
Open Journal of Statistics, 2019, 9, 436-444 
http://www.scirp.org/journal/ojs 

ISSN Online: 2161-7198 
ISSN Print: 2161-718X 

 

DOI: 10.4236/ojs.2019.94029  Aug. 13, 2019 436 Open Journal of Statistics 

 

 
 
 

Bayesian Approach to Ranking and  
Selection for a Binary Measurement System 

Mark Eschmann1, James D. Stamey2, Phil D. Young3, Dean M. Young4 

1Department of Statistical Science, Waco, TX, USA 
2Department of Statistical Science, Baylor University, Waco, TX, USA 
3Department of Information Systems, Baylor University, Waco, TX, USA 
4Department of Statistical Science, Baylor University, Waco, TX, USA 

 
 
 

Abstract 

Binary measurement systems that classify parts as either pass or fail are wide-
ly used. Inspectors or inspection systems are often subject to error. The error 
rates are unlikely to be identical across inspectors. We propose a random ef-
fects Bayesian approach to model the error probabilities and overall con-
forming rate. We also introduce a feature-subset selection procedure to de-
termine the best inspector in terms of overall classification accuracy. We pro-
vide simulation studies that demonstrate the viability of our proposed estima-
tion ranking and subset-selection methods and apply the methods to a real 
data set. 
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1. Introduction 

Repeated binary testing, often referred to as a binary measurement system 
(BMS), is regularly used in quality control studies as a means of assessing the 
quality of the units produced. However, these inspection methods are highly de-
pendent on the quality of the individual inspectors, thus making the inspection 
itself an integral part of the quality control process. Two aspects of evaluating 
the inspection process are repeatability and reproducibility. A process’s repeata-
bility refers to how frequently a single inspector inspecting a single item will ob-
tain the same result, while reproducibility refers to how often different inspec-
tors inspecting the same item will reach the same conclusion. Estimating classi-
fication rates of a system has been considered by several authors. [1] considered 
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various sampling plans to assess the qualities of a BMS. [2] found maximum li-
kelihood estimators and method of moment estimators for the case of multiple 
raters, assuming fixed effects. When there are multiple inspectors, it may be of 
interest to determine which of several inspectors or inspection systems is per-
forming best.  

The model we consider here is a Bayesian version of [3]. Specifically, we con-
sider a random effects model for multiple testers and multiple inspections per 
inspector from a Bayesian perspective. There are multiple advantages to using a 
Bayesian approach. For example, prior knowledge can be incorporated into the 
study with the use of informative prior distributions. This knowledge can be ob-
tained either from previous data or expert opinion. Also, even in the absence of 
prior knowledge where the asymptotic dominance of the prior by the likelihood 
is present, interval estimates generated from the Bayesian paradigm are based 
largely on the likelihood which has been shown to be superior to other interval 
estimation methods [4]. Another advantage of the Bayesian paradigm is that if 
the prior is sufficiently informative, then, assumptions required for identifiabili-
ty can be relaxed. Thus, our Bayesian approach can be used in situations when 
the parameters of a likelihood function are not identifiable. The Bayesian esti-
mators considered here have no known closed form and, thus, must be found 
approximately. We use Markov Chain Monte Carlo (MCMC) simulations to 
sample from the model’s posterior distribution and obtain parameter estimates.  

The remainder of the paper is outlined as follows. In Section 2, we present the 
model and give identifiability assumptions. In Section 3, we describe a simula-
tion study and present the simulation results for the Bayesian estimation. In Sec-
tion 4, we apply our model to two parameter-ranking applications and two sub-
set selection problems for multiple sites, and in Section 5, we perform an addi-
tional simulation to determine the effectiveness of our subset selection proce-
dure. Finally, in Section 6, we provide several comments summarizing our re-
sults. 

2. The Model 

Assume that N randomly selected items to be inspected are sampled from the 
general population of items. Let the true quality state of an item be denoted by T, 
where 1T =  indicates a good item and 0T =  denotes an item that fails to 
meet the quality specifications. The symbol τ  denotes the overall conforming 
rate. Because we assume that no gold standard is used and because T is a latent 
variable, we also assume ( )~ BernoulliT τ .  

Repeated independent, fallible observations are then derived by m different 
inspectors on the ith unit to indirectly assess the true state of the ith unit, where 

{ }1, ,i N∈  . Let ijkY  denote the result of the kth inspection on the ith item by 
the jth inspector, where 1ijkY =  denotes a passed inspection, 0ijkY =  denotes a 
failed inspection, and { }1, , ijk n∈  . For each ijkY  and inspector j, we further 
define the conditional probabilities ( ), 1 | 0j ijk iP Y Tθ + = = =  (false positive rate) 
and ( ), 0 | 1j ijk iP Y Tθ − = = =  (false negative rate) with respect to the true state of 
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the item, iT . Further, assume  

( ) ( ),| 0 ~ Bernoulliijk i jY T θ +=                   (1) 

and  

( ) ( ),| 1 ~ Bernoulli 1 .ijk i jY T θ −= −                 (2) 

here, we initially assume that inspections are independent, given the true latent 
state of the ith part. This conditional independence assumption yields  

( ),
1

| 0 ~ Binomial , .
l

ijk i j
k

Y T l θ +
=

 = 
 
∑                (3) 

To relax assumptions that the inspectors all have the same probability of clas-
sifying correctly and allow for other random heterogeneity, we consider the 
random effects model where  

( )
( )

,

,

~ Beta , ,

~ Beta , ,
j

j

θ µ γ

θ µ γ
+ + +

− − −

                    (4) 

where the Beta distribution has been reparameterized such that ( )µ α α β= +  
and γ α β= + . Thus, the reparameterized Beta probability density function 
(PDF) is  

( ) ( )
( )

11 1
.

,
x x

f x
B

γ µγµγ

µγ γ µγ

− −− −
=

−
                  (5) 

To complete the hierarchical model we require priors for µ+ , µ− , γ +  and 
γ − . Specifically we assume ( )Beta ,α β+ +  and ( )Beta ,α β− −  priors for µ+  
and µ− , respectively. Finally, ( )Gamma ,c d+ +  and ( )Gamma ,c d− −  priors are 
used for γ +  and γ − , respectively. In the absence of prior information, 

( )Beta 1,1  priors can be used for µ+  and µ−  and diffuse Gamma priors are 
used for γ +  and γ − .  

We have chosen a Beta distribution to model the random effects because of its 
interpretability under this reparameterization. An often used alternative model 
structure is  

( ) ( )logit ~ , ,Nθ µ σ                      (6) 

where µ  is generally given a normal prior and σ  is often given a half-t or 
half-Cauchy prior.  

For the parameters { },θ θ− +=Θ  and { }: , , , ,µ γ µ γ τ+ + − −=Ψ , the likelihood 
of the latent vector [ ]1, , Nt t ′=t  , the observed data matrix is [ ]1, , Nx x ′′ ′=X  , 
where ,1 ,, ,i i mx x ′ =  x   and  

( ) ( ) ( )
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For the random effects model, the first assumption necessary for identifiability 
[3] is  

1.µ µ+ −+ <                         (8) 

The interpretation of (8) is that the overall expected probability of correctly 
classifying an item is greater than the chance of misclassifying it. This assump-
tion is required due to the bimodal nature of the likelihood [4].  

The second identifiability assumption assures that there are enough degrees of 
freedom to estimate all model parameters. This assumption requires two things: 
that enough inspectors and inspections per inspector are available to estimate 
the status of each item, and that enough inspectors are available to estimate the 
inspectors’ random effects parameters. The second condition requires at least 
two inspectors while letting ( )min , ,j ij Njl n n=  . A sufficient condition to 
meet the first requirement is that  

( )
1

1 1 2 1.
m

j
j

l m
=

− + + ≥ +∏                    (9) 

In the present model, (9) is sufficient because additional inspections do not 
harm the model identifiability.  

The third identifiability assumption is that both true negatives ( 0iT = ) and 
true positives ( 1iT = ) exist in the sample. This assumption is necessary because 
the absence of true negatives indicates one cannot estimate false negative rates. 
[3] have demonstrated that the absence of either true negatives or true positives 
essentially implies that there is enough data to estimate only half of the variables, 
namely θ+ , µ+ , and γ +  or θ− , µ− , and γ − . We remark that the last two 
identifiability requirements can be omitted if one uses sufficiently informative 
priors on at least some parameters. 

3. Ranking and Selecting Inspectors 

Suppose we are interested in determining which inspector has the lowest overall 
error rate. Here, we have chosen to combine the false positive and false negative 
rates into a single positive likelihood ratio (LR), ( ), ,1j j jη θ θ+ −= − . Whichever 
inspector has the highest likelihood ratio would be determined to be the best. 
The positive likelihood ratio may not always be the most appropriate combina-
tion of the error rates, however, it is simply the one we use here as an example. 
In some cases, the negative likelihood ratio, ( ), ,1j j jη θ θ+ −= −  or even a 
weighted sum of θ+  and θ−  may be more appropriate. This approach can be 
decided on a case by case basis. We follow the method of [5] who have derived a 
decision-theoretic approach to partition parameters into two sets based on an 
ordering of the parameters of interest. Also, [6] extended their work to deter-
mine the largest Poisson rate when counts are subject to misclassification. Here 
we apply the method to subset a group of inspectors into a superior set, S, and an 
inferior set, CS . 

In the creation of a best subset, there are m separate two-state decision prob-
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lems. Each decision involves whether or not to place an inspector’s likelihood 
ratio in the superior set, :k

kd Sη+ ∈ . We assign following constant loss func-
tions:  

( ) ( ) 2

1

0 if if
and

if 0 if
k best k bestk k

k best k best

c
L L

c
η η η η

η η
η η η η+ −

= = 
= = ≠ ≠ 

      (10) 

where kL+  and kL−  are the loss functions for kd+  and kd− , respectively. To 
make a decision, only 2 1c c c=  is required. These loss functions determine the 
decision criteria: take action kd+  and include kη  as a candidate for the largest 
parameter if ( ) ( )| 1 1k bestP cη η= ≥ +x . Here, generally, 2 1c c>  because fail-
ing to place the best kη  in S is the more serious error. Thus, c should be chosen 
larger than 1. 

The probability that kη  is the best of the likelihood ratios is  

( ) ( )1
1 1 10 0 0

| | d d d d d ,i i
i best i i m iP p

η η
η η η η η η η η− += = ∫ ∫ ∫x x       (11) 

where ( )|p η x  is the marginal posterior of the likelihood ratios. MCMC me-
thods are used to approximate (11) numerically. To accomplish this task, we 
generate a sample ( )1 2, , ,k k kBη η η ′

 , for 1,2, ,k m=   of size B from the post-
erior distribution, and then approximate the posterior probability that kη  is the 
best parameter by  

( )( ) ( )( )1
1

# , ,ˆ , , | ,ki i mi
k m

best
P best

B
η η η

η η η
=

= =x


        (12) 

where 1, ,k m=   and 1,2, ,i B=  , and B is the Monte Carlo repetition size. 
The parameter kη  is included in the superior set S if  

( )( ) ( )1
ˆ , , | 1 1 , 1, , .k mP best c k mη η η= ≥ + =x            (13) 

4. Example 

As an example we consider data from [4] on a sample of 38 prints produced by 
inkjet cartridges. Three inspectors analyzed each print 3 times. Only the total 
number of passes out of the 9 inspections was provided, so for illustrative pur-
poses, for those parts that did not have 0 or 9 passes, we distributed the number 
of passes across the three inspectors in a way to best match the frequentist pa-
rameter estimates provided in [4]. We assign beta (1, 9) priors to both µ+  and 
µ−  since both of these quantities are expected to be considerably below 0.50. 
Our expert was 95% certain that both misclassification rates were less than 0.40, 
and a beta (1, 9) prior appropriately modeled the uncertainty. These distribu-
tions have prior 95% intervals of (0.003, 0.336) and have an equivalent sample 
size of 10 observations, and, therefore, would be considered mildly informative. 
A beta (1, 1) prior is used for τ , and Gamma (0.1, 0.1) priors are used for both 
γ +  and γ − . A burn-in of 10,000 iterations was used and inferences were based 
on the 20,000 subsequent iterations. The posterior summaries for each model 
parameter are provided in Table 1.  

https://doi.org/10.4236/ojs.2019.94029


M. Eschmann et al. 
 

 

DOI: 10.4236/ojs.2019.94029 441 Open Journal of Statistics 

 

Table 1. Posterior summary for [4] example. 

 Post.Median Post.SD val2.5pc val97.5pc 

µ−  0.07818 0.06041 0.01913 0.251 

µ+  0.126 0.06176 0.04415 0.2841 

γ −  4.423 6.154 0.5477 22.93 

γ +  7.836 8.252 1.183 31.93 

1θ −  0.08885 0.03579 0.03632 0.1776 

2θ −  0.001537 0.01049 2.20E-06 0.03754 

3θ −  0.03101 0.02175 0.005326 0.08751 

1θ −  0.04653 0.03027 0.009797 0.1253 

2θ −  0.1283 0.04255 0.06432 0.2303 

3θ −  0.148 0.04656 0.07318 0.2543 

1η  19.52 32.73 7.21 92.31 

2η  7.746 2.995 4.31 15.45 

3η  6.525 2.471 3.798 13.19 

 
From Figure 1, we see that when combined into the positive likelihood ratio, 

where a higher number is better, Inspector 1 has the overall highest LR. To apply 
the decision theoretic procedure to determine if any inspector is “best,’’ we 
compute the posterior probabilities of each likelihood ratio parameter being the 
largest. Here, a value of 10c = , implies that it is 10 times worse to leave the best 
inspector out of the superior set than to put an inferior inspector in the superior 
set, the critical probability would then be 1/(10 + 1) = 0.091. The probabilities 
that Inspectors 1, 2, and 3 are each in the superior set are 0.891, 0.083, and 0.026, 
respectively. Thus, here, only Inspector 1 exceeds the 0.091 probability threshold. 
Thus, inspector 1 would be the only inspector placed in the superior set. 

5. A Simulation Study 

We conducted a simulation study to determine the effectiveness of the subset 
selection procedure. We set the number of inspectors to be 7m =  and the 
number of repeats to be 3l = . For 0.5τ = , 0.15µ+ = , 0.1µ− = , 20γ + = , 
and 40γ − =  we generated a single set of , jθ+ ’s and , jθ− ’s. The values for , jθ+ , 

, jθ−  and the corresponding likelihood ratios are presented in Table 2.  
The prior distributions used were  

( )~ 1,1 ,betaµ+                       (14) 

( )~ 1,1 ,betaµ−                       (15) 

( )~ 0.1,0.1 ,Gammaγ +                   (16) 

( )~ 0.1,0.1 ,Gammaγ −                   (17) 

and 

( )~ 1,1 .betaτ+                      (18) 
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Figure 1. Posterior distributions of likelihood ratios. 
 
Table 2. Misclassification parameters for simulation study. 

Inspector θ−  θ+  LR 

1 0.014 0.09 10.96 

2 0.084 0.218 4.20 

3 0.094 0.119 7.60 

4 0.224 0.168 4.62 

5 0.175 0.153 5.39 

6 0.033 0.076 12.72 

7 0.02 0.105 9.33 

 
Table 3. Simulation results for 50N = . 

Inspector ( )k bestP η η=  2.5% Median 97.5% 

1 0.29 1.05 2.59 5.16 

2 0.01 3.34 5.77 6.98 

3 0.09 1.43 3.8 6.3 

4 0.01 2.91 5.55 6.97 

5 0.03 2.39 5.06 6.87 

6 0.37 1.01 2.29 4.89 

7 0.20 1.13 2.95 5.58 
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Table 4. Simulation results for 100N = . 

Inspector ( )k bestP η η=  2.5% Median 97.5% 

1 0.31 1.06 2.22 4.08 

2 0 4.66 6.23 6.98 

3 0.05 1.84 3.73 5.55 

4 0 4.15 5.9 6.94 

5 0 3.39 5.24 6.72 

6 0.47 1.01 1.88 3.72 

7 0.16 1.24 2.79 4.65 

 
Table 5. Simulation results for 200N = . 

Inspector ( )k bestP η η=  2.5% Median 97.5% 

1 0.3 1.07 2.11 3.62 

2 0 5.25 6.43 6.99 

3 0.03 2.13 3.69 4.98 

4 0 4.81 6.06 6.94 

5 0 4.01 5.25 6.52 

6 0.55 1.01 1.66 3.15 

7 0.11 1.37 2.81 4.19 

 
Thus, relatively non-informative priors were employed for all parameters. We 

considered sample sizes of 50N = , 100, and 200 and generated 1000 data sets 
for each sample size. We monitored the probability that each likelihood ratio is 
the largest and the 95% credible set of the rank for each iη . These results are 
provided in Tables 3-5. For the decision theory problem we used 10c =  and, 
thus, also monitored whether the true “best’’ inspector was included in the supe-
rior set as well as the average size of the superior set. In this paper we are focus-
ing on the ranking and selection methods, so those are the simulation results we 
report here. We also monitored posterior means and found they were close to 
the true values with small bias and coverage of intervals close to nominal for all 
parameters. The bias and coverage results are available upon request. 

For all simulations, Inspector 6, who was the “best’’ inspector, yielded the 
highest probability of having the largest likelihood ratio, and, therefore, was 
correctly estimated to be the best inspector the most times. Also, the credible in-
tervals on the ranks for Inspector 6 were consistently closest to the top rank. 
Conversely, Inspector 2, who was the “worst’’ inspector, produced the lowest 
probability of having the largest likelihood ratio and, was correctly considered 
the worst inspector the most times. Inspector 2 also yielded credible intervals for 
the rank with the largest values, implying this inspector was generally ranked last. 
Thus both the ranking and selection procedures performed well. 

For all three considered sample sizes, the probability of the “best’’ inspector 

https://doi.org/10.4236/ojs.2019.94029


M. Eschmann et al. 
 

 

DOI: 10.4236/ojs.2019.94029 444 Open Journal of Statistics 

 

being included in the superior set was greater than 0.9. The average size of the 
superior set was 2.8 for a sample size of 50, 2.4 for a sample size of 100 and 2.2 
for a sample size of 200. 

6. Conclusions  

In this paper we have proposed a Bayesian random effects model for a binary 
measurement system. As shown in our real data example, combining the data 
with mildly informative priors yields an identifiable model where inferences can 
be made on the overall classification rates along with comparisons of individual 
inspectors. Our simulation study shows that for moderate sample sizes, even 
when information is not available for priors, the procedure works well with the 
best inspector being included in the superior set a large percentage of the time. 

The methods we have proposed could be extended to comparing overall de-
fective rates and classification probabilities of manufacturing plants instead of 
inspectors, as we have done here. Expanding to continuous measurements from 
binary is also potentially of interest. 
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