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Abstract 
Pixel-wise Code Exposure (PCE) camera is one type of compressive sensing 
camera that has low power consumption and high compression ratio. More-
over, a PCE camera can control individual pixel exposure time that can ena-
ble high dynamic range. Conventional approaches of using PCE camera in-
volve a time consuming and lossy process to reconstruct the original frames 
and then use those frames for target tracking and classification. In this paper, 
we present a deep learning approach that directly performs target tracking 
and classification in the compressive measurement domain without any 
frame reconstruction. Our approach has two parts: tracking and classifica-
tion. The tracking has been done using YOLO (You Only Look Once) and the 
classification is achieved using Residual Network (ResNet). Extensive expe-
riments using mid-wave infrared (MWIR) and long-wave infrared (LWIR) 
videos demonstrated the efficacy of our proposed approach. 
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1. Introduction 

There are many applications such as traffic monitoring, surveillance, and secu-
rity monitoring that use optical and infrared videos [1]-[5]. Object features in 
optical and infrared videos can be clearly seen as compared to radar-based 
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trackers [6] [7]. 
Compressive measurements [8] [9] [10] [11] can save data storage and trans-

mission costs. They are normally collected by multiplying the original vectorized 
image with a Gaussian random matrix. Each measurement contains a scalar val-
ue and the measurement is repeated M times where M is much fewer than N 
(the number of pixels). To track a target using compressive measurements, it is 
normally done by reconstructing the image scene and then conventional trackers 
are then applied. 

Tracking and classification of targets in compressive measurement domain is 
difficult because target location, size, and shape information are destroyed by the 
Gaussian measurement matrix. Conventional approaches do not work well 
without image reconstruction. 

Recently, a new compressive sensing device known as Pixel-wise Code Expo-
sure (PCE) camera was proposed [12]. A hardware prototype was developed and 
performance was proven. In [12], the original frames were reconstructed using 
L0 [13] [14] [15] or L1 [16] sparsity-based algorithms. One problem with the re-
construction-based approach is that it is extremely time consuming to recon-
struct the original frames and hence this may prohibit real-time applications. 
Moreover, information may be lost in the reconstruction process [17]. For target 
tracking and classification applications, it will be ideal if one can carry out target 
tracking and classification directly in the compressive measurement domain. 
Although there are some tracking papers [18] in the literature that appear to be 
using compressive measurements, they are actually still using the original video 
frames for tracking. 

In our earlier paper [19], we presented a deep learning approach that directly 
incorporates the PCE measurements. In that work, we focused only on short-
wave infrared (SWIR) videos. It is well-known that there are several key differ-
ences between SWIR, MWIR, and LWIR videos. First, SWIR cameras require 
external illuminations whereas MWIR and LWIR do not need external illumina-
tion sources because MWIR and LWIR are sensitive to heat radiation from ob-
jects. Second, the image characteristics are very different. Target shadows can 
affect the target detection performance in SWIR videos. However, there are no 
shadows in MWIR and LWIR videos. Third, atmospheric obscurants cause 
much less scattering in the MWIR and LWIR bands than in the SWIR band. 
Consequently, MWIR and LWIR cameras are tolerant of smoke, dust and fog. 

Because of the different characteristics in SWIR, MWIR, and LWIR videos, it 
is necessary to study the performance of the previously proposed deep learning 
approach [19] to MWIR and LWIR videos. In this paper, we propose a target 
tracking and classification approach in compressive measurement domain for 
MWIR and LWIR images. First, a YOLO detector [20] is used for target track-
ing. This is called tracking by detection. The training of YOLO tracker is very 
simple, which requires image frames with known target locations. Although 
YOLO can also perform classification, the performance is not good as we have a 
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very limited number of video frames for training. As a result, in the second step 
of target classification, we decided to use ResNet [21] for classification. We 
chose ResNet because it allows us to perform customized training by augment-
ing the data from the limited video frames. Our proposed approach was demon-
strated using MWIR and LWIR videos with about 3000 frames in each video. 
The tracking and classification results are reasonable. This is a big improvement 
over conventional trackers [22] [23], which do not work well in the compressive 
measurement domain. 

This paper is organized as follows. In Section 2, we describe some background 
materials, including the PCE camera, YOLO, ResNet, video data, and perfor-
mance metrics. In Section 3, we summarize the tracking and classification results 
using MWIR and LWIR videos. Finally, we conclude our paper with some re-
marks for future research. 

2. Background and Technical Approach 
2.1. PCE Imaging and Coded Aperture 

In this paper, we employ a sensing scheme based on PCE or also known as 
Coded Aperture (CA) video frames as described in [12]. Figure 1 illustrates the 
differences between a conventional video sensing scheme and PCE, where ran-
dom spatial pixel activation is combined with fixed temporal exposure duration. 
First, conventional cameras capture frames at certain frame rates such as 30 
frames per second. In contrast, PCE camera captures a compressed frame called 
motion coded image over a fixed period of time (Tv). For example, a user can 
compress 30 conventional frames into a single motion coded frame. This will 
yield significant data compression ratio. Second, the PCE camera allows a user to 
use different exposure times for different pixel locations. For low lighting re-
gions, more exposure times can be used and for strong light areas, short expo-
sure can be exerted. This will allow high dynamic range. Moreover, power can 
also be saved via low sampling rate in the data acquisition process. As shown in 
Figure 1, one conventional approach to using the motion coded images is to ap-
ply sparse reconstruction to reconstruct the original frames and this process may 
be very time consuming.  
 

 
Figure 1. Conventional camera vs. Pixel-wise Coded Exposure (PCE) Compressed 
Image/Video Sensor [12]. 
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Suppose the video scene is contained in a data cube M N T× ×∈X R  where M × 
N is the image size and T is the number of frames. A sensing data cube is defined 
by M N T× ×∈S R  which contains the exposure times for pixel located at (m, n, t). 
The value of ( ), ,m n tS  is 1 for frames [ ]start end,t tt∈  and 0 otherwise. [tstart, 
tend] denotes the start and end frame numbers for a particular pixel.  

The measured coded aperture image M N×∈Y R  is obtained by  

( ) ( ) ( )
1

, , , , ,
T

t
m n m n t m n t

=

= ⋅∑Y S X                 (1) 

The original video scene M N T× ×∈X R  can be reconstructed via sparsity me-
thods (L1 or L0). Details can be found in [12]. 

Instead of doing sparse reconstruction on PCE images or frames, our scheme 
directly acts on the PCE or Coded Aperture Images, which contain raw sensing 
measurements without the need for any reconstruction effort. Utilizing raw 
measurements has several challenges. First, moving targets may be smeared if 
the exposure times are long. Second, there are also missing pixels in the raw 
measurements because not all pixels are activated during the data collection 
process. Third, there are much fewer frames in the raw video because many 
original frames are compressed into a single coded frame. Consequently, train-
ing data may be scarce. 

In this study, we have focused our effort into simulating the measurements 
that should be produced by the PCE-based compressive sensing (CS) sensor. We 
then proceed to show that detecting, tracking, and even classifying moving ob-
jects of interest in the scene is feasible. We carried out multiple experiments with 
three diverse sensing models: PCE/CA Full, PCE/CA 50%, and PCE/CA 25%. 
PCE full refers to the compression of 30 frames to 1 with no missing pixels. PCE 
50 is the case where we compress 30 frames to 1 and at the same time, only 50% 
of pixels are activated for a length of 4/30 seconds. PCE 25 is similar to PCE 50 
except that only 25% of the pixels are activated for 4/30 seconds. 

Table 1 below summarizes the comparison between the three sensing models. 
Details can be found in [19]. 

2.2. YOLO 

Strictly speaking, YOLO is a detector rather than a tracker. Here, tracking is 
done via detection. That is, we apply YOLO to detect multiple targets and the 
target locations are extracted in every frame. Collecting the location information 
from the various frames will then create target trajectories.  
 
Table 1. Comparison in data compression ratio and power saving ratio between three 
sensing models. 

 PCE Full/CA Full PCE 50%/CA 50% PCE 25%/CA 25% 

Data Saving Ratio 30:1 60:1 120:1 

Power Saving Ratio 1:1 15:1 30:1 
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YOLO tracker [20] is fast and has similar performance as Faster R-CNN [24]. 
We picked YOLO because it is easy to install and is also compatible with our 
hardware, which seems to have a hard time to install and run Faster R-CNN. 
The training of YOLO is quite simple. Images with ground truth target locations 
are needed. 

YOLO has 24 convolutional layers followed by 2 fully connected layers. De-
tails can be found in [20]. The input images are resized to 448 × 448. It has some 
built-in capability to deal with different target sizes and illuminations. However, 
it is found that histogram matching is essential in order to make the tracker 
more robust to illumination changes. 

YOLO also comes with a classification module. However, based on our evalu-
ations, the classification accuracy using YOLO is not as good as ResNet in Sec-
tion 3. This is perhaps due to a lack of training data. 

2.3. ResNet Classifier 

The ResNet-18 model is an 18-layer convolutional neural network (CNN) that 
has the advantage of avoiding performance saturation and/or degradation when 
training deeper layers, which is a common problem among other CNN archi-
tectures. The ResNet-18 model avoids the performance saturation by imple-
menting an identity shortcut connection, which skips one or more layers and 
learns the residual mapping of the layer rather than the original mapping.  

Training of ResNet requires target patches. The targets are cropped from 
training videos. Mirror images are then created. We then perform data augmen-
tation using scaling (larger and smaller), rotation (every 45 degrees), and illu-
mination (brighter and dimmer) to create more training data. For each cropped 
target, we are able to create a data set with 64 more images. 

2.4. Data 

We have mid-wave infrared (MWIR) and long-wave infrared (LWIR) videos 
from our sponsor. There are two videos from each imager: Video 4 and Video 5. 
Vehicles in Video 4 start from a parking lot and then travel to a remote location. 
Video 5 is just the opposite. Each frame contains up to three vehicles (Ram, Sil-
verado, and Frontier), which are shown below in Figure 2. 

It is challenging for target tracking and classification using the above videos 
for several reasons. First, the target orientation changes from the top view to side 
views. Second, the target size varies a lot in different frames. Third, the illumina-
tion is also different. Fourth, the vehicles look very similar to one another, as can 
be seen in Figure 2. 

Here, we also briefly mention the image characteristics of SWIR, MWIR, and 
LWIR. From Figure 3 [25], one can see the bands are different. SWIR lies in the 
range of 0.9 to 1.7 microns; MWIR is in the range of 3 to 5 microns; LWIR is 
within the range of 8 to 14 microns. Because of those different wavelength 
ranges, the image characteristics are very different, as can be seen in Figure 4 
and Figure 5. The daytime and nighttime behaviors are also different. 
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Figure 2. Pictures of Ram, Frontier, and Silverado. 

 

 
Figure 3. Spectrum of SWIR, MWIR, and LWIR [25]. 

 

 
SWIR frame;               MWIR frame;                 LWIR frame 

Figure 4. Frames from SWIR, MWIR, and LWIR videos. For MWIR and LWIR videos, 
the engine parts of the vehicles are brighter due to heat radiation. The road pixels are also 
bright due to heat from the impervious surface.  

 

 
Figure 5. Different image characteristics of SWIR, MWIR, and LWIR images in 
night and day [26]. Objects in SWIR videos have shadows whereas MWIR and 
LWIR do not have shadows. The engine parts are also brighter than other parts. 

2.5. Performance Metrics 

We used the following metrics for evaluating the YOLO tracker performance: 

Ram Frontier Silverado
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• Center Location Error (CLE): It is the error between the center of the 
bounding box and the ground-truth bounding box. 

• Distance Precision (DP): It is the percentage of frames where the centroids of 
detected bounding boxes are within 20 pixels of the centroid of ground-truth 
bounding boxes. 

• EinGT: It is the percentage of the frames where the centroids of the detected 
bounding boxes are inside the ground-truth bounding boxes. 

• Number of frames with detection: This is the total number of frames that 
have detection. 

For classification, we used confusion matrix and classification accuracy as 
performance metrics. 

3. Tracking and Classification Results Using MWIR Videos 

In a companion paper [19], we have applied the YOLO + ResNet framework to 
some SWIR videos directly in compressive measurement domain. Since image 
characteristics are very different for SWIR, MWIR, LWIR, it is necessary to carry 
out a new study to investigate the deep learning-based framework in [19]. Here, 
we focus on the case of tracking and classification using a combination of YOLO 
and ResNet for MWIR and LWIR videos. There are three cases.  

We have two MWIR videos. Each one has close to 3000 frames. One video 
(Video 4) starts with vehicles (Ram, Frontier, and Silverado) leaving a parking 
lot and moves on to a remote location. Another video (Video 5) is just the oppo-
site. In addition to the aforementioned challenges, the two videos are difficult for 
tracking and classification because the cameras also move in order to follow the 
targets. 

3.1. Tracking Results 

Conventional tracker results 
We first present some tracking results using a conventional tracker known as 

STAPLE [22]. STAPLE requires the target location to be known in the first 
frame. After that, STAPLE learns the target model online and tracks the target. 
However, even in PCE full cases as shown in Figure 6 for MWIR videos and in 
Figure 7 for LWIR videos. STAPLE was not able to track any targets in subse-
quent frames. This shows the difficulty of target tracking using PCE cameras. 

MWIR: Train using Video 4 and Test using Video 5 
We used YOLO tracker here. Video 4 was used for training and Video 5 for 

testing. Four performance metrics were used in the studies. Tables 2-4 show the 
tracking results for PCE full, PCE 50, and PCE 25, respectively. In Table 2 (PCE 
full case), one can see that the percentages of correct detection are very high. The 
CLE is around 5 pixels and the DP and EinGT values are all close to 100%. In 
Table 3 (PCE 50 case), we observe that the percentages of correct detection start 
to drop. The CLE values become higher as compared to PCE full. The DP and 
EinGT values are still good. For the PCE 25 case (Table 4), the percentages of 
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frames with detection are even lower as compared to the other two cases. The 
CLE values are getting bigger. The general trend is that when the compression 
ratio increases, the performance drops accordingly. This can be corroborated in 
the snapshots shown in Figures 8-10 where more incorrect labels can be seen in 
the high compression cases. It should be noted that labels came from the YOLO 
tracker, which has inferior performance than ResNet. We will see more classifi-
cation results in the later sections. 

 
Table 2. Tracking metrics for PCE full. Train using Video 4 and test using Video 5. 

 CLE DP EinGT Number of frames with detection 

Ram 5.17 1 1 85/89 

Frontier 4.23 1 1 85/89 

Silverado 4.58 1 0.96 70/89 

 
Table 3. Tracking metrics for PCE 50. Train using Video 4 and test using Video 5. 

 CLE DP EinGT Number of frames with detection 

Ram 7.58 1 0.99 76/89 

Frontier 6.26 1 1 79/89 

Silverado 6.75 1 0.95 62/89 

 
Table 4. Tracking metrics for PCE 25. Train using Video 4 and test using Video 5. 

 CLE DP EinGT Number of frames with detection 

Ram 8.89 1 1 58/89 

Frontier 7.27 1 1 63/89 

Silverado 8.31 1 0.95 40/89 

 

 
Figure 6. STAPLE tracking results for the MWIR PCE full case. Frames: 10, 30, 50, 70, 90, 110 
are shown here. STAPLE cannot track any targets in subsequent frames. 

 

https://doi.org/10.4236/jsip.2019.103006


C. Kwan et al. 
 

 

DOI: 10.4236/jsip.2019.103006 81 Journal of Signal and Information Processing 
 

 
Figure 7. STAPLE tracking results for the LWIR PCE full case. Frames: 10, 30, 50, 70, 90, 110 
are shown here. STAPLE cannot track any targets in subsequent frames. 

 

 
Figure 8. Tracking results for frames 1, 15, 29, 43, 57, and 71. PCE full case. Train using 
Video 4 and test using Video 5. 

 

 
Figure 9. Tracking results for frames 1, 15, 29, 43, 57, and 71. PCE 50 case. Train using Video 
4 and test using Video 5. 
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Figure 10. Tracking results for frames 1, 15, 29, 43, 57, and 71. PCE 25 case. Train using 
Video 4 and test using Video 5. 

 
MWIR: Train using Video 5 and Test using Video 4 
This is the reverse case where Video 5 was used for training and Video 4 for 

testing. Tables 5-7 show the tracking results for PCE full, PCE 50, and PCE 25, 
respectively. The trend is that when the compression ratio increases, the perfor-
mance drops accordingly. This can be confirmed in the snapshots shown in 
Figures 11-13 where we can see that some targets do not have bounding boxes 
around them in the high compression cases. We also see that more incorrect la-
bels in high compression cases. 

3.2. Classification Results 

Here, we applied two classifiers: YOLO and ResNet. It should be noted that clas-
sification is performed only when there are good detection results from the 
YOLO tracker. For some frames in the PCE 50 and PCE 25, there may not be 
positive detection results and for those frames, we do not generate any classifica-
tion results. 

MWIR: Training Using Video 4 and Testing Using Video 5 
Here, Video 4 was used for training and Video 5 for testing. Tables 8-10 show 

the classification results using YOLO and ResNet for PCE full, PCE 50, and PCE 
25, respectively. In each table, the left side shows the confusion matrix and the 
last column shows the classification accuracy. In all cases, the first observation is 
that the ResNet performance is better than that of YOLO. For instance, the av-
eraged classification accuracy in ResNet is 0.5 and the averaged classification 
accuracy for YOLO is only 0.31 in the PCE full case. The second observation is 
that the classification performance deteriorates with high missing rates. Due to 
aggressive compression (>30:1), the ResNet classification rates are also low in 
the PCE 25 case. Third, we also notice that Frontier has higher classification ac-
curacy than Ram and Silverado. This is probably because RAM and Silverado 
may have similar appearance, as can be seen from the confusion matrices in 
those tables. 
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Figure 11. Tracking results for frames 1, 19, 37, 55, 73, and 91. PCE full case. Train using Video 
5 and test using Video 4. 

 

 
Figure 12. Tracking results for frames 1, 19, 37, 55, 73, and 91. PCE 50 case. Train using Video 5 
and test using Video 4. 

 

 
Figure 13. Tracking results for frames 1, 19, 37, 55, 73, and 91. PCE 25 case. Train using Video 5 
and test using Video 4. 
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Table 5. Tracking metrics for PCE full. Train using Video 5 and test using Video 4. 

 CLE DP EinGT Number of frames with detection 

Ram 6.31 1 0.97 93/110 

Frontier 6.53 1 0.97 107/110 

Silverado 6.19 1 1 66/110 

 
Table 6. Tracking metrics for PCE 50. Train using Video 5 and test using Video 4. 

 CLE DP EinGT Number of frames with detection 

Ram 7.72 1 0.97 86/110 

Frontier 8.08 1 0.98 91/110 

Silverado 8.5 1 1 50/110 

 
Table 7. Tracking metrics for PCE 25. Train using Video 5 and test using Video 4. 

 CLE DP EinGT Number of frames with detection 

Ram 9.27 1 0.98 64/110 

Frontier 8.43 1 0.95 58/110 

Silverado 7.75 1 1 24/110 

 
Table 8. Classification results for PCE full case. Video 4 for training and Video 5 for 
testing. (a)YOLO classifier outputs; (b) ResNet classifier outputs. 

(a) 

 
Actual  

Ram Frontier Silverado Classification Accuracy 

Predicted 

Ram 12 32 41 0.1412 

Frontier 15 65 2 0.7927 

Silverado 63 1 1 0.0154 

(b) 

 
Actual  

Ram Frontier Silverado Classification Accuracy 

Predicted 

Ram 51 3 31 0.6000 

Frontier 30 45 10 0.5294 

Silverado 41 1 28 0.4000 

 

Table 9. Classification results for PCE 50 case. Video 4 for training and Video 5 for 
testing. (a) YOLO classifier outputs; (b) ResNet classifier outputs.  

(a) 

 
Actual  

Ram Frontier Silverado Classification Accuracy 

Predicted 

Ram 12 41 22 0.1600 

Frontier 22 52 1 0.6933 

Silverado 57 2 0 0.0000 
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(b) 

 
Actual  

Ram Frontier Silverado Classification Accuracy 

Predicted 

Ram 36 12 28 0.4737 

Frontier 34 42 3 0.5316 

Silverado 38 4 20 0.3226 

 
Table 10. Classification results for PCE 25 case. Video 4 for training and Video 5 for 
testing. (a) YOLO classifier outputs; (b) ResNet classifier outputs. 

(a) 

 
Actual  

Ram Frontier Silverado Classification Accuracy 

Predicted 

Ram 6 35 16 0.1053 

Frontier 24 35 2 0.5738 

Silverado 37 3 0 0.0000 

(b) 

 
Actual  

Ram Frontier Silverado Classification Accuracy 

Predicted 

Ram 22 30 6 0.3793 

Frontier 16 46 1 0.7302 

Silverado 15 10 15 0.3750 

 
MWIR: Training Using Video 5 and Testing Using Video 4 
Here, Video 5 was used for training and Video 4 for testing. The observations 

in Tables 11-13 are similar to the earlier case. That is, ResNet is better than 
YOLO and classification performance drops with high compression rates. 

4. Tracking and Classification Results Using LWIR Videos 

Here, we summarize the studies for LWIR videos. 

4.1. Tracking Results 

LWIR: Train using Video 4 and Test using Video 5 
From Table 14 (PCE full) case, the CLE, DP, and EinGT metrics all look 

normal. The numbers of frames with detection are lower than those of MWIR. 
Frontier has higher detections than Ram and Silverado. For PCE 50 (Table 15) 
and PCE 25 cases (Table 16), we observe that the YOLO tracker has more 
missed detections when the compression ratio increases. DP and EinGT scores 
are all high. CLE scores increase as compression increases. Moreover, from Fig-
ures 14-16, we can see that there are some missed bounding boxes as well as in-
correct labels around the vehicles. 
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Figure 14. Tracking results for frames 1, 15, 29, 43, 57, and 71. PCE full case. Train using 
Video 4 and test using Video 5. 

 

 
Figure 15. Tracking results for frames 1, 15, 29, 43, 57, and 71. PCE 50 case. Train using 
Video 4 and test using Video 5. 

 

 
Figure 16. Tracking results for frames 1, 15, 29, 43, 57, and 71. PCE 25 case. Train using 
Video 4 and test using Video 5. 
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Table 11. Classification results for PCE Full case. Video 5 for training and Video 4 for 
testing. (a) YOLO classifier outputs; (b) ResNet classifier outputs. 

(a) 

 
Actual  

Ram Frontier Silverado Classification Accuracy 

Predicted 

Ram 17 38 38 0.1828 

Frontier 44 61 0 0.5810 

Silverado 51 13 1 0.0154 

(b) 

 
Actual  

Ram Frontier Silverado Classification Accuracy 

Predicted 

Ram 31 30 32 0.3333 

Frontier 6 94 7 0.8785 

Silverado 16 23 27 0.4091 

 
Table 12. Classification results for PCE 50 case. Video 5 for training and Video 4 for 
testing. (a) YOLO classifier outputs; (b) ResNet classifier outputs. 

(a) 

 
Actual  

Ram Frontier Silverado Classification Accuracy 

Predicted 

Ram 12 30 43 0.1412 

Frontier 44 43 2 0.4831 

Silverado 33 12 5 0.1000 

(b) 

 
Actual  

Ram Frontier Silverado Classification Accuracy 

Predicted 

Ram 16 63 7 0.1860 

Frontier 15 73 3 0.8022 

Silverado 18 23 9 0.1800 

 
Table 13. Classification results for PCE 25 case. Video 5 for training and Video 4 for 
testing. (a) YOLO classifier outputs; (b) ResNet classifier outputs. 

(a) 

 
Actual  

Ram Frontier Silverado Classification Accuracy 

Predicted 

Ram 11 8 45 0.1719 

Frontier 27 29 2 0.5000 

Silverado 10 2 12 0.5000 
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(b) 

 
Actual  

Ram Frontier Silverado Classification Accuracy 

Predicted 

Ram 11 48 5 0.1719 

Frontier 17 41 0 0.7069 

Silverado 11 12 1 0.0417 

 
Table 14. Tracking metrics for PCE full. Train using Video 4 and test using Video 5. 

 CLE DP EinGT Number of frames with detection 

Ram 4.33 1 1 54/89 

Frontier 6.64 1 1 71/89 

Silverado 5.09 1 0.96 25/89 

 
Table 15. Tracking metrics for PCE 50. Train using Video 4 and test using Video 5. 

 CLE DP EinGT Number of frames with detection 

Ram 7.47 1 1 50/89 

Frontier 9.05 1 1 53/89 

Silverado 5.75 1 1 16/89 

 
Table 16. Tracking metrics for PCE 25. Train using Video 4 and test using Video 5. 

 CLE DP EinGT Number of frames with detection 

Ram 7.58 1 1 31/89 

Frontier 7.99 1 1 30/89 

Silverado 5.2 1 1 11/89 

 
LWIR: Train using Video 5 and Test using Video 4 
Figures 17-19 and Tables 17-19 summarize the LWIR study where Video 5 

was used for training and Video 4 for testing. Similar to earlier section, we have 
decent performance when the compression is low. Some partial targets can be 
tracked. In general, the percentages of frames with detection are lower as com-
pared to the case of using Video 4 for training and Video 5 for testing. Moreo-
ver, the overall performance of tracking of LWIR videos is inferior to that of 
MWIR videos. 

4.2. Classification Results 

LWIR: Training Using Video 4 and Testing Using Video 5 
We performed a comparative study between ResNet and the built-in YOLO 

classifiers. Tables 20-22 summarize the classification results for PCE full, PCE 
50, and PCE 25, respectively. In each table, the left side shows the confusion ma-
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trix and the last column shows the classification accuracies. We observe that 
ResNet has much higher classification accuracy than YOLO. The results here are 
similar to those in the MWIR cases. That is, ResNet classification results are 
much better than those of YOLO. 

LWIR: Training Using Video 5 and Testing Using Video 4 
We have similar observations as the previous LWIR case. In the PCE full case 

(Table 23), the ResNet results are very good for Ram and Frontier, but not for 
Silverado. When compression ratio is beyond 30 to 1, the classification rates 
drop significantly as can be seen in Table 24 and Table 25 in which Ram and 
Silverado have very poor classification rates. We think that, in the coded aper-
ture camera case, we should not use high compression, as the targets will be 
smeared too much. Moreover, MWIR may be preferred over LWIR in target 
tracking and classification. 

 

 
Figure 17. Tracking results for frames 1, 19, 37, 55, 73, and 91. PCE full case. Train using 
Video 5 and test using Video 4. 

 

 
Figure 18. Tracking results for frames 1, 19, 37, 55, 73, and 91. PCE 50 case. Train using 
Video 5 and test using Video 4. 
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Figure 19. Tracking results for frames 1, 19, 37, 55, 73, and 91. PCE 25 case. Train using 
Video 5 and test using Video 4. 

 
Table 17. Tracking metrics for PCE full. Train using Video 5 and test using Video 4. 

 CLE DP EinGT Number of frames with detection 

Ram 9.73 1 0.88 34/110 

Frontier 8.17 1 0.98 55/110 

Silverado 8.55 1 1 23/110 

 
Table 18. Tracking metrics for PCE 50. Train using Video 5 and test using Video 4. 

 CLE DP EinGT Number of frames with detection 

Ram 13.44 1 1 8/110 

Frontier 6.55 1 0.96 25/110 

Silverado 9.5 1 1 10/110 

 
Table 19. Tracking metrics for PCE 25. Train using Video 5 and test using Video 4. 

 CLE DP EinGT Number of frames with detection 

Ram 15.32 1 1 4/110 

Frontier 7.96 1 0.95 19/110 

Silverado 9.92 1 1 8/110 

 
Table 20. Classification results for PCE full case. Video 4 for training and Video 5 for 
testing. (a) YOLO classifier outputs; (b) ResNet classifier outputs. 

(a) 

 
Actual  

Ram Frontier Silverado Classification Accuracy 

Predicted 

Ram 4 35 14 0.0755 

Frontier 23 45 1 0.6522 

Silverado 11 14 0 0.0000 
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(b) 

 
Actual  

Ram Frontier Silverado Classification Accuracy 

Predicted 

Ram 36 1 17 0.6667 

Frontier 35 32 4 0.4507 

Silverado 13 0 12 0.4800 

 
Table 21. Classification results for PCE 50 case. Video 4 for training and Video 5 for 
testing. (a) YOLO classifier outputs; (b) ResNet classifier outputs. 

(a) 

 
Actual  

Ram Frontier Silverado Classification Accuracy 

Predicted 

Ram 4 31 13 0.0833 

Frontier 15 38 0 0.7170 

Silverado 3 13 0 0.0000 

(b) 

 
Actual  

Ram Frontier Silverado Classification Accuracy 

Predicted 

Ram 25 20 5 0.5000 

Frontier 19 30 4 0.5660 

Silverado 3 12 1 0.0625 

 
Table 22. Classification results for PCE 25 case. Video 4 for training and Video 5 for 
testing. (a) YOLO classifier outputs; (b) ResNet classifier outputs. 

(a) 

 
Actual  

Ram Frontier Silverado Classification Accuracy 

Predicted 

Ram 3 22 3 0.1071 

Frontier 5 25 0 0.8333 

Silverado 0 11 0 0.0000 

(b) 

 
Actual  

Ram Frontier Silverado Classification Accuracy 

Predicted 

Ram 11 19 1 0.3548 

Frontier 6 24 0 0.8000 

Silverado 0 11 0 0.0000 
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Table 23. Classification results for PCE Full case. Video 5 for training and Video 4 for 
testing. (a) YOLO classifier outputs; (b) ResNet classifier outputs. 

(a) 

 
Actual  

Ram Frontier Silverado Classification Accuracy 

Predicted 

Ram 7 22 3 0.2188 

Frontier 17 36 0 0.6792 

Silverado 21 0 2 0.0870 

(b) 

 
Actual  

Ram Frontier Silverado Classification Accuracy 

Predicted 

Ram 30 2 2 0.8824 

Frontier 13 35 7 0.6364 

Silverado 19 0 4 0.1739 

 
Table 24. Classification results for PCE 50 case. Video 5 for training and Video 4 for 
testing. (a) YOLO classifier outputs; (b) ResNet classifier outputs. 

(a) 

 
Actual  

Ram Frontier Silverado Classification Accuracy 

Predicted 

Ram 3 5 0 0.3750 

Frontier 1 24 0 0.9600 

Silverado 7 0 3 0.300 

(b) 

 
Actual  

Ram Frontier Silverado Classification Accuracy 

Predicted 

Ram 0 8 8 0.0000 

Frontier 10 14 1 0.5600 

Silverado 7 1 2 0.2000 

 
Table 25. Classification results for PCE 25 case. Video 5 for training and Video 4 for 
testing. (a) YOLO classifier outputs; (b) ResNet classifier outputs. 

(a) 

 
Actual  

Ram Frontier Silverado Classification Accuracy 

Predicted 

Ram 0 4 0 0.0000 

Frontier 0 19 0 1.0000 

Silverado 4 1 3 0.3750 
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(b) 

 
Actual  

Ram Frontier Silverado Classification Accuracy 

Predicted 

Ram 0 4 0 0.0000 

Frontier 3 16 0 0.8421 

Silverado 3 5 0 0.0000 

5. Conclusions 

In this paper, we present a high-performance approach to target tracking and 
classification directly in the compressive sensing domain for MWIR and LWIR 
videos. Skipping the time consuming reconstruction step will allow us to per-
form real-time target tracking and classification. The proposed approach is 
based on a combination of two deep learning schemes: YOLO for tracking and 
ResNet for classification. The proposed approach is suitable for applications 
where limited training data are available. Experiments using MWIR and LWIR 
videos clearly demonstrated the performance of the proposed approach. One key 
observation is that the MWIR has better tracking and classification performance 
than that of LWIR. Another observation is that the ResNet has much better per-
formance than the built-in classification in YOLO. 

One potential direction is to integrate our proposed approach with real hard-
ware to perform real-time target tracking and classification directly in the com-
pressive sensing domain. 
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