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Abstract 
Human sodium-glucose cotransporter 2 (hSGLT2) is a membrane protein 
responsible for glucose reabsorption from the glomerular filtrate in the 
proximal tubule. Inhibition of hSGLT2 has been regarded as a brand new 
therapeutic approach for the treatment of type 2 diabetes mellitus (T2DM) 
due to its non-insulin related characteristics with less side effects. Current 
commercially available hSGLT2 inhibitors are all C-glycoside inhibitors. Pre-
vious studies have reported that N-glycoside inhibitors have better potential 
to serve as new drugs due to their good metabolic stability. In addition, 
non-glycoside inhibitors have been shown to exhibit the capability to over-
come the existing problems of current glycoside inhibitors, including low tis-
sue permeability, poor stability and short serum half-time. Here, we aimed to 
discover novel N-glycoside and non-glycoside hSGLT2 inhibitors by a com-
bination of several computational approaches. A ligand-based pharmaco-
phore model was generated, well validated and subsequently utilized as a 3D 
query to identify novel hSGLT2 inhibitors from National Cancer Institute 
(NCI) and Traditional Chinese Medicine (TCM) databases. Finally, one 
N-glycoside (NSC679207) and one non-glycoside (TCM_Piperenol_A) hSGLT2 
inhibitors were successfully identified, which were proven to exhibit excellent 
binding affinities, pharmacokinetic properties and less toxicity than the 
commercially available hSGLT2 inhibitor, canagliflozin, via molecular dock-
ing, ADMET prediction, molecular dynamics (MD) simulations and binding 
free energy calculations. All together, our results strongly suggest that these 
two compounds have great potential to serve as novel hSGLT2 inhibitors for 
the treatment of T2DM and their efficacies may be further examined by a se-
ries of in vitro and/or in vivo bioassays. 
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1. Introduction 

Diabetes mellitus (DM) has become a severe health problem worldwide and its 
prevalence has rapidly increased over the past decades [1]. DM is a chronic me-
tabolic disease characterized by the disorder of glucose homeostasis, which fur-
ther causes long-term hyperglycemia and the development of high-risk vascular 
complications, including heart failure, nephropathy, retinopathy and neuropathy 
[2]. There are two common types of DM: type 1 diabetes mellitus (T1DM) and 
type 2 diabetes mellitus (T2DM). T1DM results from the absolute lack of insulin 
secretion due to its complete β-cell dysfunction, while T2DM is caused by insu-
lin deficiency and insulin resistance [3]. Nowadays, T2DM accounts for almost 
90% - 95% of DM patients and is extending towards a younger population [4]. 
So far, several commercially available therapeutic agents, such as biguanides, 
sulfonylureas, thiazolidinediones, DPP-IV inhibitors and GLP-1 receptor agon-
ist, have been proven to exhibit hypoglycemic effects for treating T2DM by in-
creasing insulin secretion or insulin sensitivity [5]. However, not all T2DM pa-
tients can be effectively treated by current therapies and these therapeutic agents 
are also limited by several adverse side effects, including weight gain, hypogly-
cemia, gastrointestinal flatulence, diarrhea, edema and lactic acidosis [6] [7]. 
Therefore, development of new therapeutic agents with novel hypoglycemic 
mechanism and fewer side effects is highly desired for the treatment of T2DM. 

Human sodium-dependent glucose co-transporters (hSGLTs) are a group of 
membrane proteins responsible for glucose reabsorption from the glomerular 
filtrate in the proximal convoluted tubule. The mechanism by which hSGLTs 
mediate glucose reabsorption in the kidney is driven by the electrochemical so-
dium gradient between the glomerular filtrate and the proximal convoluted tu-
bule [8]. Among them, hSGLT2, a low-affinity and high-capacity transporter 
expressed exclusively in the top third segment of the proximal convoluted tubule 
of the kidney, is responsible for 90% of renal glucose reabsorption [9] [10]. Inhi-
bition of hSGLT2 induces glucose excretion from proximal convoluted tubule 
into urine and thereby reduces blood glucose concentration. Besides, hSGLT2 
inhibitors have been confirmed to reduce body weight and prevent hypoglyce-
mia [11]. Since hSGLT2 is mainly distributed in the kidney, hSGLT2 inhibitors 
would not cause common discomforts of other T2DM therapeutics agents, such 
as gastrointestinal flatulence, diarrhea and edema [12]. Moreover, recent studies 
have shown that hSGLT2 inhibitors also exhibit the capability to prevent pa-
tients from serious complications, including heart failure, nephropathy and liver 
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disease [13] [14] [15]. Therefore, hSGLT2 inhibitors have been considered as ef-
fective therapeutic agents with less side effects, thus can be served as monothe-
rapy or combined with other hypoglycemic agents due to their distinctive hy-
poglycemic mechanism. 

Phlorizin, an O-glucoside natural product substance, is known to be the first 
hSGLT2 inhibitor [16]. Although phlorizin has sufficient efficacy against 
hSGLT2, it is ultimately considered to be inappropriate as a hypoglycemic agent 
due to gastrointestinal side effects, low oral bioavailability and insufficient selec-
tivity for hSGLT2. Subsequently, several O-glycoside inhibitors were developed 
to increase the selectivity for hSGLT2 but the shortcomings were not signifi-
cantly improved [17]. Due to the fact that C-glycoside inhibitors are more me-
tabolically stable because of their resistance to gastrointestinal β-glucosidases, 
they exhibit better efficacy and have fewer side effects comparing to O-glycoside 
inhibitors [18] [19] [20]. So far, three C-glycoside inhibitors, canagliflozin, da-
pagliflozin and empagliflozin, have been approved by the U.S. Food and Drug 
Administration (FDA) for the treatment of T2DM [21]. Although C-glycoside 
inhibitors exhibit sufficient efficacy, previous studies indicated that N-glycoside 
inhibitors may exhibit better potential to serve as a drug target for the treatment 
of T2DM due to their good metabolic stability, oral bioavailability, and low 
clearance [22] [23]. Comparing to glycoside inhibitors, non-glycoside inhibitors 
show several advantages, such as better tissue permeability, stability, serum 
half-time, less expensive and easier to synthesize [24] [25]. Therefore, develop-
ment of novel N-glycoside and non-glycoside hSGLT2 inhibitors would provide 
greater advance in antidiabetic therapy. 

Over the past few years, since the crystal structure of hSGLT2 is not yet avail-
able, the strategies for developing new hSGLT2 inhibitors are limited to chemical 
synthesis, structure-activity relationships (SAR) analysis, and lead modification 
[26] [27] [28]. These strategies would be high cost and time-consuming in the 
process of new drug development and the results are also limited to the highly 
structural similarity. Thus, in this study, we aimed to discover novel N-glycoside 
and non-glycoside hSGLT2 inhibitors through a combination of several compu-
tational approaches, such as ligand-based pharmacophore modeling, virtual 
screening, homology modeling, molecular docking, ADMET predictions, mole-
cular dynamics (MD) simulations and binding free energy calculations. These 
computational approaches have been successfully and intensively used for the 
rapid assessment of small molecular databases in order to lower the cost and 
speed up the early stage of the new drug development process. Finally, one 
N-glycoside (NSC679207) and one non-glycoside (TCM_Piperenol_A) hSGLT2 
inhibitors successfully identified from National Cancer Institute (NCI) and Tra-
ditional Chinese Medicine (TCM) databases, respectively, were shown to exhibit 
better binding affinities, pharmacokinetic properties and less toxicity comparing 
to the currently commercially available canagliflozin and can be further ex-
amined by a series of in vitro and/or in vivo bioassays to ensure their efficacy. 
Besides, our results also reveal several essential interactions between these two 
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compounds and the binding site of hSGLT2, which may ultimately contribute to 
the design of novel and potent hSGLT2 inhibitors for the clinical use in the fu-
ture. 

2. Materials and Methods 
2.1. Preparation of the Training and Test Set Compounds 

A total of 45 known hSGLT2 inhibitors were collected from the previous 
literatures [29]-[36]. Among them, 22 compounds, whose IC50 values range from 
0.3 to 4600 nM, were selected as the training set (Figure 1(A)); while the re-
maining 23 compounds, whose IC50 values range from 2.39 to 1376 nM, were se-
lected as the test set (Figure 1(B)). The 2D chemical structures of these com-
pounds were sketched by ChemSketch and then converted into 3D structures by 
BIOVIA Discovery Studio (DS) 2017 R2. These compounds were subsequently 
optimized under the ionization state at pH 7.0 using the Prepare Ligand protocol 
of DS 2017 R2. 

2.2. Ligand-Based Pharmacophore Model Generation 

Before starting the pharmacophore model generation process, the conformers of 
each training set compound were generated by the BEST conformation model 
generation method and limited to a maximum conformer value of 255 with a 20 
kcal/mol energy cut off. The multiple acceptable 3D conformations were ob-
tained and then were inputted into DS 2017 R2 to generate 10 possible pharma-
cophore hypotheses using HypoGen module, which include hydrogen bond ac-
ceptor (HBA), hydrogen bond donor (HBD), hydrophobic (HY), ring aromatic 
(RA) and excluded volumes (EV). The chemical features were set to a minimum 
of 1 to a maximum of 5 and the maximum of EV was set to 5, while the other 
parameters were set to default values [37]. These generated hypotheses were 
ranked according to their total cost, correlation coefficient, and root mean 
square deviation (RMSD). In order to discriminate the quality of these hypo-
theses, two theoretical cost values, null cost and fixed cost, were evaluated. The 
null cost represents the highest cost of the model with no correlation, while the 
fixed cost represents the cost of the simplest model which fits all data perfectly. 
According to the above mentioned criteria, the hypothesis with the lowest total 
cost, the lowest RMSD value, and the highest correlation coefficient was consi-
dered as the best pharmacophore model. 

2.3. Ligand-Based Pharmacophore Model Validation 

The quality of the best pharmacophore model was validated by test set predic-
tion and Güner-Henry (GH) score method [38]. 23 test set compounds were 
used to elucidate whether the generated pharmacophore model is proficient to 
predict the activities of the compounds other than the training set compounds. 
GH score method was used to determine how well the generated pharmacophore 
model could differentiate potential hSGLT2 inhibitors from other non hSGLT2  
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Figure 1. Chemical structures of 45 known hSGLT2 inhibitors used in training set and test set along with their experimental ac-
tivity (IC50) values. (A) Compounds 1 - 22 serve as the training set and (B) compounds 23 - 45 compounds serve as the test set. 
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inhibitors. A total of 550 compounds, including 50 active compounds selected 
from the previous literatures [29]-[36] and 500 decoys from DUD-E website, 
were used to calculate the GH score. These 50 active compounds were different 
from the 45 active compounds in the training and test sets. All compounds were 
used to construct the 3D database (maximum of 255 conformations for each 
compound) using Build 3D Database of DS 2017 R2. Then, the generated phar-
macophore model was employed for screening the 3D database using Screen Li-
brary with default parameters. A set of statistical parameters were obtained and 
then the GH score was calculated to evaluate the quality of the generated phar-
macophore model. 

2.4. Virtual Screening 

The overall flowchart showing the entire virtual screening process and the screen-
ing criteria in this study areee presented in Figure 2. First, the NCI and TCM da-
tabases were filtered by the Lipinski rule of five [39] and Veber rule [40] of DS 
2017 R2 to select the compounds with good drug-like properties. Then, the well 
validated pharmacophore model was utilized as a 3D query to identify hSGLT2 
inhibitors using Screen Library with default parameters. Compounds that suc-
cessfully mapped all the features of the pharmacophore model were considered 
as potential hit compounds, which were further submitted to molecular docking. 
The hit compounds with higher binding affinities comparing to that of canaglif-
lozin, the commercially available hSGLT2 inhibitor, were considered as novel 
hSGLT2 inhibitors. Finally, the pharmacokinetic properties and binding stabilities  
 

 
Figure 2. The overall flowchart depicting each stage of the virtual screening process and 
the corresponding screening criteria in this study. The numbers shown in the parentheses 
indicate the number of compounds remained after each screening stage. 

https://doi.org/10.4236/jdm.2019.93009


C.-Y. Chang et al. 
 

 

DOI: 10.4236/jdm.2019.93009 83 Journal of Diabetes Mellitus 
 

of these novel hSGLT2 inhibitors were further evaluated through ADMET pre-
diction and MD simulations, respectively. 

2.5. Homology Modeling 

The amino acid sequence of hSGLT2 (accession code: NP_003032) was obtained 
from the National Center for Biotechnology Information (NCBI) protein se-
quence data bank. Since the crystal structure of vSGLT (PDB ID: 2XQ2) [41], 
isolated from Vibrio parahaemolyticus, has the highest identities and similarities 
with hSGLT2 sequences, it was selected as the template to build the homology 
model of hSGLT2 using Build Homology Models of DS 2017 R2. Subsequently, 
the homology model obtained after 10 ns of MD refinement was evaluated via 
Ramachandran plot [42] on RAMPAGE website and Verify Protein (Pro-
files-3D) protocol of DS 2017 R2 to assess the compatibility of the 3D structure 
with the corresponding amino acid sequence [43]. 

2.6. Molecular Docking 

Molecular docking was used to evaluate the binding affinity and clarify the 
binding mode of the screened compounds. Since vSGLT (PDB ID: 3DH4) [44] is 
the only co-crystallized structure of vSGLT and galactose, the position of galac-
tose was used to identify the binding site of hSGLT2, with a sphere radius of 10 
Å around the binding site being defined as the docking region [45]. CDOCKER 
program [46] of DS 2017 R2 with the CHARMm force field was used for precise 
and flexible docking. All of the docking parameters were set to default. For each 
screened compound, 10 docking poses were generated and the pose with the 
lowest CDOCKER interaction energy was compared to that of canagliflozin. The 
compounds with lower CDOCKER interaction energy than that of canagliflozin 
were finally selected. 

2.7. ADMET Prediction 

In this study, the online sever admetSAR was employed to predict the ADMET 
(absorption, distribution, metabolism, excretion, and toxicity) properties of the 
screened compounds. It contains 22 qualitative classification and 5 quantitative 
regression models with highly predictive accuracy, allowing to estimate ADMET 
properties of the inputted compounds [47]. Each selected compound was con-
verted to the simplified molecular-input line-entry systems (SMILES) format 
and inputted into the admetSAR for prediction. The compounds with superior 
ADMET properties were considered as potential hSGLT2 inhibitors. 

2.8. Molecular Dynamics (MD) Simulation 

The binding stabilities between hSGLT2 structure and the selected compounds 
were evaluated by MD simulations using Gromacs 2016.3 [48]. Combined with 
NVIDIA CUDA 8.0, Antechamber in AMBER tool 2017 and ACPYPE, the 
AMBER99SB-ILDN force field was applied for the hSGLT2 and the general 
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AMBER force field (GAFF) was applied for the screened compounds in the MD 
simulations process [49] [50]. All systems were immersed in a 10.0 Å dodecahe-
dron periodic box with TIP3P water molecules. The sodium and chloride ions 
were added to reach 0.15 M as physiology state. The temperature was heated 
gradually from 0 to 310 K and then equilibrated to 310 K at 1.0 atm pressure. 
The entire system was stabilized through energy minimization and then ex-
ecuted two steps of restrained equilibrations for 200 ps, including NVT equili-
bration and NPT equilibration. Subsequently, the full MD simulations were per-
formed for 150 ns in the equilibrate state. 

2.9. Binding Free Energy Calculation 

The Poisson-Boltzmann and surface area continuum solvation (MM/PBSA) 
method implemented in g_mmpbsa for GROMACS-5.1.X was used to calculate 
the binding free energies (ΔGbinding) between hSGLT2 and the selected compounds 
[51]. ΔGbinding was composed of four individual components, including van der 
Waals (ΔGvdw), electrostatic (ΔGelec), polar (ΔGpolar) and nonpolar (ΔGnonpolar) solva-
tion energy. The solvent accessible volume only (SAV-only) nonpolar model was 
applied for nonpolar solvation energy calculation in MM/PBSA. The tempera-
ture was set to 310 K, while the other parameters were set to default. For a more 
precise binding free energy analysis, the stable last 20 ns in the MD simulation 
trajectory was selected to generate a total of 2000 snapshots. 

3. Results and Discussion 

In the early stage of hSGLT2 inhibitor development, the strategies were com-
mitted to chemical synthesis, structure-activity relationships (SAR) analysis, and 
lead modification. However, no significant improvements in efficacy have been 
made due to the highly structure similarity. Through the aid of several computa-
tional approaches, precise molecular level study of hSGKT2-inhibitors binding 
interaction has become possible. To the best of our knowledge, this study is the 
first attempt to discover novel N-glycoside and non-glycoside hSGLT2 inhibitors 
through a combination of several computational approaches, including li-
gand-based pharmacophore modeling, virtual screening, homology modeling, 
molecular docking, ADMET predictions, molecular dynamics (MD) simulations 
and binding free energy calculations. 

3.1. Pharmacophore Model Generation 

Pharmacophore modeling has been proven to be very successful not only in de-
monstrating the structure-activity relationships between ligands and receptors, 
but also in developing new drugs. A pharmacophore model can be established 
either in a ligand-based manner or in a structure-based manner. While struc-
ture-based pharmacophore model works directly with the 3D structure of the 
target or its complex with a ligand, ligand-based pharmacophore model is de-
rived from the structure of a series of ligands by analyzing the common pivotal 
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features of the superimposed ligands and translated into pharmacophore fea-
tures subsequently. The generated pharmacophore model offers a rational hy-
pothetical view of these significant chemical features responsible for activity. 
Since the crystal structure of hSGLT2 is not yet available, direct structure-based 
pharmacophore modeling is not applicable.  

In this study, a total of 10 pharmacophore hypotheses were established based 
on the training set compounds (Figure 1) using the HypoGen module embed-
ded in DS 2017 R2 and the results are given in Table 1. To choose the best hy-
pothesis, a cost analysis was assessed on the basis of two important theoretical 
cost calculations (represented in bit units): the fixed cost, which represents the 
simplest model that fits all data perfectly, and the null cost, which represents the 
highest cost of a model with no correlation. The total cost of an excellent phar-
macophore model should be close to the fixed cost and far away from the null 
cost. The RMSD value shows the quality of the correlation between the experi-
mental and the estimated activity data. To verify the predictive ability of all hy-
potheses on the training set compounds, the activity of each compound was es-
timated by the regression analysis [52]. According to the above mentioned crite-
ria, the first hypothesis (Hypo1) was chosen to be the best hypothesis characte-
rized by the lowest total cost (110.381), the highest correlation coefficient (R = 
0.919) and the lowest RMSD value (0.993). 

Figure 3(A) and Figure 3(B) show the 3D spatial arrangement and distance 
constraints of the features (three HBDs and one HY) in Hypo1. The features of 
Hypo1 were mapped onto the most active compound 1 with a fit value of 10.616 
and the least active compound 22 with a fit value of 7.452 as shown in Figure 
3(C) and Figure 3(D), respectively. Fit value indicates how well the features in a 
pharmacophore model overlap the chemical features in the molecule and thus  
 
Table 1. The parameters of the top ten HypoGen pharmacophore hypotheses generated 
by the 22 training set compounds using HypoGen module of DS 2017 R2. 

Hypo No. Total cost Cost differencea RMSD Correlation Featuresb Max. fit 

Hypo 1 110.381 30.556 0.993 0.919 HBD, HBD, HBD, HY, 4EV 10.616 

Hypo 2 113.815 27.122 1.145 0.890 HBD, HBD, HBD, HY, 2EV 10.526 

Hypo 3 113.934 27.003 1.157 0.887 HBA, HBD, HBD, HY, 2EV 10.416 

Hypo 4 114.804 26.133 1.136 0.895 HBA, HBD, HBD, HY, 3EV 11.161 

Hypo 5 116.672 24.265 1.238 0.870 HBA, HBD, HY, RA, 3EV 10.759 

Hypo 6 117.635 23.302 1.271 0.863 HBA, HBD, HY, RA, EV 10.779 

Hypo 7 117.675 23.262 1.164 0.898 HBA, HBD, HBD, HY, 4EV 12.029 

Hypo 8 117.981 22.956 1.279 0.862 HBD, HBD, HY, RA, 3EV 10.854 

Hypo 9 120.500 20.437 1.393 0.830 HBD, HBD, HBD, HY, EV 10.390 

Hypo 10 121.092 19.845 1.437 0.815 HBA, HBA, HBD, HY 9.865 

aCost difference = null cost − total cost. null cost = 140.937. Fixed cost = 97.198. All cost values are in bits; 
bHBA, hydrogen bond acceptor; HBD, hydrogen bond donor; HY, hydrophobic; RA, ring aromatic; EV, ex-
cluded volumes. 
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Figure 3. The best pharmacophore model (Hypo 1) of hSGLT2 inhibitors generated by HypoGen 
module of DS 2017 R2. (A) There are 3HBDs and 1HY features for Hypo 1. (B) 3D spatial arrange-
ment and geometric parameters of Hypo 1. (C) The most active compound 1 (0.3 nM) maps onto 
Hypo 1. (D) The least active compound 22 (4600 nM) maps onto Hypo 1. The features of HBD and 
HY are shown in magenta and cyan, respectively. 

 
aid in understanding the chemical meaning of the hypothesis. The difference 
between the fit values of these two compounds may explain the difference in 
their activities. 

3.2. Pharmacophore Model Validations  

The accuracy of Hypo1 is important to achieve success in the subsequent virtual 
screening process, therefore its validity was assessed by test set prediction and 
GH score method. 

3.2.1. Test Set Prediction 
The significance of the selected pharmacophore model depends on its ability to 
predict the biological activity of test set compounds along with the training set 
compounds. A total of 23 structurally diverse test set compounds with a wide 
range of activities were utilized to verify the prediction ability of Hypo1. All the 
test compounds were subjected to the same conformation generation procedures 
as for the training set compounds. Table 2 shows the experimental and esti-
mated activities of the 22 training set compounds and Table 3 shows the expe-
rimental and estimated activities of the 23 test set compounds. 

To verify the predictability power of Hypo1, the estimated activity (pIC50) for 
each individual test set compound was calculated in order to correlate to its ex-
perimental activity using simple regression analysis. The obtained correlation  
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Table 2. Experimental and estimated IC50 values of the training set compounds. 

Compound. No. Exp. IC50 (nM) Est. IC50 (nM) Errora Fit valueb Exp. scalec Est. scalec 

1 0.3 0.74 +2.5 10.616 +++ +++ 

2 0.87 6.77 +7.8 9.322 +++ +++ 

3 1.1 2.26 +2.1 9.798 +++ +++ 

4 2 2.12 +1.1 9.825 +++ +++ 

5 2.2 6.41 +2.9 9.346 +++ +++ 

6 3.1 1.17 −2.6 10.084 +++ +++ 

7 3.9 4.68 +1.2 9.483 +++ +++ 

8 7.1 3.37 −2.1 9.625 +++ +++ 

9 12.4 47.84 +3.9 8.473 ++ ++ 

10 24 6.57 −3.7 9.335 ++ +++ 

11 35.6 198.24 +5.6 7.856 ++ ++ 

12 52 28.95 −1.8 8.691 ++ ++ 

13 67 29.19 −2.3 8.688 ++ ++ 

14 75 99.22 +1.3 8.156 ++ ++ 

15 117.9 346.19 +2.9 7.613 ++ ++ 

16 170 267.46 +1.6 7.725 ++ ++ 

17 530 237.36 −2.2 7.777 ++ ++ 

18 633 338.49 −1.9 7.623 ++ ++ 

19 865 845.51 −1.0 7.226 ++ ++ 

20 1098 318.73 −3.4 7.649 + ++ 

21 1950 636.22 −3.1 7.349 + ++ 

22 4600 502.24 −9.2 7.452 + ++ 

aError factor calculated as the ratio of the experimental activity to the estimated activity; “+” indicates that 
the estimated IC50 is higher than the experimental IC50; “-” indicates that the estimated IC50 is lower than 
the experimental IC50; bFit value indicates how well the compound mapped onto the features of Hypo 1; 
cActivity scale: highly active (IC50 < 10 nM, +++), moderately active (10 nM ≤ IC50 < 1000 nM, ++), and in-
active (IC50 ≥ 1000 nM, +). 

 
Table 3. Experimental and estimated IC50 values of the test set compounds. 

Compound. No. Exp. IC50 (nM) Est. IC50 (nM) Errora Fit valueb Exp. scalec Est. scalec 

23 2.39 3.42 +1.4 9.619 +++ +++ 

24 3.7 5.00 +1.4 9.453 +++ +++ 

25 6.6 4.32 −1.5 9.518 +++ +++ 

26 7.4 3.42 −2.2 9.619 +++ +++ 

27 8.1 6.07 −1.3 9.370 +++ +++ 

28 9.8 6.52 −1.5 9.339 +++ +++ 

29 10 8.51 −1.2 9.223 ++ +++ 

30 11 3.94 −2.8 9.557 ++ +++ 
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Continued 

31 13 18.64 +1.4 8.882 ++ ++ 

32 14 23.28 +1.7 8.786 ++ ++ 

33 14.5 5.92 −2.5 9.380 ++ +++ 

34 17 14.93 −1.1 8.979 ++ ++ 

35 30 19.37 −1.5 8.865 ++ ++ 

36 69 44.39 −1.6 8.505 ++ ++ 

37 92 34.19 −2.7 8.619 ++ ++ 

38 161 47.11 −3.4 8.480 ++ ++ 

39 233 186.73 −1.2 7.881 ++ ++ 

40 241 64.45 −3.8 8.350 ++ ++ 

41 275 133.14 −2.1 8.028 ++ ++ 

42 394 262.75 −1.5 7.733 ++ ++ 

43 740 798.61 +1.1 7.250 ++ ++ 

44 1100 379.60 −2.9 7.573 + ++ 

45 1376 669.61 −2.1 7.327 + ++ 

aError factor calculated as the ratio of the experimental activity to the estimated activity; “+” indicates that 
the estimated IC50 is higher than the experimental IC50; “-” indicates that the estimated IC50 is lower than 
the experimental IC50; bFit value indicates how well the compound mapped onto the features of Hypo 1; 
cActivity scale: highly active (IC50 < 10 nM, +++), moderately active (10 nM ≤ IC50 < 1000 nM, ++), and in-
active (IC50 ≥ 1000 nM, +). 

 
coefficient values were 0.962 and 0.919 for the test set and training set com-
pounds, respectively (Figure 4). The results demonstrate that Hypo1 is a reliable 
pharmacophore model with high predictability power. 

3.2.2. GH Score Method 
The main purpose of the GH score method is to assess the discriminative ability 
of Hypo1 to correctly identify the known active compounds from the inactive 
ones. All the detailed GH score parameters of Hypo1 are summarized in Table 
4. To perform GH score calculation, an external database, consisting of a total of 
550 compounds (D) including 50 actives (A), was utilized to evaluate the discri-
minative ability of Hypo1. After screening this database by Hypo1, 57 com-
pounds were retrieved as hits. Among them, 49 compounds were from the 
known actives (Ha). According to the previous study, the GH score of a good 
screening model must be higher than 0.7 [53]. The GH score of Hypo1 was cal-
culated to be 0.876, indicating that it has the ability in selecting the active com-
pounds among inactive ones.  

3.3. Virtual Screening  

A schematic flowchart of the overall virtual screening process in this study is 
provided in Figure 2. To effectively screen the NCI and TCM databases with 
265,242 and 60,563 compounds, respectively, Lipinski rule of five [39] and Veber  
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Figure 4. Plot of the correlation coefficient (r) between the experimental and the esti-
mated activity values (pIC50) based on Hypo 1 model for the 22 training set compounds 
(blue circle) and the 23 test set compounds (red triangle). 
 
Table 4. Validation of Hypo l pharmacophore model by Güner-Henry (GH) score method. 

Parameter Values 

Total number of compounds in database (D)a 550 

Total number of actives in database (A) 50 

Total number of hit compounds from the database (Ht)b 57 

Total number of active compounds in hit list (Ha) 49 

%Yield of actives (%Y) [(Ha/Ht) × 100] 85.96 

%Ratio of actives (%R) [Ha/A] × 100] 98.00 

False negatives [A − Ha] 1 

False positives [Ht − Ha] 8 

Goodness of hit (GH)c 0.876 

aD is the number of total compounds in database, including 50 active compounds and 500 decoys; bHt is the 
total number of hit compounds in database, including 49 active compounds and 8 decoys;  

c ( )Ha Ht Ha3A Ht 1
4Ht A D A

  −    + × −     × −     
, GH score > 0.7 indicates a good pharmacophore model. 

 
rule [40] were first employed to ensure that the screened compounds are drug-like. 
The remaining 214,792 and 19,026 compounds that passed these rules were sub-
sequently mapped onto Hypo1 to identify potential hSGLT2 inhibitors. Finally, 
1617 and 1193 compounds from NCI and TCM databases, respectively, which 
pass all the criteria mentioned above were subjected to further molecular dock-
ing studies. In this stage, our Hypo1 model shows great capability of efficiently 
identifying potential hits from a large number of compounds. 
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3.4. Homology Modeling 

Homology modeling is an important method of generating the 3D structure of a 
target protein from a closely related template. The accuracy of the obtained 
structural model dramatically depends on the identity and similarity between the 
target and the template proteins. Our sequence alignment results indicate that 
the template vSGLT (PDB ID: 2XQ2) has a sequence identity of 24.0% and a si-
milarity of 47.0% with hSGLT2. It is generally assumed that the sum of the 
BLAST sequence identity and similarity of at least 60% is suggestive of an effec-
tive sequence template. Thus, the crystal structure of vSGLT was herein adopted 
as the template and the pair-wise sequence alignment was used to construct the 
homology model of hSGLT2. The 3D structural model of hSGLT2, including 643 
amino acids, was generated using Build Homology Models of DS 2017 R2. The 
model obtained after 10 ns of MD simulation refinement was further validated 
using a Ramachandran plot (RC) and the Verify Protein (Profiles-3D) protocol. 
The corresponding RC plot showed that 99.5% of the residues in the hSGLT2 
structural model were found in both the most favored and additional allowed 
regions, and only 0.5% of the disfavored residues were found to be located in the 
loop part of the protein. It indicates that the torsion angles of the residues in the 
homology model are reliable [54]. The verification score obtained from Pro-
file-3D upon inspecting the quality of the protein structure geometry was 193.37, 
close to the expected high verification score of 233.98, indicating that this ho-
mology model yields satisfactory results. We further examined that some struc-
tural features of this homology model were consistent with the characteristics of 
the SGLT family, which includes 14 transmembrane helices with inverted repeat 
topology segments (Figure 5). 

3.5. Molecular Docking 

Molecular docking has been intensively used to clarify the binding mode of the 
compounds and to obtain the other information that could be utilized for fur-
ther structural optimization. Although the structural model of hSGLT2 was built 
by homology modeling successfully, the binding site of hSGLT2 is still unde-
fined. So far, vSGLT (PDB ID: 3DH4) [44] is the only co-crystallized structure of 
vSGLT and galactose. Therefore, the position of galactose was used to identify 
the binding site of hSGLT2 in this study. To distinguish the binding affinity of 
each screened compound, CDOCKER interaction energy (kcal/mol) was used as 
the selecting criteria. Three approved hSGLT2 inhibitors, including canagliflo-
zin, dapagliflozin and empagliflozin, were used to determine the possible bind-
ing modes of the selected hSGLT2 inhibitor. These three hSGLT2 inhibitors 
show the identical binding mode in the binding site of hSGLT2 (Figure 6(A)). 
Among them, canagliflozin has the lowest CDOCKER interaction energy of 
−47.66 kcal/mol (Figure 6(C)). Then, the 1607 and 1193 compounds selected 
from NCI and TCM databases, respectively, were docked into the binding site of 
hSGLT2 and the compounds with lower CDOCKER interaction energies than  
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Figure 5. Ramachandran plot of the hSGLT2 homology model. 

 
that of canagliflozin were selected as potential hits, resulting in 332 and 175 
compounds from NCI and TCM databases, respectively. These selected com-
pounds were subjected to visual inspection to confirm their binding modes and 
whether their structural features belong to either N-glycoside or non-glycoside. 

Previous studies have indicated that the hSGLT2 inhibitors fit into the binding 
site of hSGLT2 by interacting with several important residues, such as Asn75, 
His80, Glu99, Ala102, Arg267, Tyr290, Trp291, Gln457, and Pro518 [55] [56] 
[57] [58]. Among these important residues, Asn75, Glu99, Arg267, and Tyr290 
are the most essential key residues since they form a hydrogen bonding network 
with hSGLT2 inhibitors [55] [56] [57] [58]. According to the above screening 
criteria, only 1 N-glycoside and 4 non-glycoside compounds were finally identi-
fied to be potential hSGLT2 inhibitors (Table 5). These screened compounds 
combined with essential key residues and formed stable combinations through 
hydrogen bonds. These selected compounds, which exhibit similar binding 
mode and higher binding affinities than canagliflozin, were further evaluated 
through ADMET prediction followed by MD simulation studies. 
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Figure 6. The binding mode and position of the three commercially available hSGLT2 inhibitors: (canagliflozin (blue), dapagliflo-
zin (yellow) and empagliflozin (purple). (A) Structure of the hSGLT2-inhibitors binding complex. (B) The binding mode of the 
three commercially available hSGLT2 inhibitors in the hSGLT2 binding site. (C) The 2D interaction diagram of canagliflozin with 
hSGLT2, showing the best CDOCKER interaction energy (−47.66 kcal/mol) among these three inhibitors. The important residues 
involved in the hSGLT2 binding are labeled. 

 
Table 5. The NSC and TCM number, 2D structure, category and CDOCKER interaction 
energy of the selected compounds. 

Compound 2D structure Category 
CDOCKER interaction 

energy (kcal/mol) 

Cnangliflozin 

 

C-glycoside −47.66 

NSC679207 

 

N-glycoside −48.33 

NSC727709 

 

Non-glycoside −66.32 
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Continued 

NSC231775 

 

Non-glycoside −55.81 

TCM21610 

 

Non-glycoside −50.85 

TCM_Poperenol_A 

 

Non-glycoside −49.63 

3.6. ADMET Prediction 

Prediction of the compound ADMET properties describes the disposition of a 
pharmaceutical compound within the human body. Considering that most of 
the previously reported hSGLT2 inhibitors failed in their clinical trials due to 
poor ADMET properties, filtering and optimization of the ADMET properties 
in the early stage of the drug development are necessary to avoid failure. In 
this study, the ADMET properties of canagliflozin and the selected 1 
N-glycoside (NSC679207) and 4 non-glycoside (NSC727709, NSC231775, 
TCM21610 and TCM_Piperenol_A) compounds were predicted by the online 
sever admetSAR and the results are presented in Table 6. In terms of absorp-
tion, only NSC231775 have bad property in human intestinal absorption (HIA), 
suggesting oral delivery is infeasible. In terms of toxicity, canagliflozin, 
NSC679207, TCM21610 and TCM_Piperenol_A are all non-mutagenic (AMES 
toxicity test) and non-carcinogenic (carcinogenic profile) [59]. In human heart, 
hERG potassium channels are essential for regulating electrical activity. The 
blockage of hERG channel by drug causes lethal long QT syndrome (LQTS), 
which leads to withdraw from the clinical trials or markets [60]. The results of 
hERG inhibitor prediction I/II showed that TCM21610 is an hERG inhibitor, 
involving high LQTS risk than the others. 

Since the US Food and Drug Administration (FDA) published the first in vi-
tro/in vivo drug interaction guidance documents in 1997 and 1999, respectively, 
off-target transporter interactions and drug-drug interactions (DDIs) have be-
come the major challenges for drug development. CYP450 enzymes-based unan-
ticipated DDIs and drug metabolism problems are also a common cause of ad-
verse drug events (ADE). Interacting with CYP450 enzymes may lead to DDIs, 
hepatotoxicity, reactive metabolite formation, idiosyncratic adverse drug inte-
ractions, and/or even loss the efficacy of drugs. CYP1A2 is related to alcohol 
metabolism, indicating that the inhibition of CYP1A2 results in the reducing of 
alcohol clearance and increases the risk of liver toxicity [61]. The inhibition of 
CYP2C19 will affect the metabolism of other drugs through the CYP2C19 pathway,  
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Table 6. ADMET properties of canagliflozin and the five selected compounds predicted using admetSAR online server. The gray 
shades indicate unfavorable properties. 

Compound 
Property 

Canagliflozin NSC679207 NSC727709 NSC231775 TCM21610 TCM_Piperenol_A 

Human Intestinal Absorptiona + + + - + + 

P-glycoprotein Substrateb + - - + + + 

P-glycoprotein Inhibitor Ic - - - + - - 

P-glycoprotein Inhibitor IIc - - - - + - 

Renal Organic Cation Transporterc - - - - - - 

Blood-Brain Barrierd + + + + - - 

CYP450 2C9 Substrateb - - - - - - 

CYP450 2D6 Substrateb - - - - - - 

CYP450 3A4 Substrateb - + - - - - 

CYP450 1A2 Inhibitorc - - + - - - 

CYP450 2C9 Inhibitorc - - - - - - 

CYP450 2D6 Inhibitorc - - - - - - 

CYP450 2C19 Inhibitorc - - + - - - 

CYP450 3A4 Inhibitorc - - - - - - 

CYP450 Inhibitory Promiscuity high low low low low low 

hERG inhibition Ic - - - - - - 

hERG inhibition IIc - - - - + - 

Ames teste - - + - - - 

Carcinogenicityf - - - + - - 

a+ for positive and - for negative; b+ for substrate and - for non-substrate; c+ for inhibitor and - for non-inhibitor; d+ for penetrable and - for non-penetrable; e+ 
for toxic and - for non-toxic; f+ for carcinogens and - for non-carcinogens. 

 
which is related to the function of platelet in human body. Therefore, CYP2C19 
inhibitors should be carefully used while cooperating with drugs that affect platelet 
aggregation [62]. The level of CYP inhibitory promiscuity inhibition represents 
the risks of causing CYP450 enzymes-based unanticipated DDIs and metabolism 
problems [63]. According to the above information, canagliflozin and NSC727709 
must pay attention to unanticipated DDIs and the risk of hepatotoxicity. 

Based on the ADMET prediction, among the five selected compounds, only 
NSC679207 and TCM_Piperenol_A exhibit better ADMET properties than that 
of canagliflozin, indicating that both compounds exhibit great potential to serve 
as N-glycoside and non-glycoside hSGLT2 inhibitors. 

3.7. MD Simulations 

MD simulations are able to analyze the trajectory of protein-ligand complex 
during the dynamics process to validate the stability of docking results and cal-
culate binding free energies in the entire process. The structures of hSGLT2 
docked with canagliflozin, NSC679207, and TCM_Piperenol_A were further 
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subjected to 150 ns MD simulations to investigate the binding stabilities of these 
three compounds towards hSGLT2. The backbone RMSD of the three com-
pounds and hSGLT2 revealed that an equilibrated and converged state was 
achieved after 50 ns of simulation. Therefore, MD simulations were then ex-
tended to 150 ns in an effort to gauge the stabilities of these three binding sys-
tems [64]. As shown in Figure 7(A), no major fluctuations were observed. Ca-
nagliflozin, NSC679207, and TCM_Piperenol_A were maintained at stable state 
with averaged RMSD values of 3.195 Å, 3.178 Å, and 2.973 Å, respectively in the 
last 10 ns MD simulations. It allows the changes in the conformations of these 
three compounds and the residues of the binding site to be discerned. 

To explore the protein residues flexibility throughout the MD simulation, the 
root-mean-squared fluctuations (RMSF) of individual hSGLT2 residues were cal-
culated. As shown in Figure 7(B), NSC679207 and TCM_Piperenol_A exhibited 
similar RMSF distributions comparing to canagliflozin. In addition, the confor-
mational changes of the above mentioned hSGLT2 key residues (Asn75, Glu99, 
Arg267, and Tyr290) were all very small (Figure 7(C)). Our results show that both 
NSC679207 and TCM_Piperenol_A exhibit stable RMSF distribution, indicating 
that they can sufficiently fix most of the hSGLT2 key residues (Figure 7(C)). The 
results of RMSF analyses suggest that both NSC679207 and TCM_Piperenol_A 
have extremely stable binding stabilities, similar to that of canagliflozin, indicating  
 

 
Figure 7. RMSD and RMSF analysis results during the150 ns MD simulations. (A) RMSD 
values of the backbone atoms for hSGLT2-inhibitors complexes. (B) RMSF values of each 
hSGLT2 residue. (C) RMSF values of each hSGLT2 important residues. 
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that they form tight binding complexes with hSGLT2 during the entire MD si-
mulation processes. 

3.8. Binding Free Energy Calculation and the Analysis of  
Binding Interactions  

In the past, molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) 
or molecular mechanics/generalized Born surface area (MM/GBSA) methods have 
been intensively applied to determine the correlations between the calculated 
free energy and the experimental activity. In this study, the binding free energy 
was calculated using the MM/PBSA method implemented in GROMACS-5.1.X 
2000 snapshots from the last 20 ns of the MD simulations of the complexes of 
hSGLT2 with canagliflozin, NSC679207, and TCM_Piperenol_A were used to 
perform binding free energy (ΔGbinding) calculations and the results are as sum-
marized in Table 7. NSC679207 (−45.30 kcal/mol) and TCM_Piperenol_A 
(−55.19 kcal/mol) showed higher and lower binding free energies, respectively, 
comparing to that of canagliflozin (−52.32 kcal/mol). 

All glycoside hSGLT2 inhibitors contain a glycoside structure, which binds to 
the glucose binding site of hSGLT2 and an aglycone tail, which binds to the wall 
of the hydrophilic cavity leading to enhance the stability [65]. The most important 
binding affinities of the hSGLT2 inhibitors were provided by hydrogen bonding 
network around the glycoside structure. To understand the difference of the 
binding free energies among canagliflozin, NSC679207, and TCM_Piperenol_A, 
the initial binding interactions of these three compounds were revealed through 
their 3D structures and 2D binding interactions diagrams (Figure 8). According 
to Figure 8(A), Figure 8(C), and Figure 8(E), these three compounds exhibit 
the identical binding mode and stably locate in the binding pocket of hSGLT2 
through the above mentioned hydrogen bonding network. The 2D interactions 
(Figure 8(B), Figure 8(D), and Figure 8(F)) also showed that these three com-
pounds are all able to form the essential hydrogen bonds with hSGLT2 through 
several key residues, including Asn75, Glu99, Arg267, and Tyr290. The difference 
of the binding free energies between canagliflozin and NSC679207 (N-glycoside 
compound) are mostly occurred in the term of ΔGvdw, indicating that the difference 
may be mainly attributed in the aglycone side chain instead of the competitive 
binding site. It indicates that although NSC679207 has higher binding free ener-
gy than that of canagliflozin, it is still sufficient to serve as a novel N-glycoside 
hSGLT2 inhibitor. On the other hand, TCM_Piperenol_A (non-glycoside com-
pound) showed great potential to be a promising non-glycoside hSGLT2 inhibitor  
 
Table 7. Binding free energies and their decomposed energy components for canagliflo-
zin, NSC679207 and TCM_Piperenol_A using the MM/PBSA method. 

Compound ΔGvdw ΔGelec ΔGpolar ΔGnonpolar ΔGbinding 

Canagliflozin −47.01 −20.90 54.40 −38.81 −52.32 

NSC679207 −42.63 −20.05 51.98 −34.60 −45.30 

TCM_Piperenol_A −50.55 −4.95 36.31 −36.00 −55.19 
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Figure 8. 3D structures and 2D interaction diagrams of canagliflozin, NSC679207 and TCM_Piperenol_A in the hSGLT2 
binding site. (A) 3D structure of canagliflozin in the hSGLT2 binding site. (B) 2D interaction of canagliflozin with hSGLT2. 
(C) 3D structure of NSC679207 in the hSGLT2 binding site. (D) 2D interaction of NSC679207 with hSGLT2. (E) 3D struc-
ture of TCM_Piperenol_A in the hSGLT2 binding site. (F) 2D interaction of TCM_Piperenol_A with hSGLT2. Hydrogen 
bonds in 3D structures are shown in green. 
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due to its good ADMET preperties, binding stability, and better binding free 
energy than canagliflozin. 

To the best of our knowledge, this is the first attempt to employ a combina-
tion of a series of computational approaches to discovery novel N-glycoside and 
non-glycoside hSGLT2 inhibitors. In this study, a ligand-based pharmacophore 
containing 3 HBDs and 1 HY features was constructed and validated. The sub-
sequent docking results showed that the most impotrtant binding affinities of 
the selected hSGLT2 inhibitors were provided by hydrogen bonding network, 
which is consistent with the previous studies. TCM is by far the largest free 
downloadable database for Chinese herbal medicine in the world. In previous 
studies, the possibility of natural compounds to serve as hSGLT2 inhibitors have 
been revealed ever since the first SGLTs inhibitor, phlorizin, a substance found 
in some fruit trees, was discovered [66]. TCM_Piperenol_A is isolated from Pi-
per cubeba (cubeb pepper), which is mainly grown in the islands of Java and 
Sumatra and usually used as a spicy ingradient. Our study establishes a fast and 
low cost platform to successfully discover novel and N-glycoside and non-glycoside 
hSGLT2 inhibitors from various datebases, which may become potential leads 
for the treatment of T2DM after a series of in vitro and/or in vivo bioassays in 
the future. 

4. Conclusion 

The priority of discovering novel hSGLT2 inhibitors with less side effects has 
been emphasized and increased year by year for the development of T2DM drugs 
[67]. However, the development of hSGLT2 inhibitors is still limited to the 
C-glycoside inhibitors in both commercially available drugs and clinical trials. 
Although the advantages of N-glycoside and non-glycoside inhibitors have been 
reported, the discovery of novel drugs is still high cost and time-consuming. In 
this study, we used highly accurate pharmacophore model and virtual screening 
to retrieve various types of compounds from large databases rapidly. In addition 
to the well established NCI database, the TCM database, which contains abun-
dant Chinese herbal medicines and natural products, was also used as the 
screened database in this study. Finally, NSC679207 and TCM_Piperenol_A, 
which exhibit different chemical scaffolds than that of canagliflozin, were suc-
cessfully identified to possess higher binding affinities towards hSGLT2. Besides, 
they also exhibit good pharmacokinetic properties and low risk in several com-
mon lethal side effects via ADMET prediction. Thus, these two compounds ex-
hibit great potential to serve as novel N-glycoside and non-glycoside hSGLT2 
inhibitors and may be further subjected to a series of in vitro and/or in vivo bio-
assays. Finally, our results also open a new channel leading to a prospective de-
velopment for T2DM therapy. 
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