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Abstract 
The problem of triple diffusive Marangoni convection is investigated in a 
composite layer comprising an incompressible three component fluid satu-
rated, sparsely packed porous layer over which lies a layer of the same fluid. 
The lower rigid surface of the porous layer and the upper free surface are 
considered to be insulating to temperature, insulating to both salute concen-
tration perturbations. At the upper free surface, the surface tension effects 
depending on temperature and salinities are considered. At the interface, the 
normal and tangential components of velocity, heat and heat flux, mass and 
mass flux are assumed to be continuous. The resulting eigenvalue problem is 
solved exactly for linear, parabolic and inverted parabolic temperature pro-
files and analytical expressions of the thermal Marangoni number are ob-
tained. The effects of variation of different physical parameters on the ther-
mal Marangoni numbers for the profiles are compared. 
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1. Introduction 

There are many fluid systems containing more than two components occurring 
in nature and engineering applications. The subject of systems having multi 
components in porous and fluid layers has attracted many researchers due to its 
importance in the study of crystal growth, geothermally heated lakes, earth core, 
solidification of molten alloys, underground water flow, acid rain effects, natural 
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phenomena such as contaminant transport, warming of stratosphere and mag-
mas and their laboratory models and sea water etc. The effect of multicompo-
nent convection is studied by Griffiths [1] [2], Rudraiah and Vortmeyer [3], 
Shivakumara [4], Poulikakos [5], Pearlstein et al. [6] and Lopez et al. [7]. 

For the fluid layer, Chand [8] has applied the linear stability analysis and a 
normal mode analysis to study the triple-diffusive convection in a micropolar 
ferromagnetic fluid layer heated and soluted from below. Suresh Chand [9] has 
investigated the triple-diffusive convection in a micropolar ferrofluid layer 
heated and soluted below subjected to a transverse uniform magnetic field in the 
presence of uniform vertical rotation. Shivakumara and Naveen Kumar [10] 
have investigated the effect of couple stresses on linear and weakly nonlinear 
stability of a triply diffusive fluid layer using a modified perturbation technique. 
Kango et al. [11] have studied the theoretical investigation of the triple-diffusive 
convection in a micropolar ferrofluid layer heated and soluted below subjected 
to a transverse uniform magnetic field in the presence of uniform vertical rota-
tion. Vivek Kumar and Mukesh Kumar Awasthi [12] have considered the prob-
lem of triple-diffusive convection in a horizontal nanofluid layer heated and 
salted from below using linear stability theory and normal mode technique. A 
linear stability analysis is carried out for triple diffusive convection in Oldroyd-B 
liquid and rotating couple stress liquid by Sameena Tarannum and Pranesh [13] 
[14]. 

In porous medium, Suresh Chand [15] has obtained closed-form of solution 
for the rotation in a magnetized ferrofluid with internal angular momentum, 
heated and soluted from below saturating a porous medium and subjected to a 
transverse uniform magnetic field. Salvatore Rionero [16] have studied a triple 
convective-diffusive fluid mixture saturating a porous horizontal layer, heated 
from below and salted from above and below. Kango et al. [17] have studied the 
triple-diffusive convection in Walters (Model B’) fluid with varying gravity field 
is considered in the presence of uniform vertical magnetic field in porous me-
dium. Khan et al. [18] investigated the steady triple diffusive boundary layer free 
convection flow past a horizontal flat plate embedded in a porous medium filled 
by a water-based nanofluid and two salts. Moli Zhao et al. [19] have investigated 
the linear stability of triply diffusive convection in a binary Maxwell fluid satu-
rated porous layer using modified Darcy-Maxwell model. The triply diffusive 
convection in a Maxwell viscoelastic fluid is mathematically investigated in the 
presence of uniform vertical magnetic field through porous medium studied by 
Pawan Kumar Sharma et al. [20] using linearized stability theory and normal 
mode analysis. Jyoti Prakash et al. [21] [22] have studied the magnetohydrody-
namic triply diffusive convection with one of the components as heat, with dif-
fusivity and sparsely distributed porous medium using the Darcy-Brinkman 
model. Rana et al. [23] have studied the triple-diffusive convection in a horizon-
tal layer of nanofluid heated from below and salted from above and below. Goyal 
et al. [24] have studied the triple diffusive natural convection under Darcy flow 
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over an inclined plate embedded in a porous medium saturated with a binary 
base fluid containing nanoparticles and two salts using group theory transfor-
mations. Patil et al. [25] studied a numerical investigation on steady triple diffu-
sive mixed convection boundary layer flow past a vertical plate moving parallel 
to the free stream in the upward direction. A linear stability analysis is per-
formed for the onset of triple-diffusive convection in the presence of internal 
heat source in a Maxwell fluid saturated porous layer studied by Mukesh Kumar 
Awasthi et al. [26]. Raghunatha et al. [27] have investigated the weakly nonlinear 
stability of the triple diffusive convection in a Maxwell fluid saturated porous 
layer. For the composite layers, Sumithra [28] has studied the triple-diffusive 
Marangoni convection in a two layer system and obtained the analytical expres-
sion for the Thermal Marangoni Number. The combined effects of magnetic 
field and non uniform basic temperature gradients on two component convec-
tion in two layer system is investigated by Manjunatha and Sumithra [29] [30]. 

This paper investigates the triple diffusive Marangoni convection in a compo-
site layer and studies the effects of the linear, parabolic and inverted parabolic 
temperature gradients on the corresponding thermal Marangoni numbers. 

2. Mathematical Formulation 

Consider a three different diffusing components with different molecular diffu-
sivities, saturating a horizontally isotropic sparsely packed porous layer of 
thickness md  underlying a three component fluid layer of thickness d. The 
lower surface of the porous layer is considered to be rigid and the upper surface 
of the fluid layer is free at which the surface tension effects depending on tem-
perature and both the species concentrations. Both the boundaries are kept at 
different constant temperatures and salinities. A Cartesian coordinate system is 
chosen with the origin at the interface between porous and fluid layers and the 
z-axis, vertically upwards. The basic equations for fluid and porous layer respec-
tively as 

0∇⋅ =q                                 (1) 

( ) 2
0 P

t
ρ µ∂ + ⋅∇ = −∇ + ∇ ∂ 

q q q                       (2) 

( ) 2T T T
t

κ∂
+ ⋅∇ = ∇

∂
q                          (3) 

( ) 21
1 1 1

C C C
t

κ
∂

+ ⋅∇ = ∇
∂

q                         (4) 

( ) 22
2 2 2

C C C
t

κ
∂

+ ⋅∇ = ∇
∂

q                        (5) 

0m m∇ ⋅ =q                             (6) 

( ) 2
0 2

1 1m
m m m m m m m m mP

t K
µρ µ

ε ε
∂ + ⋅∇ = −∇ + ∇ − ∂ 

q
q q q q           (7) 
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( ) 2m
m m m m m m

T
A T T

t
κ

∂
+ ⋅∇ = ∇

∂
q                     (8) 

( ) 21
1 1 1

m
m m m m m m

C
C C

t
ε κ
∂

+ ⋅∇ = ∇
∂

q                   (9) 

( ) 22
2 2 2

m
m m m m m m

C
C C

t
ε κ
∂

+ ⋅∇ = ∇
∂

q                  (10) 

Here ( ), ,u v w=q  is the velocity vector, 0ρ  is the fluid density, t is the time, 
µ  is the fluid viscosity, P is the pressure for fluid layer, T is the temperature, 
κ  is the thermal diffusivity of the fluid, 1κ  and 2κ  is the solute1 and solute2 
diffusivity of the fluid in the fluid layer, 1C  is the concentration1 or the salinity 
field1 for the fluid, 2C  is the concentration2 or the salinity field2 for the fluid 
in the fluid layer, mP  is the pressure for porous layer, K is the permeability of  

the porous medium, 
( )
( )

0 p m

p f

C
A

C

ρ

ρ
=  is the ratio of heat capacities, pC  is the  

specific heat, ε  is the porosity, 1mκ  and 2mκ  is the solute1 and solute2 diffu-
sivity of the fluid in porous layer, 1 2 ,  m mC C  are the concentration1 and concen-
tration2 for porous layer respectively and the subscripts “m” and “f” refer to the 
porous medium and the fluid respectively. 

The Equations (1) to (10) have a basic steady solution for fluid and porous 
layer respectively.  

( ) ( ) ( ) ( )1 1 2 2, , , ,b b b b bP P z T T z C C z C C z= = = = =q q           (11) 

( ) ( ) ( ) ( )1 1 2 2, , , ,m mb m mb m m mb m m mb m m mb mP P z T T z C C z C C z= = = = =q q  (12) 

( )0 in 0b uT T T
h z z d

z d
∂ −

− = ≤ ≤
∂

                 (13) 

( )0 in 0mb l
m m m m

m m

T T T
h z d z

z d
∂ −
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∂

            (14) 

( ) ( )10 1
1 10 in 0u
b

C C z
C z C z d

d
−
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( ) ( )1 10
1 10 in 0l m
mb m m m

m

C C z
C z C d z

d
−
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2 20 in 0u

b

C C z
C z C z d

d
−
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( ) ( )2 20
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mb m m m
m

C C z
C z C d z

d
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= − − ≤ ≤         (18) 
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m u m l

m m

d T dT
T

d d
κ κ
κ κ

+
=

+
, 1 1 1 1
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1 1

m u m l

m m

d C dC
C

d d
κ κ

κ κ
+

=
+

, 2 2 2 2
20

2 2

m u m l

m m

d C dC
C

d d
κ κ

κ κ
+

=
+

  

are the interface temperature and concentrations, ( )h z  and ( )m mh z  are tem-
perature gradients in fluid and porous layers respectively and the subscript “b” 
denotes the basic state. 

To examine the stability of the system, we give a small perturbation to the 
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system as  

( ) ( ) ( )1 1 1 2 2 2, , , ,b b b b bP P P T T z C C z S C C z Sθ′ ′= + = + = + = + = +q q q  (19) 

( )
( ) ( )1 1 1 2 2 2

, , ,

,
m mb m m mb m m mb m m

m mb m m m mb m m

P P P T T z

C C z S C C z S

θ′ ′= + = + = +

= + = +

q q q
           (20) 

where the primed quantities are the dimensionless one. Introducing (19) & (20) 
are substituted into the (1) to (10), apply curl twice to eliminate the pressure 
term from (2) to (7) and only the vertical component is retained. The variables  

are then nondimensionalised using 
2

0 10 1 20 2, , , ,u u u
d T T C C C C

d
κ

κ
− − −  in the fluid 

layer and 
2

0 1 10 2 20, , , ,m m
l l l

m m

d
T T C C C C

d
κ

κ
− − −  as the corresponding characteristic 

quantities in the porous layer.  
To render the equations nondimensional, we choose different scales for the 

two layers (Chen and Chen [31], Nield [32]), so that both layers are of unit 
length such that ( ) ( ), , , ,x y z d x y z′ ′ ′= , ( ) ( ), , , , 1m m m m m m mx y z d x y z′ ′ ′= − .  

Omitting the primes for simplicity, we get in 0 1z≤ ≤  and 0 1mz≤ ≤  re-
spectively 

( )2 41 W W
Pr t

∂
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∂
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= +∇
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S W S
t

τ
∂

= + ∇
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                       (23) 
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τ
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= + ∇
∂
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2

2 2 4 2ˆm m m m m m
m

W W W
Pr t
β µβ∂
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∂

              (25) 

( ) 2m
m m m m mA W h z

t
θ

θ
∂

= +∇
∂

                 (26) 

21
1 1

m
m m m m

S
W S

t
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= + ∇
∂

                   (27) 
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2 2

m
m m m m

S
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t
ε τ
∂
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∂

                  (28) 

Here, for the fluid layer, Pr ν
κ

=  is the Prandtl number, 1
1

κ
τ

κ
=  is the ratio of 

salute1 diffusivity to thermal diffusivity fluid in fluid layer, 2
2

κ
τ

κ
=  is the ratio 

of salute2 diffusivity to thermal diffusivity fluid in fluid layer. For the porous 

layer, m
m

m

Pr
εν
κ

=  is the Prandtl number, 2
2
m

K Da
d

β = =  is the Darcy number, 

β  is the porous parameter, ˆ mµµ
µ

=  is the viscosity ratio, 1
1

m
m

m

κ
τ

κ
=  is the 
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ratio of salute1 diffusivity to thermal diffusivity of the porous layer, 2
2

m
m

m

κ
τ

κ
=  

is the ratio of salute2 diffusivity to thermal diffusivity of the porous layer, ( )h z  

and ( )m mh z  are the non-dimensional temperature gradients with ( )
1

0

d 1h z z =∫  

and ( )
1

0

d 1m m mh z z =∫ , θ  and mθ  are the temperature in fluid and porous layers  

respectively, S and mS  are the concentration in fluid and porous layers respec-
tively and W and mW  are the dimensionless vertical velocity in fluid and porous 
layer respectively.  

We apply normal mode expansion on dependent variables as follows:  

( )
( )
( )
( )

( )
1 1

2 2

, ent

W W z
z

f x y
S S z
S S z

θ θ
  
  
   =   
  
    

                     (29) 

( )
( )
( )
( )

( )
1 1

2 2

, e m

m m m

m m m n t
m m m

m m m

m m m

W W z
z

f x y
S S z
S S z

θ θ
  
  
   =   
  
    

                  (30) 

with 2 2
2 0f a f∇ + =  and 2 2

2 0m m m mf a f∇ + = . Here a and ma  are the nondi-
mensional horizontal wave numbers, n and mn  are the frequencies. Since the 
dimensional horizontal wave numbers must be the same for the fluid and porous  

layers, we must have m

m

aa
d d
=  and hence ˆ

ma da= . 

Introducing Equation (29) and Equation (30) into the Equations (21) to (28) and 

denoting D
z
∂
=

∂
 and m

m

D
z
∂

=
∂

 then we get an eigenvalue problem consisting  

of the following ordinary differential equations in 0 1z≤ ≤  and 0 1mz≤ ≤  re-
spectively 

( )2 2 2 2 0nD a D a W
Pr

 − + − = 
 

                 (31) 

( ) ( )2 2 0D a n Wh zθ− + + =                    (32) 

( )( )2 2
1 1 0D a n S Wτ − + + =                    (33) 

( )( )2 2
2 2 0D a n S Wτ − + + =                    (34) 

( ) ( )
2

2 2 2 2 2ˆ 1 0m
m m m m m

m

n
D a D a W

Pr
β

µβ
 

− + − − = 
 

             (35) 

( ) ( )2 2 0m m m m m m mD a An W h zθ− + + =                 (36) 

( )( )2 2
1 1 0m m m m m mD a n S Wτ ε− + + =                 (37) 
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( )( )2 2
2 2 0m m m m m mD a n S Wτ ε− + + =                 (38) 

It is known that the principle of exchange of instabilities holds for triple diffusive 
convection in both fluid and porous layers separately for certain choice of para-
meters. Therefore, we assume that the principle of exchange of instabilities holds 
even for the composite layers. In other words, it is assumed that the onset of con-
vection is in the form of steady convection and accordingly we take 0mn n= = . 
We get, in 0 1z≤ ≤  and 0 1mz≤ ≤  respectively  

( )22 2 0D a W− =                        (39) 

( ) ( )2 2 0D a Wh zθ− + =                     (40) 

( )2 2
1 1 0D a S Wτ − + =                     (41) 

( )2 2
2 2 0D a S Wτ − + =                     (42) 

( ) ( )2 2 2 2 2ˆ 1 0m m m m mD a D a Wµβ − − − =               (43) 

( ) ( )2 2 0m m m m m mD a W h zθ− + =                  (44) 

( )2 2
1 1 0m m m m mD a S Wτ − + =                   (45) 

( )2 2
2 2 0m m m m mD a S Wτ − + =                   (46) 

3. Boundary Conditions 

The boundary conditions are nondimensionlised then subjected to normal mode 
analysis and finally they take the form  

( ) ( ) ( ) ( )2 2 2 2
1 1 2 21 1 1 1 0,s sD W Ma M a S M a Sθ+ + + =  

( ) ( ) ( ) ( )1 21 1 1 1 0,W D DS DSθ= = = =  

( ) ( ) ( ) ( ) ( )1 20 0 0 0 0 0,m m m m m m m mW DW D D S D Sθ= = = = =  

( ) ( ) ( ) ( )ˆˆ ˆ0 1 , 0 1 ,m m mTW W TdDW D W= =  

( ) ( ) ( ) ( )2 2 2 2 2ˆˆ ˆ0 1 ,m m mTd D a W D a Wµ+ = +  

( ) ( )( ) ( ) ( ) ( )( )3 2 3 2 2 3 2ˆˆ ˆ0 3 0 1 1 3 1 ,m m m m m m mTd D W a DW D W D W a D Wβ µβ− = + −  

( ) ( ) ( ) ( ) ( )  ( )1 1 1
ˆ0 1 , 0 1 , 0 1 ,m m m mT D D S S Sθ θ θ θ= = =  

( ) ( ) ( )  ( ) ( ) ( )1 1 2 2 2 2 20 1 , 0 1 , 0 1m m m m mDS D S S S S DS D S= = =     (47) 

where  1
1

1

s

s m

S
κ
κ

= ,  2
2

2

s

s m

S
κ
κ

=  are the ratios of solute1 and solute2 diffusivities 

of fluid layer to those of porous layer respectively, ˆ md
d

d
=  = depth ratio, 

ˆ
m

T κ
κ

=  = ratio of thermal diffusivities of fluid, 
( )0 ut T T d

M
T
σ

µκ
−∂

= −
∂

 is the 

Thermal Marangoni number, 
( )10 1

1
ut

s

C C d
M

C
σ

µκ
−∂

= −
∂

 is the solute1 Maran-
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goni number and 
( )20 2

2
ut

s

C C d
M

C
σ

µκ
−∂

= −
∂

 is the solute2 Marangoni number.  

4. Method of Solution 

From Equation (39) and Equation (43), we get W and mW  as  

( ) 1 2 3 4cosh cosh sinh sinhW z A az A z az A az A z az= + + +         (48) 

( ) 5 6 7 8cosh sinh cosh sinhm m m m m m m m m mW z A a z A a z A z A zδ δ= + + +    (49) 

where 
2

2

1
ˆ
m

m
a

δ
µβ
+

=  and ( )1,2, ,8iA s i′ =   are arbitrary constants, ( )W z  

and ( )m mW z  are suitably written as  

( ) [ ]1 1 2 3cosh cosh sinh sinhW z A az a z az a az a z az= + + +       (50) 

( ) [ ]1 4 5 6 7cosh sinh cosh sinhm m m m m m m m m mW z A a a z a a z a z a zδ δ= + + +  (51) 

where  

6 12 7 13 6 10 7 11 6 5 7 6 8
1 2 3

9 7

, , ,ˆˆ
a a a a a a

a a a
Td

∆ + ∆ ∆ + ∆ ∆ + ∆ −∆
= = =

∆ ∆
 

7 17
4 6 5 6 19 7

18

, , ,m

m

a
a a a a a

a
δ− ∆

= − = = ∆ =
∆

 

1 2
sinh

cosh cosh , sinh ,m m
m m m

m

a
a

a
δ

δ δ∆ = − ∆ = −  

( )3 4sinh sinh , cosh cosh ,m m m m m m ma a aδ δ δ δ∆ = − ∆ = −  

( )2 2 2
5 cosh 2 cosh ,m m m m ma a aδ δ∆ = + −  

( )2 2
6 sinh 2 sinh ,m m m m m ma a aδ δ δ∆ = + −  

2 2 2
3 3 2

7 8 9

ˆ ˆˆ ˆ2 2 ˆˆ, , 2 ,
ˆ ˆ

aTd a Td a Td β
µ µ

∆ = ∆ = ∆ = −  

2 2
10 100ˆsinh 2 sinh sinh ,m m m m m ma a a aµβ δ δ∆ = + − + ∆  

( )2 3 2
100 ˆ sinh 3 sinh ,m m m m maµβ δ δ δ δ∆ = −  

2 2
11 110ˆcosh 2 cosh cosh ,m m m m m ma a a aµβ δ δ∆ = + − + ∆  

( )2 3 2
110 ˆ cosh 3 cosh ,m m m m maµβ δ δ δ δ∆ = −  

10 11
12 3 13 4

9 9

, ,a a
∆ ∆

∆ = ∆ − ∆ = ∆ −
∆ ∆

 

10 7 5 912
14

7 9

cosh
sinh ,ˆˆ

a a
Td

 ∆ ∆ + ∆ ∆∆
∆ = +  ∆ ∆ 

 

13 11 7 6 9
15

7 9

cosh
sinh ,ˆˆ

a
a

Td
 ∆ ∆ ∆ + ∆ ∆

∆ = +  ∆ ∆ 
 

8
16 17 14 1 16

7

sinh ˆcosh , ,
a

a T
∆

∆ = − ∆ = ∆ −∆ ∆
∆
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2 17
18 2 14 1 15 19

1 18

1 ˆ, .T
 ∆ ∆

∆ = ∆ ∆ −∆ ∆ ∆ = − ∆ ∆ 
 

We get the species concentration for fluid layer 1S , 2S  from (41) and (42) 
also from (45) and (46) species concentration for porous layer 1mS , 2mS  as  

( ) ( )
1 1 12 13

1

cosh sinh
f z

S z A a az a az
τ

 
= + + 

 
           (52) 

( ) ( )
2 1 16 17

2

cosh sinh
f z

S z A a az a az
τ

 
= + + 

 
           (53) 

( ) ( )
1 1 14 15

1

cosh sinh m m
m m m m m m

m

f z
S z A a a z a a z

τ
 

= + + 
 

       (54) 

( ) ( )
2 1 18 19

2

cosh sinh m m
m m m m m m

m

f z
S z A a a z a a z

τ
 

= + + 
 

       (55) 

where 

( ) ( ) ( )1 2 3 4, ,m mf z R R f z R R= − = − +  

( ) ( )1 1 3 3 12 cosh sinh ,
4

zR a aza az a aza az
a

 = − + −   

( )2 2sinh cosh ,
2
zR az a az
a

= +  

( )3 6 72 2

1 cosh sinh ,m m m m
m m

R a z a z
a

δ δ
δ

= +
−

 

( )4 4 5sinh cosh ,
2

m
m m m m

m

z
R a a z a a z

a
= +  

 ( )12 1 14 15 27cosh sinh ,m ma S a a a a= + − ∆  

( )13 15 14 28
1 cosh sinh ,m m m ma a a a a a a
a

= + + ∆  

 ( )30 29
14 15 16 2 18 19 32

31

, , cosh sinh ,m m
m

a a a S a a a a
a

∆ ∆
= = = + − ∆
∆

 

( )17 18 19 33
1 sinh cosh ,m m m ma a a a a a a
a

= + + ∆  

[ ]


36 35 20 1
18 19 26 22 27

37 1 1

1, , , ,ˆ
m m

S
a a

a Tτ τ
∆ ∆ ∆

= = ∆ = ∆ ∆ =
∆

 

( )2 1
28 4 5 2802

1 1

21 1 1 sinh cosh ,
24 m m

m m

aa a a a a a
aaτ τ

 − ∆ = − + + ∆  
   

 

( ) ( )280 5 4 6 72 2

1 sinh cosh sinh cosh ,
2

m
m m m m

m m

a a a a a a
a

δ
δ δ

δ
∆ = + + +

−
 

5 7
29 2 2

1

1 ,
2

m

m m m m

a a
a a

δ
τ δ

 
∆ = + 

− 
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30 26 28 27 29 300cosh sinh cosh cosh ,ma a a a a∆ = ∆ −∆ + ∆ −∆ + ∆  

( )29
300 1 sinh sinh ,m

m

S a a a
a
∆

∆ = −  







1 2 27
31 1 32

2 1

sinh cosh cosh sinh , ,m
m m m

m

S
S a a a a a a

S
τ
τ

∆
∆ = + ∆ =  

( )2 1
33 4 5 2802

2 2

21 1 1 sinh cosh ,
24 m m

m m

aa a a a a a
aaτ τ

 − ∆ = − + + ∆  
   

 

[ ] 5 7
34 26 1 35 2 2

22 2 2

1 1, ,
2

m

m m m m

a a
a a

δ
τ

τ τ δ
 

∆ = ∆ ∆ = + 
∆ − 

 

36 34 33 32 35 360cosh sinh cosh cosh ,ma a a a a∆ = ∆ −∆ + ∆ −∆ −∆  

( )35
360 2 sinh sinh ,m

m

S a a a
a
∆

∆ = −  



37 2 sinh cosh cosh sinhm m mS a a a a a a∆ = +  

4.1. Linear Temperature Profile  

For this case  

( ) ( ) 1m mh z h z= =                        (56) 

Substituting Equation (56) into the heat Equation (40) and Equation (44), we get 
θ  and mθ  as  

( ) ( )1 8 9cosh sinhz A a az a az f zθ = + +                (57) 

( ) ( )1 10 11cosh sinhm m m m m m m mz A a a z a a z f zθ  = + +         (58) 

where  

( )8 10 11 20
ˆ cosh sinh ,m ma T a a a a= + − ∆  

( )9 10 11 21
1 sinh cosh ,m m m ma a a a a a a
a

= + − ∆  

2324
10 11

25

, ,
m

a a
a
∆∆

= =
∆

 

( ) ( )20 4 5 7 62 2

ˆ ˆ
sinh cosh sinh cosh ,

2 m m m m
m m m

T Ta a a a a a
a a

δ δ
δ

∆ = + + +
−

 

( )2 1
21 4 5 3302

2 1 sinh cosh ,
24 m m

m

aa a a a a a
aa

− ∆ = − + + + ∆ 
 

 

( )( ) ( )( )2 2
22 3 1 2 2202

1 1 2 sinh 1 2 cosh ,
4

a a a a a a aa a
a

 ∆ = − + + − + + ∆   

( ) ( )220 1 2 3
1 2 sinh 2 cosh ,

4
a aa a a a a

a
 ∆ = + + +   

5 7
23 2 2 ,

2
m

m m m

a a
a a

δ
δ

∆ = +
−
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24 22 21 20 23 240cosh sinh cosh cosh ,ma a a a a∆ = ∆ + ∆ + ∆ + ∆ −∆  

( )23
240

ˆ sinh sinh ,m
m

Ta a a
a
∆

∆ =  

25
ˆ sinh cosh cosh sinh .m m mTa a a a a a∆ = +  

The Thermal Marangoni number for this model obtained from (47)1 and is 
found to be  

1 2 3
1

4

M
Λ +Λ +Λ

= −
Λ

                      (59) 

where  

( ) ( )2 2 2 2
1 1 3 3 2 12 cosh 2 sinh ,a a a aa a a a a a aa aΛ = + + + + +  

2 1
2 1 12 13

1

cosh sinh ,sM a a a a a
τ

 Ω
Λ = + − 

 
 

2 1
3 2 16 17

2

cosh sinh ,sM a a a a a
τ

 Ω
Λ = + − 

 
 

[ ]2
4 8 9 1cosh sinh ,a a a a aΛ = + −Ω  

( ) ( )1 1 3 2 1 32

1 2 sinh 2 cosh
4

a aa a a aa a aa a
a

 Ω = + − + − +   

4.2. Parabolic Temperature Profile  

We consider the profile as following (Sparrow et al. [33]):  

( ) ( )2 and 2m m mh z z h z z= =                     (60) 

Substituting Equation (60) into the heat Equation (40) and Equation (44), we get 
θ  and mθ  as  

( ) ( )1 20 21cosh sinhz A a az a az L zθ = + +                (61) 

( ) ( )1 22 23cosh sinhm m m m m m m mz A a a z a a z L zθ  = + +          (62) 

where 

( ) ( ) ( ) ( )5 6 7 8, ,m mL z R R L z R R= − + = − +  

22
2 2

5 2 2sinh cosh ,
2 22 2

a z a zz zR az az
a aa a

  
= − + −  
   

 

( ) ( )2 3 2 2 3 2
1 3 3 1

6 3 3

2 3 3 2 3 3
sinh cosh ,

6 6

a z z a aa z a z z a aa z
R az az

a a

   + − + −
   = +
   
   

 

( )
2

7 4 5 70sinh cosh ,
2

m
m m m m

m

z
R a a z a a z R

a
= + −  

( )70 5 42 sinh cosh ,
2

m
m m m m

m

z
R a a z a a z

a
= +  

( )7 6
8 802 2

2 sinh cosh
,m m m m m

m m

z a z a z
R R

a
δ δ
δ

+
= −

−
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( )
( )

6 7
80 22 2

4 sinh cosh
,m m m m m

m m

a z a z
R

a

δ δ δ

δ

+
=

−
 

( )20 22 23 38
ˆ cosh sinh ,m ma T a a a a= + − ∆  

22 23 39 42 41
21 22 23

43

sinh cosh
, , ,m m m m

m

a a a a a a
a a a

a a
+ − ∆ ∆ ∆

= = =
∆

 

( )38 4 5 380 381
1ˆ sinh cosh ,

2 m m
m

T a a a a R
a

 
∆ = + − + ∆ 

 
 

( )380 5 42

1 sinh cosh ,
2 m m

m

a a a a
a

∆ = +  

( )
( )381 6 7 38222 2

4
sinh cosh ,m

m m

m m

a a
a

δ
δ δ

δ
∆ = + + ∆

−
 

( )382 7 62 2

2 sinh cosh ,m m
m m

a a
a

δ δ
δ

∆ = +
−

 

( )
( )3

39 6 7 390 3913 22 2

2
sinh cosh ,

2
m

m m

m m

a a
a a

a a

δ
δ δ

δ

− ∆ = − + + + ∆ + ∆ 
  −

 

( )( )2
5 44 5

390 2

1 sinh coshsinh cosh
,

2 2
m m mm m

m m

a a a a aa a a a
a a

− ++
∆ = +  

( )
( )

( )
2 2

391 7 622 2

2
sinh cosh ,m m

m m

m m

a
a a

a

δ
δ δ

δ

+
∆ = − +

−
 

2 2
2 2 2

40 4002 2

1 1sinh cosh ,
2 22 2

a a a aaa a
a aa a

   − −
∆ = + + + + ∆   

  
 

( ) ( )2 2
1 3

400 4013

3 1 2 3
sinh ,

6

a a aa a
a

a

 + + −
 ∆ = + ∆
 
 

 

( ) ( )2 2
3 1

401 3

3 1 2 3
cosh ,

6

a a aa a
a

a

 + + −
 ∆ =
 
 

 

( )
( )

22 2
64

41 2 22 2

2
,

2
m m

m m m

a aa
a a

δ

δ

+
∆ = − −

−
 

42 40 39 38 41 420cosh sinh cosh cosh ,ma a a a a∆ = ∆ + ∆ + ∆ −∆ + ∆  

( )41
420 1 43 25sinh sinh , .m

m

S a a a
a
∆

∆ = − ∆ = ∆  

The thermal Marangoni number for this model obtained from (47)1 and is 
found to be  

1 2 3
2

5

M
Λ +Λ +Λ

= −
Λ

                     (63) 
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where  

[ ]2
5 20 21 3cosh sinh ,a a a a aΛ = + −Ω  

[ ]3 9 103

1 ,
6

R R
a

Ω = +  

( )( )2
9 2 3 1 13 3 2 sinh ,R a a a a a a a a= − − + +  

( )( )2
10 2 1 3 33 1 3 2 cosh .R a aa a a a a a= − − + +  

4.3. Inverted Parabolic Temperature Profile  

We have  

( ) ( ) ( ) ( )2 1 and 2 1m m mh z z h z z= − = −               (64) 

Substituting Equation (64) into the heat Equation (40) and Equation (44), we get 
θ  and mθ  as  

( ) ( )1 24 25cosh sinhz A a az a az zθ = + +Ψ              (65) 

( ) ( )1 26 27cosh sinhm m m m m m m mz A a a z a a z zθ  = + +Ψ         (66) 

where 

( ) ( ) ( ) ( )11 12 13 14 15 16 17, ,m mz R R R z R R R RΨ = − + + Ψ = − + + +  

22
2 2 2

11 2 2sinh cosh ,
2 22 2

a z a z a zz z zR az az
a a a aa a

  
= − + + − +  
   

 

( )
2 3

12 1 33 sinh cosh ,
2 3 2
z z zR a az a az
a a a

 
= − − + 
 

 

( )
2

13 3 12 sinh cosh ,
2

z zR a az a az
a

 −
= + 
 

 

( )
2

14 4 5sinh cosh ,
2

m m
m m m m

m m

z z
R a a z a a z

a a
 

= − + 
 

 

( )15 5 42 sinh cosh ,
2

m
m m m m

m

z
R a a z a a z

a
= +  

( ) ( )16 7 62 2

2 1
sinh cosh ,m

m m m m
m m

z
R a z a z

a
δ δ

δ
−

= +
−

 

( )
( )17 6 722 2

4
sinh cosh ,m

m m m m

m m

R a z a z
a

δ
δ δ

δ
= +

−
 

( )24 26 27 44
ˆ cosh sinh ,m ma T a a a a= + − ∆  

( )25 27 26 45
1 cosh sinh ,m m m ma a a a a a a
a

= + + ∆  

48 47
26 27

49

, ,
m

a a
a

∆ ∆
= =
∆
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( )44 440 5 42

1 sinh cosh ,
2 m m

m

a a a a
a

∆ = ∆ + +  

( )440 4 5 441
1 sinh cosh ,

2 m m
m

a a a a
a

∆ = + + ∆  

( )
( )441 6 722 2

4
sinh cosh ,m

m m

m m

a a
a

δ
δ δ

δ
∆ = +

−
 

( )2
2 1 3

45 450 4513

2 1
,

2
a a a a a

a
 + − −

∆ = − ∆ −∆  
 

 

( )450 4 5
1 sinh cosh ,

2 m m
m

a a a a
a

∆ = +  

( )
2

451 5 4 4522

1
sinh cosh ,

2
m

m m
m

a
a a a a

a
+

∆ = + + ∆  

( )
( )

( )
2 2

452 7 622 2

2
sinh cosh ,m m

m m

m m

a
a a

a

δ
δ δ

δ

+
∆ = +

−
 

2 2
2 2 2

46 4602 2

1
sinh cosh ,

2 2
a a a a a aaa a

a a
+ + + +

∆ = + − ∆  

3 31 1
460 3 3sinh cosh ,

6 62 2
a aa aa a

a a
   ∆ = + + +   
   

 

( )
2 2

5 74
47 62 2 2 22 2

2
2 ,

2
m m m

mm m mm m

a a aa a
aa aa

δ δ
δδ

+
∆ = + + +

−−
 

48 46 49 44 47 480cosh sinh cosh cosh ,ma a a a a∆ = ∆ −∆ + ∆ −∆ −∆  

( )47
480 49 25

ˆ sinh sinh , .m
m

Ta a a
a
∆

∆ = ∆ = ∆  

The thermal Marangoni number for this model obtained from (47)1 and is 
found to be  

1 2 3
3

6

M
Λ +Λ +Λ

= −
Λ

                      (67) 

where 

[ ]2
6 24 25 4cosh sinh ,a a a a aΛ = + −Ω  

( )( )2
4 3 1 183

1 3 cosh sinh ,
6

a a a a a R
a

 Ω = − + +   

( ) ( )18 2 22

1 sinh 1 cosh
2

R a a a aa a
a

= + + +    

5. Results and Discussion 
The Thermal Marangoni numbers 1M  for linear, 2M  for parabolic and 3M  
for inverted parabolic temperature profiles are obtained. The constraints are drawn 
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against the depth ratio d̂ . The dimensionless fixed values are ˆ 1.0T = , ˆ 1.0S = , 
1.0a = , 0.03β = , 1 10sM = , 2 1sM = ,  

1 2 1 2 1 2 0.25m m S Sτ τ τ τ= = = = = =  
and ˆ 2.5µ = .  

The effects of the parameters 

1 1 1 1ˆ, , , , , ,m sa S Mβ µ τ τ  and 2sM  on all the 
three thermal Marangoni numbers are depicted in Figures 1 to 8. The main obser-
vation that the thermal Marangoni numbers of all the three profiles, the inverted  
 

 
Figure 1. The effects of horizontal wave number a. 

 

 
Figure 2. The effects of porous parameter β . 

 

 
Figure 3. The effects of viscosity ratio µ̂ . 
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Figure 4. The effects of 1τ .  

 

 
Figure 5. The effects of 1mτ .  

 

 

Figure 6. The effects of 1S .  

 
parabolic profile is the most stable one and the linear profile is the most unstable 
one as the thermal Marangoni numbers are highest and lowest respectively, for a 
given set of fixed values of parameters, specially for porous layer dominant sys-
tems. For fluid dominant system, there is no much change in the thermal Ma-
rangoni numbers for all the profiles. 

The variations of a, horizontal wave number on the thermal Marangoni 
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Figure 7. The effects of solute1 Marangoni number 1sM .  

 

 
Figure 8. The effects of solute2 Marangoni number 2sM .  

 
numbers 1 2,M M  and 3M  are respectively shown in Figures 1(a)-(c) for 

1.0,1.1a =  and 1.2. We observed that the thermal Marangoni number for the 
inverted parabolic profile is larger than those for the linear and parabolic profiles. 
For all the profiles, it is evident from the graph that an increase in the value of a, 
the thermal Marangoni number increases and its effect is to stabilize the system. 

The variations of the porous parameter β  on the three thermal Marangoni 
numbers are depicted Figures 2(a)-(c). The curves for 0.03,0.04,0.05β = . In-
crease in the value of β , i.e., increasing the permeability, the thermal Maran-
goni numbers decrease for all the three profiles. Hence the surface tension dri-
ven triple diffusive convection occurs earlier on increasing the porous parameter, 
which is physically reasonable, as there is more way for the fluid to move. So, the 
system is destabilized. 

Figures 3(a)-(c) show the variations of viscosity ratio µ̂  for the values 
ˆ 2.5,3.0,3.5µ = . Increase in the value of µ̂ , the values of the thermal Marango-

ni numbers 1 2,M M  and 3M  increases. So, the increase in the values of vis-
cosity ratio is to stabilize the system and hence the surface tension driven triple 
diffusive convection is delayed. 

Figures 4(a)-(c) display the effects of 1τ  is the ratio of salute1 diffusivity to 
thermal diffusivity fluid in fluid layer for 1 2,M M  and 3M  respectively for the 
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values 1 0.25,0.50,0.75τ = . For all the three profiles, there is a increase in the 
values of the thermal Marangoni numbers. Increasing the value of 1τ  the sur-
face tension driven triple diffusive convection becomes slow and hence the sys-
tem can be stabilized. 

Figures 5(a)-(c) display the variations of the value of 1mτ  is the ratio of sa-
lute1 diffusivity to thermal diffusivity of the porous layer for the values 

1 0.25,0.50,0.75mτ = . Increasing this ratio, the thermal Marangoni numbers in-
crease for all the three profiles. So, the surface tension driven triple diffusive 
convection becomes slow and hence the system can be stabilized. 

Figures 6(a)-(c) show the effects of ratio of solute1 diffusivity of the fluid in 
the fluid layer to that of porous layer 1 0.25,0.50,0.75S = . Increasing this ratio, 
for all the three profiles, there is a small increase in 1 2,M M  and 3M  so, the 
surface tension driven triple diffusive convection becomes slow and hence the 
system can be stabilized. 

Figures 7(a)-(c) show the effects of the 1sM  is the solute1 Maran-goni 
number for 1 10,50,100sM = . By increasing the values of Solute1 Marangoni 
numbers, the thermal Marangoni numbers increase for all the three temperature 
profiles. So, the surface tension driven triple diffusive convection can be delayed 
by increasing solute Marangoni number, hence the system can be stabilized. 

Figures 8(a)-(c) illustrate the effects of the 2sM  is the solute2 Marangoni 
number for 2 10,25,50sM = . By increasing the values of Solute2 Marangoni 
numbers, the thermal Marangoni numbers decrease for all the three temperature 
profiles. So, the surface tension driven triple diffusive convection can be preponed 
by increasing solute Marangoni number, hence the system can be destabilized. 

6. Conclusions 

1) The inverted parabolic temperature profile is the most suitable for the situ-
ations demanding the control of Marangoni convection, whereas the linear and 
parabolic profile is suitable for the situations where the convection is needed.  

2) By increasing the values of 

1 1 1 1ˆ, , , , ,m sa S Mµ τ τ  and by decreasing the val-
ues of β  and 2sM  the surface tension driven triple diffusive convection in a 
composite layer under microgravity condition can be delayed and hence the sys-
tem can be stabilized.  

3) In the manufacture of pure crystal growth, our work can be useful. The 
people who are manufacturing crystals can refer this paper. This can give them 
an initial insight into the effects of parameters in the multicomponent crystal 
growth problems.  
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