transition probabilities of the nodal attributes. In [4], 
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the authors proposed a static latent space network model, where the nodal 
attributes are in a low dimensional Euclidean space, and these attributes influ-
ence the formation of network ties. The static model has been extended severally 
to the time varying case by among others, [5] who proposed a directed dynamic 
latent space model. For a review of the recent studies on latent space network 
models, see e.g. [6].  

Existing studies on the mathematical modeling of consumer credit risk in-
clude [7] where the authors proposed a continuous time model of a borrower’s 
credit type. By modeling the credit type as a jump diffusion process and applying 
the Option pricing theory, the authors were able to derive explicit formulation of 
the borrower’s default probability. Consumer credit risk modelling is mainly fo-
cused on credit scoring, the use of statistical models to aid in credit granting de-
cisions. Common techniques used for credit scoring include linear discriminant 
analysis, logistic regression, bayesian classifiers, random forest and finite Mar-
kov chains, see e.g. [8] for a review. In recent times, Hidden Markov models 
(HMM) have been applied for credit scoring e.g. [9] who compared the perfor-
mance of HMM and logistic regression in the classification of customers and 
evaluation of the probability of default. [10] modeled the consumer’s credit rat-
ing as a discrete time Markov chain process upon incorporating a latent variable 
which captures the prevailing economic conditions. In [11], the author proposed 
a credit scoring model whereby the borrower’s hidden credit type modeled as a 
discrete time Markov chain is learned through observing network related va-
riables including reputation, trust and distrust. Proposing a static credit scoring 
model, [12] used ego-network signals to update the lender’s belief of the bor-
rower’s unobserved credit type modeled as a Gaussian random variable. For a 
review of the application of social network data to consumer credit risk model-
ing , see [13]. 

In [14], the authors augmented the observation filtration with discrete time 
expert opinion to estimate the hidden Gaussian process driving the drift of the 
stock price. The model is an extension of the Black-Litterman model of [15] to 
the continuous time case. The authors in [16] estimated the unobserved drift 
parameter on an observation filtration initially enlarged with some anticipative 
information perturbed by independent noise. Text book treatment of stochastic 
filtering includes [17], [18] and [19]. 

The article is organized as follows. In Section 2, the credit risk and dynamic 
network models are presented. Results on stochastic filtering are presented in 
Section 3. In Section 4, the properties of conditional variances are derived in de-
tails under the various information setups. Brief numerical results are presented 
in Section 5, whilst Section 6 concludes. 

2. The Model Setup  

Consider a filtered probability space ( ), , ,Ω    with ( ) 0t t≥
=   satisfying 

the usual conditions of right continuity and completeness. All processes are as-
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sumed to be   adapted. 
Borrower’s Behavioral Dynamics 
The borrower’s hidden credit quality process tX  is modeled as a 

mean-reverting Ornstein-Ulehnbeck process defined as  

( )d d dt t tX X t Bµ δ γ= − +                     (1) 

0X x=  

where , 0, 0δ µ γ∈ > >  are constants and tB  is a Brownian motion. 
( )0 0,x m v ,   measurable and is independent of B. Thus tX  is a Gaus-

sian process with the mean and variance given by  

( )0e t mµδ δ−+ −                        (2) 

2 2
2

0e
2 2

t vµγ γ
µ µ

−  
+ − 

 
                     (3) 

respectively. The hidden credit quality tX  drives the drift of the borrower’s 
observed behavioral dynamics which is modeled as a diffusion process defined as  

d d dt t tY X t Wα σ= +                      (4) 

The parameters , 0α σ >  are assumed to be constants and tW  is a   
adapted one dimensional Brownian motion. tW  and tX  are assumed to be 
independent. 

Network Dynamics 
Let   be the population of a society, such that individuals are represented as 

nodes in a dynamic network. Each individual in the population is assumed to 
have an independent and time varying credit quality itX  modeled as a Gaus-
sian process. When a pair of individuals i and j get the opportunity to meet, they 
may decide to create, terminate or continue a network tie by mutual consent. 
Thus network tie formation and termination are conditioned on the  

meeting probability 
( )

1
1

υ =
− 

. Modeling the meeting probability as a  

function of population size captures network sparseness, which is a property ob-
served in real life social networks. Thus the meeting probability reduces with in-
creased number of individuals in the population. Assuming an undirected net-
work i.e. ( ) ( )ij jit t=  , then we let  

( ) ( ) ( )( )| ~ Bernij ij ijt t tπ π                  (5) 

for every i j≠  and 0t ≥  with  

( ) ( )21
2e it jtX X

ij tπ
− −

=                      (6) 

Hence the network ties ( ) { }0,1ij t ∈  are independent Bernoulli random va-
riables conditioned on the nodal attributes tX . The network tie formation 
probability ( ) ( )0,1ij tπ ∈  is modeled as a probit link function. Conditional on 
the meeting process, existence of a network tie between individual i and j at time 
t is a function of the Euclidean distance between their respective credit types. 
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The network model captures homophily, since shorter distance between credit 
types leads to higher probability of network tie formation. The model assumes 
zero cost incurred on network tie formation or termination. 

Define tG  as the graph of friendship ties in the society at time t. The set of 
borrower i’s direct friends (alters) at time t, known as her ego-network is defined 
as { }1 |t tg ij ij G= ∈ . For a particular borrower i, we consider her hidden credit 
quality process tX  and observed behavioral score tY . 

Lender’s information  
The lender observes in continuous time the process tY  denoting the borrow-

er’s behavior. Further, at discrete fixed times  

0 1 10 ,Nt t t T N−= < < < < ∈   the lender observes the borrower’s ego network 
and receives signals from her and her alters. Let the vector { }1, |k ik jk tZ Z ij g= ∈Z  
denote the ego-network signals received by the lender at times , 0,1, ,kt k N=  , 
comprising the borrower’s own signal 

k kik it ikZ X ε= + Λ  and the signals from 
her alters 

k kjk jt jkZ X ε= + Λ . The variables ( )~ 0,1jkε   are i.i.d across in-
dividuals with ( ) 0js luε ε =  for j l≠ , s u≠ . Thus the lender receives noisy 
but unbiased signals upon observing the borrower’s ego-network at time kt . 

The information available to the lender can thus be represented by the fol-
lowing filtrations  

( ) [ ]
{ }

( ) [ ]
{ }

( ) [ ]
{ }

0,

0,

0,

with generated by ,

with generated by , , ,

with generated by ,

Y Y Y
t t st T

Z Z Z
t t s k kt T

O O O
t t k kt T

Y s t

Y s t Z t t

Z t t

∈

∈

∈

= ≤

= ≤ ≤

= ≤







 

 

 

 

Y  corresponds to the continuous time behavioral information only, O  
consists of the ego-network signals received at discrete times whilst Z  is the 
combination of behavioral information and the ego-network signals. We assume 
that the σ-algebras Y

t  and Z
t  are augmented with the   null sets. Note 

that for each 0t ≥ , Z Y O
t t t= ∨   . 

3. Stochastic Filtering 

The focus of stochastic filtering is to estimate the hidden stochastic process tX  
based on observations up to time t. Let ˆ H

tX  be the projection of the process 

tX  onto the observed filtration { }, , ,H H O Y Z∈  i.e. ( )ˆ |H H
t t tX X=   . In 

this section, we derive explicit results for the filtering equations and the condi-
tional variance of the hidden process tX . 

Behavioral Observations  
When the lender’s observation σ-algebra is Y

t , i.e when the lender does not 
receive any ego-network signals, we are in the realm of the classical Kal-
man-Bucy filter, see e.g. [18] and [19]. This is since the state and observation 
equations constitute a linear Gaussian state space model. Let ( )ˆ |Y Y

t t tX X=     

and ( )2ˆ |Y Y Y
t t t tX Xλ  = −  

   be the conditional mean and variance respec-
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tively in the σ-algebra Y
t . 

The dynamics of ˆ Y
tX  is given by the following SDE  

( )( )2 2 2
0 0

ˆ ˆ ˆ ˆd d d ,Y Y Y Y Y Y
t t t t t tX X X t Y X mµ δ α σ λ ασ λ− −= − − + =       (7) 

whilst the dynamics of Y
tλ  is given by the deterministic ODE  

( )22 2 2
0 0

d
2 ,

d

Y
Y Y Yt
t t v

t
λ

µλ γ α σ λ λ−= − + − =              (8) 

Equation (8) is the well known Riccati equation, a deterministic equation 
whose unique solution is given as  

2
02

2
02

2
2

1 2
02

2

1 2

e

e

C t

Y
t

C t

C CC

C C

α

σ

α

σ

µσλ
α

−

−

+−
= +

−

                (9) 

given that the initial value is 0 0
Y vλ = . In Equation (9), 

2 2
2

0 2C σ µ σ γ
α α

= + , 

2

1 0 0 2C v C µσ
α

= + +  and 
2

2 0 0 2C v C µσ
α

= − +  (see e.g. [20]). 

Behavioral Observations and Network Information 
This is the case of most interest in the study. The lender’s observation 

σ-algebra is Z Y O
t t t= ∨    being the augmentation of Y

t  with discrete 
time ego-network signals. Since the lender’s observation of the network is re-
stricted to borrower i’s ego network, at each time 0t ≥ , with no other addition-
al borrower information, an individual’s credit quality is assumed to have the 
distribution ( )1~ 0,jtX q− . The lender uses the assumed density for all other 
individuals jtX  who are alters to borrower itX . The following lemma gives 
the expected degree (number of direct friends) conditional on the borrower’s 
true credit type. 

Lemma 1 
At each time 0t ≥ , conditional on the meeting process and the borrower’s 

credit quality tX , the expected number of friends ( )|t tXη  is given as  

( )
2

2 11 e
1 1

q
tq Xq

q
+

−

− +
 

Proof. 
Conditioned on the borrower’s true credit type tX  and the meeting process, 

the probability of having a network tie with any other individual is  
( )

( )
2 22

2 12 2e e d e
2π 1

qX st s tq Xqq qs
q

−
+

∞ −− −

−∞

=
+∫               (10) 

Thus the conditional expected number of friends ( )|t tXη  is given by  

( ) ( ) ( )
2 2

2 1 2 11| e e
1 1 1

q q
t tq qX X

t t
q qX

q q
η υ + +

− −
= =

+ − +
 


        (11) 

Proposition 1. 
For any 0,1, , 1k N= −  and 0t > , let 1

k kp −= Λ  denote the precision of 
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the ego-network signals at time kt . Further define the variable  
( )

( ) ( )( ) ( )
1

1 1
kZ

k Z
tk k k k k k

p q
p p q p q p q

θ
λ η−

+ +
=

+ + + + + + +
       (12) 

Then it holds that:  
1) For any [ )1,k kt t t +∈ , the filtered estimate ˆ Z

tX  is Gaussian with the dy-
namics  

( )( )2 2 2ˆ ˆ ˆd d dZ Z Z Z Z
t t t t t tX X X t Yµ δ α σ λ ασ λ− −= − − +         (13) 

whilst the equation of the conditional variance is given as  
2

02

2
02

2
2

1 2
02

2

1 2

e

e

C t

Z k k
t

C t

k k

C C
C

C C

α

σ

α

σ

µσλ
α

−

−

+−
= +

−

                (14) 

with initial values ˆ Z
tkX  and Z

tkλ . 0C  is same as in Equation (9) whilst 
2

1 0 2
Z

k tkC C µσλ
α

= + +  and 
2

2 0 2 .Z
k tkC C µσλ

α
= − +  

2) At information date kt , ,
ˆ Z

t kX  is Gaussian. The mean ,
ˆ Z

t kX  and variance 

,
Z
t kλ  are updated from their respective values before the arrival of ego-network 

signals kt −  to  

,
,

ˆ
ˆ

1

Z
t kZ Z Z k

t k k tk k ik jkZ
j Zktk

X p
X p Z Z

p q
θ λ

λ
−

−
∈−

 
= + +  + + 

∑          (15) 

and variance  
( )

( ) ( )( ) ( )
1

1 1

Z
tk kZ Z

k tk Z
tk k k k k k

p q
p p q p q p q

λ
θ λ

λ η
−

−
−

+ +
=

+ + + + + + +
      (16) 

Proof.  
1) Between two information dates, [ )1,k kt t t +∈ , there is no new arrival of 

ego-network signals. The lender’s σ-algebra is defined as  
{ }, ,Z Z

t t k s kY t s tσ= ∨ < ≤  . Thus we revert to the classical Kalman-Bucy fil-
tering situation with the respective initial values for the conditional mean and 
variances given as ˆ Z

tkX  and Z
tkλ . For this case, the formulations for conditional 

mean and variance follow closely from Equations (7) and (8).  
2) On the information arrival date kt , the lender receives ego-network signals 

kZ  and gets to update the conditional mean and variance of the filtered esti-
mate. To incorporate the ego-network signals into the estimate, Bayesian updat-
ing is carried out since there is no time evolution from kt −  to t. At time kt − , 
the conditional prior distribution of tX  is Gaussian and the signals received 
are also Gaussian. The posterior probability of the borrower’s credit type 

( )|
kt kX Z  is obtained by  

( ) ( )
( ) ( ) ( )

( ) ( ) ( )

, , ,

, , ,

| ,

| , | d

| , d

k k

k k k k k k

k k k k k

t k t k

k t j t t j t t j t

k t j t t j t j t

X X

X X X X X X

X X X X X

∞

−∞
∞

−∞

∝

=

=

∫

∫

Z Z

Z

Z
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The last equality is as a result of the assumption of independence for the jtkX . 

We have ( )
2
,2

1
, e

q
j tk

k
k

X
j t

ij g

X
−

∈

∝ ∏  being the assumed density of any individual 

jX  for j i≠ . Thus the integrand is given by  

( ) ( ) ( )
( )

( )

( ) ( )

( )

2

2

2 22
,2

1 1

1

,

2 2

1
2 2

(a)

(b)

| ,

e e

e e e

|
1

k k k k

Z
tk tk

kZ ik tktk

q k
jk jtk tk jtkj tk

kk k

k

k t j t t jt

X X
p

Z X

p
Z X X XX

j Zij g ij g

tk tk

ij g

X X X X

X

λ

υ

η

−

−

−
− − −

− − − −−

∈∈ ∈

∉

= ×

× × ×

 
× −  

 

∏ ∏ ∏

∏

Z





  




         (17) 

where 
 The first term denotes the product of the conditional prior density (before 

the arrival of network information) and the likelihood function for the ob-
servation ,it kZ .  

 (a) denotes the assumed prior density for jtX  for 1
kt

ij g∈  times the prob-
ability that at time kt  borrower i is friends with the individuals 1,  

kt
j ij g∈  

within her ego-network whose signals are in kZ  and that these friends have 
the signals as collected in kZ   

 (b) denotes the probability that at time kt  borrower i is not friends with 
anyone outside 1

kt
g .  

As →∞ , 0υ → , then by the monotone convergence theorem and ap-
plying lemma 1 we have  

( )
1

|
1 1

k

tk tk

ij g

Xη

∉

 
− →  

 
∏




                      (18) 

Hence,  

( )
( )

( )

( ) ( )

2

2 2
,2

1

2 2

1

2 2

1
2 2

,

| e e e

e e d

Z
tk tk

qkZ ik tk j ttk k
k

k

k
jk jtk tk jtk

k
k k

X X
p

Z X X
t k

ij g

p
Z X X X

j t
j Z ij g

X

X

λ

−

−

−
∞ − − − −

−∞ ∈

− − − −

∈ ∈

∝ × ×

× ×

∏∫

∏ ∏

Z
        (19) 

whereby the integrand is a product of Gaussian densities. Upon integrating out 

jtkX , and matching the terms of tkX  and 2
tkX  we obtain the posterior distri-

bution as Gaussian with the given expectation and variance. The modeling of the 
network tie probability ( )ij tπ  as a probit link function enables the elegant 
formulation of the posterior probability as a Gaussian.  

Lastly, we consider a unique case, whereby the lender does not observe the 
continuous time information but only receives the discrete time ego-network 
signals i.e. when H O= . Thus between network information times [ )1,k kt t t +∈ , 
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the lender receives no information. We thus have the following corollary. 
Corollary 1. 
When the lender’s information set is O

t  we have  
 For [ )1,k kt t t +∈  between information arrival times, the respective condi-

tional mean and variance are given by the equations.  
( ) ( )ˆ ˆe kt tO O

t tkX Xµδ δ− −= + −                   (20) 

( ) ( )( )
2

2 2e 1 e
2

k k
k

t t t tO O
t t

µ µγλ λ
µ

− − − −= + −               (21) 

 At information date kt , it holds that O
tX  is Gaussian with mean and va-

riance 
0
,0 0 0

, 0

ˆ
ˆ

1
t k k

t k k tk k ik jk
j Zktk

X p
X p Z Z

p q
θ λ

λ
−

−
∈−

 
= + +  + + 

∑          (22) 

( )
( ) ( )( ) ( )

0 0 1
1 1

O
tk k

k tk O
tk k k k k k

p q
p p q p q p q

λ
θ λ

λ η
−

−
−

+ +
=

+ + + + + + +
     (23) 

respectively.  
Proof. 
For [ )1,k kt t t +∈ , the proof can be found in corollary 4 of [2]. At information 

date kt , the conditional prior distribution at time kt −  is updated using the 
ego-network signals received from the vector kZ . Following in a similar fashion 
to proposition 1 (part (2)), the conditional prior density is updated to a Gaussian 
posterior density with the given mean and variance.  

4. Properties of the Conditional Variance 

We study the properties of the conditional variance under the various informa-
tion settings discussed in Section 3. We show that inclusion of ego-network sig-
nals leads to better estimates of the hidden process tX . A key result within this 
section is proposition 2 where we show that increasing the frequency of network 
information arrival times leads to the full information case in the limit as 
N →∞  The following lemma shows that the ego-network signals improves the 

lender’s estimate of the credit quality.  
Lemma 2. 
For { },H Y O∈ , [ ]0,t T∈  and 0,1, , 1k N= −   

Z H
t tλ λ≤                            (24) 

Proof. 
The proof similar to proposition 6 of [2], where a detailed proof is available.  
The following proposition shows that as we increase the frequency of arrivals 

of ego-network information i.e. as N →∞  then the variances ,Z O
t tλ λ  tends to 

zero. It is an adaptation of the asymptotic result of [14]. 
Proposition 2. 

Let ( ){ }1

0 1

NN N
k k N

tπ
−

= ≥
=  be a refining sequence of partitions of the interval  
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[ ]0,T  such that information dates are retained i.e. for N N ′≤  then 
( ) ( )N Nπ π ′⊂ . Let { }11, ,

max N N
N k kk N

t t −=
∆ = −



 be the mesh size. Further, let 
( )

0, , 1

N
k k N= −

Λ


 be a sequence of corresponding variances at information times 
N
kt . Assume that there exists a constant 0Λ >  such that N

kΛ ≤ Λ  for all 
0,1, , 1k N= −  and all N ∈ . Then it holds that for all ( ]0,t T∈ , the condi-

tional variances ON
tλ  and ZN

tλ  tend to 0 as N →∞  and 0N∆ → .  
Proof. 
From lemma 2, since 00 Z

t tλ λ≤ ≤  we need only prove the assertion for ,O N
tλ . 

Further, we can assume ego-network information with constant variances i.e. 

kΛ = Λ  for all 0,1, , 1k N= − . This assumption generalizes the proof even for 
the case where kΛ < Λ . For ease of notation we write kt  instead of ( )N

kt  not-
ing the dependence on N. For any 0,1, , 1k N= −  and any [ )1,k kt t t +∈  we 
know that 0,N

tλ  is given by  

( ) ( )( )
2

2 20, e 1 e
2

k k
k

t t t tN O
t t

µ µγλ λ
µ

− − − −= + −                (25) 

where 0
k k

O O
t k tλ θ λ −=  with  

( )
( ) ( )( ) ( )

0 1
1 1

k
k O

tk k k k k k

p q
p p q p q p q

θ
λ η−

+ +
=

+ + + + + + +
         (26) 

Since ( )( ) ( )21 e 2 2kt t
k Nt tµ µ µ− −− ≤ − ≤ ∆  it follows that  
0, 0 0 2N
t k tk Nλ θ λ γ−≤ + ∆                      (27) 

We iterate this inequality for all l k≤  and denote 
( )

{ }0 0

0,1, ,
maxk ll k

θ θ
∈

=


. This 
yields for 0 0

N vλ − =  and [ )1,k kt t t +∈   

( ) ( ) ( )
21 10 0 2 0 0

0 0 0
0 1

kk l k N
t k N k k

l k

v v
γ

λ θ γ θ θ
θ

+ +

=

∆
≤ + ∆ ≤ +

−∑         (28) 

Let ( ]0,u T∈ , 0ε >  and 1p −= Λ . We desire to show that 0
uλ ε<  for a 

suitably chosen N. Define Nk  to be the index for which [ )1,kN kNu t t +∈ . Sup-
pose that for all 0N  there exists a 0N N≥  such that  

{ }0 1

0, 0, 0,min , , , 2
kN

N N N
t t tλ λ λ ε
− − −

≥                   (29) 

Then we have that  

{ } ( )( )
0,

,

1 2
2min 1 1

N
k O N

tk k k pp p
θ

ελ −

≤ ≤
++ +

 

where the minimum is over all ,O N
tkλ − . This yields (with one iteration less)  

0, 2
0

2 2
2

Nk
N

u N
pv

p p
ελ γ

ε ε
   +

≤ + ∆   +   
               (30) 

Note that in this case 0, 1N
kθ <  and Nk →∞  as N →∞ . Thus for all 

0N N≥ , 0, 0N
uλ → . Thus we can choose 0N  such that 0, 2

k

N
t Nλ ε− <  which is a 

contradiction of the assumption in Equation (29). 
Thus there exists a 0N  such that for all 0N N≥  there exists an index set 

N Nj k≤  with 0, 2
jN

N
tλ ε

−
< . For each such N we choose 

N Nj kt t− −≤  as the last 

https://doi.org/10.4236/jmf.2019.93027


S. Sewe et al. 
 

 

DOI: 10.4236/jmf.2019.93027 532 Journal of Mathematical Finance 

 

information arrival time before 
Nkt −  such that 2

jt Nλ ε− < . In the case that 

N Nj k= , then for a suitably large N from Equation (27) implies that 0
uλ ε≤ . 

For the case when N Nj k<  for 1, ,N Nk j k= +   we have that 0, 2
kN

N
tλ ε

−
≤  

and 0, 2
2

N
k p

θ
ε

≤
+

. We can choose a suitable 1 0N N≥  such that  

2 2 < 2N
p

p
εγ ε
ε

 +
∆  

 
. An iteration similar to Equation (28) starting from Nj  

with initial value 0,
j

N
t Nλ −  yields that  

0,N
uλ ε<  

for all 1N N≥  as desired. 

5. Numerical Results 

In this section we provide a brief illustration of our findings on the properties of 
the conditional variance. We assume that the ego-network signals kZ  arrive at 
equidistant time points ,  0,1, , 1kt k N= − . We simulate the processes ,t tX Y  
and kZ  using the parameter values in Table 1 with 0q = . 

To illustrate the impact of the number of alters on the borrower’s conditional 
variances O

tλ  and Z
tλ , Figure 1 plots a comparison between the variances of 

O
tλ  and Z

tλ  with and with no friends. The left panel plots a comparison of the 
variances for the case when the number of friends is constant at zero and five 
respectively. In the right panel, the number of friends is modeled as a Poisson 
random variable with parameter 5ρ = . In both plots, the conditional variances 
for the case when there exists friends’ data in kZ  is lower as compared to the 
case with zero friends. Besides, the perturbations in the conditional variance 
with randomly varying number of friends are well depicted in panel 2 of the plot 
(see Figure 1).  
 

 
Figure 1. Left: plot of variances H

tλ  when no. of friends 0tη =  and 5tη =  Right: 

plot of variances H
tλ  when no. of friends 0tη =  and tη ρ= . 
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Table 1. Model parameter values. 

Mean reversion speed δ  0.05 Drift α  2 

Return’s volatility σ  0.3 Volatility γ  1 

Mean reversion level µ  2.0 Network variance Λ  0.04 

6. Conclusions  

In this article, we have presented stochastic filtering results whereby the hidden 
credit quality process, modeled as an Ornstein-Ulehnbeck equation drives the 
drift process of the borrower’s observed behavior score. We have formulated a 
latent space network model such that the ego-network signals received at dis-
crete fixed times are incorporated into the credit quality filtering by way of 
Bayesian updating. Modeling of network tie probability using the probit link 
function enabled the elegant formulation of the conditional posterior density of 
the hidden process. We have presented explicit results for the conditional mean 
and conditional variance under the various information setups. Further, we have 
presented asymptotic properties of the conditional variance when the frequency 
of the network information arrival times is increased. 

The results in this article thus present a theoretical justification of including 
ego-network data in credit scoring, for a network model based on credit type 
homophily. Future studies may consider network models whereby the network 
ties capture the strength or frequency of interaction between the nodes, instead 
of binary network ties. 
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