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Abstract 
To evaluate the performance of a photovoltaic panel, several parameters must 
be extracted from the photovoltaic. These parameters are very important for 
the evaluation, monitoring and optimization of photovoltaic. Among the 
methods developed to extract photovoltaic parameters from current-voltage 
(I-V) characteristic curve, metaheuristic algorithms are the most used nowa-
days. A new metaheuristic algorithm namely enhanced vibrating particles 
system algorithm is presented here to extract the best values of parameters of 
a photovoltaic cell. Five recent algorithms (grey wolf optimization (GWO), 
moth-flame optimization algorithm (MFOA), multi-verse optimizer (MVO), 
whale optimization algorithm (WAO), salp swarm-inspired algorithm (SSA)) 
are also implemented on the same computer. Enhanced vibrating particles 
system is inspired by the free vibration of the single degree of freedom sys-
tems with viscous damping. To extract the photovoltaic parameters using 
enhanced vibrating particles system algorithm, the problem can be set as an 
optimization problem with the objective to minimize the difference between 
measured and estimated current. Four case studies have been implemented 
here. The results and comparison with other methods exhibit high accuracy 
and validity of the proposed enhanced vibrating particles system algorithm to 
extract parameters of a photovoltaic cell and module. 
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Single/Double Diode Model 

1. Introduction 

Many disadvantages affect the availability of fossil fuels: the fluctuating prices, 
the environmental pollution and the fact that they are not abundant [1]. The 
Energy produced by the sun is the most widespread, free and clean among all 
renewable energy resources. In recent years, interest to use PV as power genera-
tion has increased because of its many advantages [2]. Photovoltaic solar instal-
lations around the world are down from 89.5 GW in 2012 to just over 303 GW 
in 2016 [3]. The PV designers need reliable and accurate tools to predict the 
power produced by a PV [4]. A PV array comprises several photovoltaic cells 
connected in series and parallel according to the output power desired. Cells are 
made from semiconductor materials that produce an electric current when illu-
minated; the intensity of the current depends on the quantity of solar irradiance 
[5] [6]. Many factors like solar radiation [7], location latitude influence the out-
put power of the solar system [8]. 

To design and assess the operation of a PV system, a PV model should be im-
plemented with appropriate accurateness that one can employ to predict the relia-
ble I-V and P-V output characteristics under normal operation [9]. To do this, 
many models have been developed in the literature. Several parameters need to be 
accurately extracted with good precision for the purpose to evaluate the perfor-
mance of a PV system. These intrinsic parameters are: saturation current, series 
resistance, diode ideality factor saturation current, generated photocurrent and 
shunt resistance. As output power is proportional to solar irradiance, an estimate 
of the intrinsic parameters of the PV is necessary in order to evaluate its perfor-
mance [10]. To extract these intrinsic parameters, we can use either the manufactur-
er’s datasheet or experimentally measure the voltage and current from the PV [11]. 

Many methods in the literature have been developing to extract PV parame-
ters. These methods can be classified into three categories: analytical methods, 
numerical methods and evolutionary methods. In the analytical method, a set of 
transcendental equations is solved to extract parameters from solar cell [12]. The 
main advantage of the analytical method is the speed of calculation and reasona-
bly accurate results. Analytical methods are simple. They have a reduced calcula-
tion time. Sometimes, just one iteration is necessary to reach the result [10]. 

Explicit modeling from current and voltage characteristic is used by [13] where 
from a single diode model, a Pade’s approximate method is used to extract the pa-
rameters. In [14], Lambert W-function is used to extract parameters. In [15], the 
author used Taylor’s series expansion to extract the five parameters in the single 
diode model. [16] developed a sample model to extract just four parameters with-
out shunt resistance. In [17], analytical methods are compared with a curve-fitting 
tool method, and the result shows that the analytic method is more accurate. Ana-
lytical methods work properly under standard weather conditions; but when 
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weather conditions change, analytical methods become ineffective [18]. 
Numerical extraction techniques based on some algorithm fit the points on 

the PV characteristic curve. Compared to the analytical method, an accurate re-
sult can be attained since the algorithm tries to consider all points on the cha-
racteristic curve [19]. In the literature, the Newton-Raphson method is the most 
used [19] [20] [21]; In [22], a numerical method is proposed for modeling and 
the simulation of PV. The method finds the five parameters from the cur-
rent-voltage characteristic by using three points of the curve (maximum power, 
open circuit and short circuit). In [23], the Levenberg Marquardt algorithm is 
implemented to estimate the parameters from the I-V characteristic of a single 
diode PV model. 

The main drawbacks of numerical techniques such as Newton Raphson are 
the need for extensive computations for convergence and fail to result in accu-
rate results when the number of parameters to be estimated increases and a close 
approximation of initial conditions [24].  

Despite the efficiency of the numerical methods, their slow convergence does 
not always guarantee the best result because they can converge through a local 
minimum and the choice of the initial condition is not often easy [11].  

To overcome the drawback of analytical and iterative methods, metaheuristic 
algorithms have been developed. They are nature-inspired algorithms using 
probabilities to find the best result. They have shown their effectiveness in solv-
ing difficult problems. Their main advantage is that they do not need continuity 
and differentiability of the objective function In the last decade, metaheuristics 
have been frequently applied for parameter estimation of circuit model parame-
ters of solar PV cells. The main develops in recent research are: genetic algo-
rithm (GA) [25], grey wolf optimization (GWO) [26], particles swarm optimiza-
tion (PSO) [27], moth-flame optimization algorithm (MFOA) [28], harmony 
search (HS) [29], artificial neural network (ANN) [30], multi-verse optimizer 
(MVO) [31], bond-graph based modelling [32], cuckoo search (CS) [33], bacterial 
foraging optimization [34], multiple learning backtracking search algorithm 
(MLBSA) [35], whale optimization algorithm (WAO) [36], salp swarm-inspired 
algorithm (SSA) [37]… New metaheuristic algorithms have been also recently 
developed to solve mathematic and engineering problems. [38] used World Cup 
Optimization (WCO) algorithm to find the optimal parameters of PID control-
ler; in [39] a new algorithm based on Variance Reduction of Guassian Distribu-
tion is proposed; a new algorithm based on the invasive weed by the quantum 
computing is proposed by [40]; [41] combined Gravitational Search Algorithm 
(GSA) and Particle Swarm Optimization (PSO) to train wavelet neural networks. 

Until today in the research and industry domain, there is no method of ex-
tracting PV parameter that has been introduced in the manufacturing of PV. By 
another, “The no-free-lunch theorem” remarked that: there is no algorithm able 
to solve all optimization problems, where it is important to propose new algo-
rithms for solving engineering optimization problems [42]. In this paper, a new 
algorithm based on EVPS is used to extract parameters from a PV system. The 
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inspiration of vibrating particles system comes from the free vibration of one 
degree of freedom systems with viscous damping. The algorithm has been ap-
plied to extract the best parameters of a PV cell and module under uniform and 
partial shading conditions. Five recent algorithms (SSA [37], GWO, MFOA [28], 
WAO [36], MVO [31]) are also implemented on the same computer with the 
parameters gave by authors. The result obtained from the EVPS is compared 
with other recent methods in the literature and different results obtain to dem-
onstrate the high quality of the algorithm. 

The rest of this paper is presented as follows: In Section 2, PV cell modeling is 
presented; Section 3 presents the problem formulation for extracting parameters 
from single and double diode model; the inspiration and the mathematical mod-
el of vibrating particles system are proposed in Section 4; Section 5 presents the 
different case study with different results and Section 6 is the conclusion. 

2. Photovoltaic Cell Modeling 

Many models of PV cell have been developed in the literature; but there are two 
models mostly used: single and double diode model. 

2.1. Single Diode Model 

Most of the literature uses this model. The main reason for this widely used is 
their simplicity and the least number of parameters. In the single diode model, 
there are five parameters to be extracted. Figure 1 shows the electric diagram of 
the model. 

The current I at the output of a PV module can be expressed using Kirchhoff’s 
theorem in Equation (1). 

r d pI I I I= − −                           (1) 

The diode current can be express as: 

0 exp 1d
d

t

V
I I

n V
  

= −  ⋅   
                      (2) 

where  

s
t

N K T
V

q
⋅ ⋅

=                           (3) 

The current through parallel resistance is 
 

 
Figure 1. Electrical diagram of one diode PV cell. 
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s
p

p

V I R
I

R
+ ⋅

=                           (4) 

By replacing Equation (2) & Equation (3) into Equation (1), we have the out-
put current at the output of a PV module. 

0 exp 1d s
r

t p

V V I R
I I I

n V R
   + ⋅

= − − −  ⋅   
                (5) 

The parameters which characterize this equation are: 0, , , ,r s pI I n R Rθ  =   . 
These five parameters can be determined by all the method described in Section 
1. 

2.2. Double Diode Model 

This double-diode model (Figure 2) has a better accuracy than one diode model, 
but also more complex because of the numbers of parameters [11]. The model 
has been used by many authors [11] [43] [44] [45].  

The current I, at the output of a PV module can be expressed using Kir-
chhoff’s theorem in Equation (6). 

1 2r d d pI I I I I= − − −                        (6) 

The diodes currents can be express as: 

1 01
1

exp 1d
d

t

V
I I

n V
  

= −  ⋅   
                    (7) 

2 02
2

exp 1d
d

t

V
I I

n V
  

= −  ⋅   
                   (8) 

where  

s
t

N K T
V

q
⋅ ⋅

=                         (9) 

The current through parallel resistance is 

s
p

p

V I R
I

R
+ ⋅

=                        (10) 

By replacing Equations (7)-(10) into Equation (6), we have the output current 
at the output of a PV module: 

 

 
Figure 2. Electrical diagram of double diode PV cell. 
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01 02
1 2

exp 1 exp 1d d s
r

t t p

V V V I R
I I I I

n V n V R
       + ⋅

= − − − − −      ⋅ ⋅         
   (11) 

The parameters which characterize this equation are:  

01 02 1 2, , , , , ,r s pI I I n n R Rθ  =   . 

These seven parameters can be determined by all the methods described in Sec-
tion 1. 

3. Problem Formulation 

To extract the PV parameters using EVPS, the problem can be set as an optimi-
zation problem with the objective to minimize the difference between measured 
and estimated current. The objective function (OF) is defined as the root mean 
square error (RMSE) where the error function is defined as the difference be-
tween estimated and experimental currents. It’s expressed as follows: 

( )( ) ( )( )2
, ,

1

1Min
N

i mes i ext
i

F I I
N

θ θ
=

= −∑              (12) 

where: 
( )F θ : is the objective function to minimize;  

N: is the number of points (Vi, Ii) measured; 

,i mesI : is the measured current; 
( )iextI θ : is the estimated current; 

01 02 1 2, , , , , ,r s pI I I n n R Rθ  =   : Parameters to estimate. 
For a single diode model, the objective function is expressed as: 

( )( )
2

, , , ,
, 0

1

1Min exp 1
.

N
i mes i mes s i mes i mes s

i mes r
i t p

V I R V I R
F I I I

N nV R
θ

=

  + ⋅ + ⋅ 
= − + − +        

∑ (13) 

with 0, , , ,r s pI I n R Rθ  =    the parameters to estimate. 
For double diode model, the objective function is: 

( )( )
2

, , , , , ,
, 01 02

1 1 2

1Min exp 1 exp 1
N

i mes i mes s i mes i mes s i mes i mes s
i mes r

i t t p

V I R V I R V I R
F I I I I

N n V n V R
θ

=

    + ⋅ + ⋅ + ⋅   
= − + − + − +        ⋅ ⋅          

∑ (14) 

with 01 02 1 2, , , , , ,r s pI I I n n R Rθ  =    the parameters to estimate 
In this paper, EVPS algorithm is used to minimize Equation (13) and Equa-

tion (14). 

4. Optimization Algorithm 
4.1. Inspiration 

The inspiration of vibrating particles system comes from the free vibration of a 
single degree of freedom system with viscous damping. The VPS contains a 
number of population solutions that represent the particle system. The particles 
are randomly initialized in an n-dimensional search space and step-by-step, they 
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approach their equilibrium positions [46]. 

4.2. The Vibrating Particles System Algorithm 

As other meta-heuristic algorithms, VPS has population particles which are con-
sidered as the parameters of the problem. The initial positions of particles are 
firstly generated randomly. 

( )min max min
i
jx x rand x x= − −                (15) 

i
jx  represents the jth position of the ith particle; minx  and maxx  are respec-

tively the initial and the final position rand  is a random number between [0, 
1]. 

Three equilibrium positions affected by different weights are defined for each 
particle. During each generation, the particle positions are updated by learning 
from them. The equilibrium positions are: 
- HB: Historically best location;  
- GP: Good particle;  
- BP: Bad particle. 

To include the effect of the damping level in the vibration, a descending func-
tion is introduced: 

max

iterD
iter

α−
 

=  
 

                       (16) 

max,iter iter  and α : represent respectively the current iteration, the maxi-
mum iteration and a constant. 

The next position is updated by the following equations: 

( ) ( ) ( )

1 1 2 2

3 3

1 2 3

1 2 3 1

i j j
j

j

j j j j j j
i i i

x w D A rand HB w D A rand GP

w D A rand BP

A W HB x W GP x W BP x

W W W

   = ⋅ ⋅ + + ⋅ ⋅ +   
 + ⋅ ⋅ + 

     = − + − + −     
+ + =

      (17) 

i
jx : represent the jth position of the ith particle;  

1 2 3, ,W W W : parameters to measure the best value of HB, GP, BP; 

1 2 3, ,rand rand rand : random numbers between [0, 1]. 

4.3. Enhanced Vibrating Particles System Algorithm 
4.3.1. Description 
EVPS algorithm has been initially developed by [47]; the main advantages of 
EVPS are to avoid slow convergence, local minimum and increase the number of 
space search. 

In EVPS, we introduced two new parameters: “memory” and “OHB (one of 
the best historically locations in the whole population)” [47]. HB in VPS is re-
placed by the memory. The memory now saves the best historically positions of 
the whole population. OHB is one row of memory whose selection is random. 
The next changing is the replacement of Equation (17) by Equation (18). 
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( )( )
( )( )
( )( )

1

2

3

1 2 3

1

1

1

1

j

i j
j

j

j j
i

j j
i

j j
i

D A rand OHB

x D A rand GP

D A rand BP

OHB x

A GP x

BP x

W W W

 ⋅ ⋅ +  = ⋅ ⋅ + 

 ⋅ ⋅ + 

 ± −

= ± −

± −

+ + =

                  (18) 

(±1) are applied randomly. BP, GP and OHB are independently determined 
for each particle [47]. All details concerning VPS algorithm can be found in [47]. 

4.3.2. Details Algorithms 
The steps to compute EVPS algorithms are described as follows: 

Step 1: Initializing of EVPS’s parameters. 
- Initialize VPS parameters (size of the population, number of optimization 

variables, memory size, maximum number of iterations, lower and upper 
bound of the variables, parameters for handling the side constraints, w1 and 
w2). 

- Initializing particles positions using Equation (19). 

( )min max min
i
jx x rand x x= − −                   (19) 

Step 2: Search. 
- Evaluate the objective function for each particle. 
- For each particle, select “memory” and “OHB (one of the best historically lo-

cations in the whole population). 
- Update particle’s position. 

max

iterD
iter

α−
 

=  
 

                       (20) 

Updating the next position by 

( )( )
( )( )
( )( )

1

2

3

1 2 3

1

1

1

1

j

i j
j

j

j j
i

j j
i

j j
i

D A rand OHB

x D A rand GP

D A rand BP

OHB x

A GP x

BP x

W W W

 ⋅ ⋅ +  = ⋅ ⋅ + 

 ⋅ ⋅ + 

 ± −

= ± −

± −

+ + =

                  (21) 

A parameter like k in a range of [0, 1] must be defined to specify if BP must be 
considered in the new position. For each population, k is compared with a ran-
dom number (rand) uniformly distributed in the range of [0, 1]; if k < rand, then 
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w3 = 0 and w1 = 1 − w2. 
Step 3: Handling the Side Constraints. 
If a particle went out of the boundary, it must be updated by harmony 

search-based side constraints handling approach. The method consists to deter-
mine if the violating particle should be updated either by the best historically 
particle or randomly in the search space. 

Step 4: Out memory and best positions. 

4.4. Application of Enhanced Vibrating Particles System to  
Photovoltaic Parameters Extraction 

4.4.1. Problem Statement 
The goal is to determine the global optimum, which is the best value of the OF 
(RMSE). If we replace memory (OHB) by the global optimum and the positions 
(  i

jx ) by the estimated parameters, therefore ( iθ ), the best position automatically 
moves towards it. However, the problem is that the global solution of the opti-
mization problems is unknown. In this case, the optimal solution obtained is the 
global optimum and presumed as the best selection of the memory. 

4.4.2. Problem Formulation  
The objective function of Equation (22) is used to find the best parameters of 
single and double diode model; the difference between single and double diodes 
model is the numbers of parameters (5 to single diode model and 7 to double 
diodes model). The formulation is: 

{ } [ ]

( )( )

{ }( )
min max

1 2 3

2
, ,

1

Find , , , ,

1To minimize ( )

0,  1, 2,3, ,
Subjected to 

N

N

i mes i ext
i

j

i i i

x x x x x

F x I I x
N

g x j Nc

x x x

=

=

= −

 ≤ =


≤ ≤

∑

 



        (22) 

where [ ]x  is the best parameters; ng is the number of parameters; ( )F x  the 
RMSE; N the number of points ( ),i iV I  measured; ,i mesI  the measured current; 

( ),i extI x  the estimated current; 
minix  is the lower bound, and 

maxix  the upper 
bounds; { }( )jg x  the design constraints and Nc the number of constraints.  

The objective function of each model is formulated as follows: 
- Single diode model 

For a single diode model, the objective function is expressed as: 

( )( )

min max

2

, , 4 , , 4
, 1 2

1 3 5

1Min exp 1

Subjected to :   

N
i mes i mes i mes i mes

i mes
i t

i i i

V I x V I x
F x I x x

N x V x

x x x

=

  + ⋅ + ⋅ 
= − + − +    ⋅    

≤ ≤

∑ (23) 

with [ ]1 2 3 4 5, , , ,x x x x x x=  the five estimated parameters which correspond re-
spectively to 0, , , ,r s pI I n R Rθ  =   . 
- Double diode model 

For single diode model, the objective function is expressed as: 
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( )( )

min max

2

, , 6 , , 6 , , 6
, 1 2 3

1 4 5 7

1Min exp 1 exp 1

Subjected to :    

N
i mes i mes i mes i mes i mes i mes

i mes
i t t

i i i

V I x V I x V I x
F I x x x

N x V x V x

x x x

θ
=

    + ⋅ + ⋅ + ⋅   
= − + − + − +        ⋅ ⋅          

≤ ≤

∑ (24) 

with [ ]1 2 3 4 5 6 7, , , , , ,x x x x x x x x=  the seven estimated parameters which corres-
pond respectively to 01 02 1 2, , , , , ,r s pI I I n n R Rθ  =   . 

The flowchart algorithm is represented in Figure 3. 
 

 
Figure 3. Flowchart of the EVPS algorithm. 
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5. Experiment and Results 

This section presents different results and implementation of the algorithm. 
Four case studies have been implemented. The first two cases of study have been 
implemented in Matlab 2017a. In the first case study; Photowatt-PWP201 PV 
which has 36 polycrystalline silicon cells, all connected in series, the irradiance is 
1000 W/m2 and temperature 45˚C. The second case refers to the RTC France 
commercial silicon PV, irradiance is 1000 W/m2 and temperature 33˚C. These 
two cases were for the first time initiated by [48] and it’s largely used today in 
research as a test system. To show the performance of the algorithm, a Mat-
lab-Simulink model has been implemented in different irradiance conditions. 
The third case refers to polycrystalline SW255. The fourth case implements real 
experimental data from the Sharp ND-R250A5 PV module provided to us by [11]. 

5.1. Case Study 1 

A single diode model has been implemented in this case study to extract the five 
parameters of the Photowatt-PWP201 PV which is a 11.5 W PV module. It has 
36 cells connected in series. Irradiance is 1000 W/m2 and temperature 45˚C. It’s 
widely used in literature by many researchers. The manufacturer’s characteristics 
of the PV module at STC are listed in Table 1 and the lower and upper bound 
are expressed in Table 2. The 26 I-V measured data has been collected from [35] 
[11]. Five recent algorithms (SSA, GWO, MFOA, WAO and MVO) are also im-
plemented in this case study in order to make the comparison. The initial para-
meters of each algorithm are given by the authors in each paper.  

The initial parameters of EVPS are: number of search agents = 50; maximum 
number of iterations = 1000; alpha = 0.05; w1 = 0.3; w2 = 0.3. 

5.2. Result of Case Study 1 

Table 3 presents the result of the five estimated parameters of the Photo-
watt-PWP201 PV module and the best OF (RMSE) after 20 independent tests is 
2.4267 × 10−3. In Table 4 the results of the 5 other algorithms are presented. The 
Average value of RMSE shows the constant of the algorithm after many tests. 
The comparison with other methods in the literature is presented in Table 5 to  
 

Table 1. PWP201 PV module parameter. 

Parameters Values 

Isc (A) 1.0317 

Voc (V) 16.7785 

Imp (A) 0.9120 

Vmp (V) 12.6490 

Ns 36 

Ki for Isc 0.0360%/C 
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Table 2. Lower and upper bound. 

Parameters Lower Bound Upper Bound 

Ir (A) 0 10 

Io (A) 1e−12 1e−5 

n 0.5 2.5 

Rs (Ω) 0.001 2 

Rp (Ω) 0.001 5000 

 
Table 3. Best result for case study 1. 

Parameters Best Solutions 

Ir (A) 1.0318 

Io (A) 3.2679 

n 1.3445 

Rs (Ω) 1.2066 

Rp (Ω) 845.759 

OF (RMSE) 2.4267 × 10−3 

 
Table 4. Comparison results of five algorithms for 20 independent tests. 

Best 

Parameters WOA [36] SSA [37] MVO [31] GWO [26] MFO [28] EVPS 

Ir (A) 1.0320 1.0452 1.0329 1.0324 1.0325 1.0318 

Io (µA) 7.5936 4.7508 1.7849 4.6572 2.7228 3.2695 

n 1.4414 1.3868 1.2833 1.3832 1.3254 1.3446 

Rs (Ω) 1.0444 1.0950 1.2775 1.1354 1.2255 1.2064 

Rp (Ω) 738.6218 406.5791 658.9906 820.9687 742.2522 843.7385 

 
RMSE × 10−3 6.3860 7.6817 3.1162 3.9851 2.4842 2.4267 

Worst 

Ir (A) 1.3568 0.9884 1.0489 1.0960 1.0856 1.0329 

Io (µA) 9.6098 8.6491 8.635 1.7016 6.0648 6.5761 

n 1.5413 1.4705 1.4586 1.3057 1.4235 1.4231 

Rs (Ω) 0.2965 0.1955 1.0475 0.2845 0.8900 1.1183 

Rp (Ω) 23.0796 549.0804 337.8831 61.4542 118.6442 999.5245 

 
RMSE × 10−3 141.6485 71.9332 9.0679 67.7101 24.9788 3.4707 

Average RMSE × 10−3 44.1232 28.2501 5.4726 19.0572 3.9637 2.7877 

 
Table 5. Comparison of the results obtained from the Photowatt-PWP201 PV with other methods in the literature. 

Parameters TVAPSO [49] LI [50] IADE [51] PS [52] SA [43] RF [53] GCPSO [11] GAMS [56] EVPS 

Ir (A) 1.031435 1.0334 1.0311 1.0313 1.0331 1.032375 1.0323823 1.032015 1.0318 

Io (µA) 2.638610 2.4424 3.6642 3.1756 3.6642 2.518884 2.512922 3.26812 3.2679 

n 47.556652 1.2975 1.3561 1.3413 48.8211 1.239018 1.31730 1.344574 1.3445 

Rs (Ω) 1.235611 1.2975 1.1989 1.2053 1.1989 1.317400 1.239288 1.206210 1.2066 

Rp (Ω) 821.59514 603.4037 921.85 714,285 833.3333 745.6431 744.7166 828.292864 845.759 

RMSE × 10−3 6.9665 2.477 2.4 11.8 2.7 2.7001 2.5915 2.442689 2.4267 
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show the superiority of the algorithm. Figure 4 shows the I-V characteristics of 
the measured and estimated curve of the Photowatt-PWP201 PV under a 1000 
W/m2 irradiance and 45˚C temperature. In Figure 5, the P-V characteristic of 
the measured and estimated curve is presented. Figure 6 presents the conver-
gence of each algorithm. 

5.3. Case Study 2 

In this case, seven parameters of RTC France PV have been extracted. The irra-
diance of the RTC France PV is 1000 W/m2 and temperature 33˚C. The typical 
electrical characteristics of the PV cell at STC are listed in Table 6; the lower and 
upper bound are expressed in Table 7. The 26 I-V measured data have been col-
lected from [11]. The initial parameters of EVPS are the same as in case study 1. 

5.4. Result of Case Study 2 

Table 8 presents the result of the seven estimated parameters of the PV cell; the 
best OF (RMSE) after 20 tests is 9.8510e−4. In Table 9, the results of the 5 other 
algorithms are presented. In Table 10, the comparison with other methods in 
the literature is presented to show the superiority of the algorithm. Figure 7 
shows the I-V characteristic of the measured and estimated curve of the PV cell 
under a 1000 W/m2 and 33˚C. In Figure 8, the P-V characteristic of the meas-
ured and estimated curve is presented. 

5.5. Case Study 3 

The case study 3 consists of the implementation of a Matlab/Simulink model at  
 

 
Figure 4. I-V characteristic of the measured and estimated curve. 
 

 
Figure 5. P-V characteristic of the measured and estimated curve. 
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Table 6. RTC France cell parameter. 

Parameters Values 

Isc (A) 0.760 

Voc (V) 0.573 

Imp (A) 0.691 

Vmp (V) 0.450 

Ns 1 

Ki for Isc 0.0350%/C 

 

 
Figure 6. Comparaison of convergence curve. 

 

 
Figure 7. I-V characteristic of the measured and estimated curve. 

 

 
Figure 8. P-V characteristic of the measured and estimated curve. 
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Table 7. Lower and upper bound. 

Parameters Lower Bound Upper Bound 

Ir (A) 0 10 

Io1 (A) 1e−12 1e−5 

Io2 (A) 1e−12 1e−5 

n1 0.5 2.5 

n2 0.5 2.5 

Rs (Ω) 0.001 2 

Rp (Ω) 0.001 5000 

 
Table 8. Result for case study 2. 

Parameters Best Solutions 

Ir (A) 0.7607 

Io1 (µA) 0.29749 

Io2 (µA) 0.2504 

n1 1.4749 

n2 1.9726 

Rs (Ω) 0.0363 

Rp (Ω) 55.8827 

OF (RMSE) 9.8510e−4 

 
Table 9. Comparison results of five algorithms from the RTC France for 20 independent 
tests. 

Best 

Parameters WOA [36] SSA [37] MVO [31] GWO [26] MFO [28] EVPS 

Ir (A) 0.7646 0.7637 0.7606 0.7635 0.7627 0.7607 

Io1 (µA) 1.7641 0.9880 3.6662 0.3639 0.0009 0.2975 

Io2 (µA) 2.0948 0.8796 0.1880 0.0012 3.2555 0.2504 

n1 1.6839 2.2119 2.1225 1.4942 1.1596 1.4749 

n2 2.1583 1.5932 1.4417 2.1433 1.7848 1.9726 

Rs (Ω) 0.0277 0.0307 0.0354 0.0348 0.0293 0.0363 

Rp (Ω) 64.2652 42.7318 94.5515 30.7060 100.0000 55.8827 

 
RMSE × 10−3 53.6880 35.4087 14.8497 26.2566 45.8807 9.8510 

Worst 

Ir (A) 0.7457 0.7765 0.7756 0.7669 0.7589 0.7606 

Io1 (µA) 2.5483 3.2039 4.5604 0.9919 10.0000 1.262e-03 

Io2 (µA) 3.2766 5.8725 0.9121 9.9708 10.0000 0.5005 

n1 1.7422 2.0224 1.8147 2.0889 2.1160 1.2067 

n2 2.2150 1.8891 2.4204 1.9505 2.0254 1.5392 

Rs (Ω) 0.0014 0.0135 0.0181 0.0015 0.0010 0.0358 

Rp (Ω) 87.5855 13.7374 13.8209 15.8790 100.0000 63.4186 
 

RMSE × 10−3 322.0510 150.5212 135.4657 200.7120 166.5394 11.19 

Average RMSE × 10−3 164.3665 82.9360 93.3376 107.7185 86.5089 10.083 
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Table 10. Comparison of the RTC France PV obtained results with the ones in the literature. 

Parameters MBA [45] SA [43] HS [29] CPSO [11] ABCO [44] ABC [55] IGHS [29] EVPS 

Ir (A) 0.7605 0.7623 0.7616 0.762321 0.7608 0.7609 0.76079 0.7607 

Io1 (µA) 0.4513 0.4767 0.12546 0.297108 0.0407 2.6900 0.97310 0.29749 

Io2 (µA) 1.1846 0.0100 0.25470 0.710454 0.2874 2.8198 0.16791 0.2504 

n1 1.5920 1.517 1.49439 1.476035 1.4495 1.4670 1.92126 1.4749 

n2 1.8450 2.000 1.49989 1.998103 1.4885 1.8722 1.42814 1.9726 

Rs (Ω) 0.0314 0.0345 0.03562 0.035601 0.0364 0.0364 0.03690 0.0363 

Rp (Ω) 493.7200 43.10 46.8269 45.547533 53.7804 55.2307 56.8368 55.8827 

RMSE × 10−4 0.1092 0.01667 12.6 13.0565 9.861 10 9.8635 9.8510 

 
different irradiance conditions. The case study 3 refers to the polycrystalline 
SW255. The using manufacturer data at STC is reported in Table 11 [54]. The 
Simulink model is presented in Figure 9. The block solar cell is configured with 
the STC condition of Table 11. The experiment data at each irradiance condi-
tion (E(W/m2) = 1000, 800, 600, 400, 200) at 25˚C temperature are exported to 
Matlab via the blocks Workspace. 

5.6. Result of Case Study 3 

Table 12 and Table 13 present respectively the result of the five and seven esti-
mated parameters of the polycrystalline SW255 module at different irradiance 
conditions. In Table 14, the results of the 5 other algorithms are presented. Fig-
ure 10 shows the I-V characteristic of the measured and estimated curve under 
different irradiance. In Figure 11, the P-V characteristic of the measured and es-
timated curve is presented.  

5.7. Case Study 4 

One diode model has been implemented in this last case to extract the five pa-
rameters based on experimental data of the Sharp ND-R250A5 PV module. The 
PV has 60 cells in series. Irradiance is 1040 W/m2 and temperature 59˚C. The 
typical electrical characteristics of the Sharp ND-R250A5 PV module at STC are 
listed in Table 15 and the lower and upper bound are expressed in Table 16. 
The 36 I-V measured data has been provided to us by [11], where irradiance and 
temperature have been measured by the sensor Ingenieurbüro Si-13TC-T 
(Figure 12). 

5.8. Result of Case Study 4 

Table 17 presents the result of the five estimated parameters of the Sharp 
ND-R250A5 PV module. The best OF (RMSE) is 11.252719 × 10−3. Figure 13 
shows the I-V characteristics of the measured and estimated curve of the 
ND-R250A5 PV under a 1040 W/m2 irradiance and 59˚C temperature. In Figure 
14, the P-V characteristic of the measured and estimated curve is presented. 
Figure 15 presents the convergence curve. 
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Table 11. Datasheet parameters of SW255 at STC. 

Parameters Values 

Isc (A) 8.8 

Voc (V) 38.0 

Imp (A) 8.32 

Vmp (V) 30.9 

Pmp (W) 255 

Ns 60 

Ki [A/K] 0.051 

Kv [A/K] −0.31 

 
Table 12. Five estimated parameters of the polycrystalline SW255 module at different ir-
radiance conditions. 

Parameters 
E (W/m2) 

1000 800 600 400 200 

Ir (A) 8.9005 7.1156 5.3376 3.5635 1.7760 

Io (A) 2.376e−07 6.8846e−08 6.8962e−08 6.8596e−08 6.8830e−08 

n 1.3632 1.3212 1.3222 1.3232 1.3264 

Rs (Ω) 0.2109 0.2169 0.2110 0.1937 0.1942 

Rp (Ω) 6709.6 4428.5 6065 2177.7 2742.4 

RMSE × 10−3 19.4628 9.6298 7.6950 6.6091 9.8569 

 
Table 13. Seven estimated parameters of the polycrystalline SW255 module at different 
irradiance conditions. 

E (W/m2) 
Parameters 

1000 800 600 400 200 

Ir (A) 8.8928 7.1234 5.3394 3.5655 1.7817 

Io1 (A) 6.9030e−08 7.6854e−08 3.4988e−08 7.6950e−08 7.3365e−08 

Io2 (A) 5.9342e−08 2.7425e−07 4.1686e−07 1.1246e−07 2.1394e−07 

n1 1.3213 1.3323 1.2802 1.9997 1.3338 

n2 1.7503 1.7486 1.7352 1.3611 1.7746 

Rs (Ω) 0.2200 0.2099 0.2154 0.1743 0.1150 

Rp (Ω) 7114.9 3257.3 4515.6 2.9635 5.8048 

RMSE × 10−3 12.6607 14.7437 7.7546 8.7455 4.3193 

 
Table 14. Comparison results of five algorithms for 20 independent tests. 

E (W/m2) Algorithm Ir (A) I0 (A) n Rs (Ω) Rp (Ω) RMSE × 10−3 

1000 

EVPS 8.9005 2.376e−07 1.3632 0.2109 6709.6 19.4628 

SSA 8.9273 8.006e−07 1.5197 0.17128 4693 46.829 

WAO 8.9035 5.1465e−07 1.4798 0.18597 5992.3 44.717 

MVO 8.9045 1.7761e−07 1.3908 0.20437 7999.1 24.565 

 

GWO 8.9465 3.4037e−07 1.4437 0.19151 704.46 38.846 

MFO 8.9046 1.8009e−07 1.3919 0.2036 8000 24.706 
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Continued 

800 

EVPS 7.1156 6.8846e−08 1.3212 0.2169 4428.5 9.6298 

SSA 7.1487 1.0559e−06 1.55 0.14622 2741.4 41.995 

WAO 7.1607 3.6348e−06 1.6818 0.10242 5347 57.411 

MVO 7.1496 7.078e−07 1.5116 0.15786 1563.7 37.947 

GWO 7.1452 8.0295e−07 1.5233 0.15771 5559.5 38.485 

MFO 7.13 3.1117e−07 1.4383 0.18167 8000 26.455 

600 

EVPS 5.3376 6.8962e−08 1.3222 0.2110 6065 7.6950 

SSA 5.3434 1.5209e−07 1.3822 0.18597 7677.2 14.248 

WAO 5.3634 3.995e−06 1.7014 0.018556 2647.7 54.056 

MVO 5.3595 7.7029e−07 1.5239 0.12557 7461.4 29.299 

GWO 5.314 9.2173e−09 1.1905 0.2572 3847.2 14.454 

MFO 5.3513 3.5134e−07 1.452 0.15616 6324.5 21.965 

400 

EVPS 3.5635 6.8596e−08 1.3232 0.1937 2177.7 6.6091 

SSA 3.5633 1.9988e−07 1.4076 0.14348 7882.9 11.392 

WAO 3.6325 2.5137e−06 1.6575 0.06760 3564.3 45.294 

MVO 3.5721 1.7561e−07 1.3968 0.14598 1496.1 12.517 

GWO 3.5808 1.5835e−06 1.6058 0.018474 7752.8 24.66 

MFO 3.5641 1.9926e−07 1.4072 0.14678 8000 11.277 

200 

EVPS 1.7760 6.8830e−08 1.3264 0.1942 2742.4 9.8569 

SSA 1.7846 2.2927e−07 1.4259 0.012545 4636.4 7.0205 

WAO 1.7692 1.5472e−07 1.3919 0.0010176 5259 11.009 

MVO 1.7897 6.1994e−08 1.3178 0.12359 1323.6 6.1192 

GWO 1.808 6.1509e−07 1.5204 0.034513 1733.9 18.224 

MFO 1.7897 8.3885e−08 1.3415 0.001 898.89 14.321 

 
Table 15. Sharp ND-R250A5 module parameter. 

Parameters Values 

Isc (A) 8.68 

Voc (V) 37.6 

Imp (A) 8.10 

Vmp (V) 30.9 

Ns 60 

 
Table 16. Lower and upper bound. 

Parameters Lower Bound Upper Bound 

Ir (A) 0 10 

Io (A) 1e−12 1e−5 

n 0.5 2.5 

Rs (Ω) 0.001 2 

Rp (Ω) 0.001 5000 
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Table 17. Best result for case study 4. 

Parameters EVPS 

Ir (A) 9.146656 

Io (µA) 1.094195 

n 1.213629 

Rs (Ω) 0.589391 

Rp (Ω) 4999.9999 

OF (RMSE × 10−3) 11.252719 

 

 
Figure 9. Simulink model of polycrystalline SW255. 

 

 
Figure 10. I-V characteristic of the measured and estimated curve. 
 

 
Figure 11. P-V characteristic of the measured and estimated curve. 
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Figure 12. Experimental environment. 

 

 
Figure 13. I-V characteristic of the measured and estimated curve. 

 

 
Figure 14. P-V characteristic of the measured and estimated curve. 

 

 
Figure 15. Convergence curve during the parameter extraction for the one diode model 
ND_R250A5 solar cell. 
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6. Conclusions 

In this paper, we have presented a novel bio-inspired optimizer of a very recent 
heuristic-based on technique, namely enhanced vibrating particles system to ex-
tract the best values of parameters of a photovoltaic cell. The particles are ran-
domly initialized in an n-dimensional search space and Step-by-Step, they ap-
proach their equilibrium positions. 

To show the performance of the algorithm, many cases have been imple-
mented from one and two diodes model. The current-voltage and power-voltage 
characteristic of measured and estimated data show the best accuracy of the me-
thod. The simulations result and comparisons with another method exhibit high 
accuracy and validity of the proposed Enhanced Vibrating particles system to 
extract parameters of a photovoltaic cell and module. Thus, enhanced vibrating 
particles system can be recommended as an efficient method not only to extract 
the best parameters of a PV cell and module, but also to solve optimization 
problems in power systems. As every algorithm, enhanced vibrating particles 
system has some drawback like the variability of the result at each independent 
test and the limit of the algorithm to solve the only mono-objective problem. In 
the future work, the stability of the enhanced vibrating particles system should 
be improved and other parameters should be added to permit the algorithm to 
solve multi-objective optimization in power systems. 
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Nomenclature 

E: Solar irradiance; 
( )F θ : objective function to minimize;  

I: cell output current [A]; 
( )iextI θ : is the estimated current; 

,i mesI : measured current [A]; 
( )iextI θ : estimated current [A]; 

0 01 02, ,I I I : Diode reverse saturation currents [μA]; 

1 2, ,d d dI I I : diode currents [A]; 

mpI  current at the maximum power point [A]; 

rI  photoelectric current [A]; 

scI  short-circuit current [A]; 
k: Boltzman constant [J/K]; 

ik : temperature coefficient of Isc [A/K]; 

1 2, ,n n n : Diode ideality factors; 
N: number of the experimental I-V data pairs; 

SN : number of cells connected in series; 
OF: objective function; 
q: electron charge [C]; 

1 2 3, ,rand rand rand : random numbers between [0, 1]; 

PR : parallel resistance [Ω]; 

SR : series resistance [Ω]; 
RMSE: root mean square error; 
STC: Standard testing condition (1000 watts/m2, 25˚C); 
T: Temperature [K]; 
V: cell output voltage [V]; 

,i mesV : measured voltage [V]; 

mpV : voltage at the maximum power point [V]; 

ocV : open-circuit voltage [V]; 

tV : thermal voltage [V]; 

21 3, ,w w w : parameters;  
i
jx : position of the particle; 

θ : Parameters to estimate. 
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