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Abstract 

Quadratic distance estimation making use of the sample quantile function 
over a continuous range is introduced. It extends previous methods which are 
based only on a few sample quantiles and it parallels the continuous GMM 
method. Asymptotic properties are established for the continuous quadratic 
distance estimators (CQDE) and the implementation of the methods are dis-
cussed. The methods appear to be useful for balancing robustness and effi-
ciency and useful for fitting distribution with model quantile function being 
simpler than its density function or distribution function. 
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1. Introduction 

For estimation in a classical setup, we often assume to have n independent, iden-
tically distributed observations 1, , nX X  from a continuous density ( )

0
f xθ  

which belongs to a parametric family { }fθ , i.e., ( ) { }
0

f x f∈θ θ  where 
( )1, , mθ θ ′= θ , ∈Ωθ  and 0θ  is the true vector of parameters, Ω  is as-

sumed to be compact. One of the main objectives of inferences is to be able to 
estimate 0θ . In an actuarial context, the sample observations might represent 
losses of a certain type of contracts and an estimate of 0θ  is necessary if we 
want to make rates or premiums for the type of contract where we have observa-
tions. 

Maximum likelihood (ML) estimation are density based and often the domain 
of the density function must not depend on the parameters is one of the regular-
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ity conditions so that ML estimators attain the lower bound as given by the in-
formation matrix. In many applications, this condition is not met. We can con-
sider the following example which gives the Generalized Pareto distribution 
(GPD) and draw the attention on the properties of the model quantile function 
which appears to have nicer properties than the density function and hence mo-
tivate us to develop continuous quadratic distance (CQD) estimation using 
quantiles on a continuum range which generalizes the quadratic distance (QD) 
methods based on few quantiles as proposed by LaRiccia and Wehrly [1] which 
can be viewed as based on a discrete range and hence CQD estimation might 
overcome the arbitrary choice of quantiles of QD as CQD will essentially make 
use of all the quantiles over the range with 0 1p< < . 

Example (GPD).  
The GP family is a two parameters family with the vector of parameter 
( ),λ κ ′=θ . 

The density, distribution function and quantile function are given respectively 
by 

( )
1 11; , 1 ,1 0, 0, 0x xf x
κκ κλ κ κ λ

λ λ λ

−
 = − − ≥ ≠ > 
 

 and  

( ) 1; e , 0, 0, 0xf x xλλ κ λ
λ

−= ≥ = > , 

the distribution function is given by 

( )
1

; , 1 1 1 0, 0, 0,x xF x
κκ κλ κ κ λ

λ λ
 = − − − ≥ ≠ > 
 

 and  

( ); 1 e , 0, 0, 0xF x xλλ κ λ−= − ≥ = > , 

the quantile function is given by 

( ) ( )( )1 ; , 1 1 ,0 1, 0, 0kF t t k tλ κ λ κ λ− = − − < < ≠ >  and 

( ) ( )1 ; log 1 , 0, 0,0 1F t t tλ λ κ λ− = − − = > < <   

These functions can be found in Castillo et al. [2] (pages 65-66). Among these 
functions only the domain of the quantile function ( )1 ; ,F t λ κ−  does not de-
pend on the parameters and naturally if the model quantile function satisfies 
some additional conditions such as differentiability, it is natural to develop sta-
tistical inference methods using the sample quantile function ( )1

nF t−  instead of 
the sample distribution function ( )nF x  which are defined respectively as 

( ) ( ){ }1 inf |n nF t x F x t− = ≥  and  

( ) 1

1
i

n
n xiF x

n
δ

=
= ∑  with 

ixδ  being the degenerate distribution at ix  is the 

commonly used sample distribution. The counterpart of ( )1
nF t−  is the model 

quantile function ( )1F tθ
− , see Serfling [3] (pages 74-80). 
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Due to the complexity of the density function for the GP model, alternative 
methods to ML have been developed in the literature for example with the 
probability weighted moments (PWM) method proposed by Hosking and Wallis 
[4] which leads to solve moment type of equations to obtain estimators by 
matching selected empirical moments with their model counterpart. The draw-
back of the PWM method is the range of the parameters must be restricted for 
the selected moments to exist, see Hosking and Wallis [4], Kotz and Nadarajah 
[5] (p 36). The PWM method might not be robust and some robust methods 
have been proposed by Dupuis [6], Juarez and Schucany [7] for estimation for 
the GP model. 

For estimating parameters of the GPD, the percentiles matching (PM) method 
for fitting loss distributions as described by Klugman et al. [8] (pages 256-257) 
can also be used. It consists of first selecting two points 1 2,t t , with 

1 20 1t t< < <  as we only have two parameters and solve the following moment 
type of estimating equations to obtain the estimators, i.e., ˆ

PMθ  is the vector of 
solutions of 

( ) ( )1 1
1 1nF t F t− −= θ  or equivalently, ( )( )1

1 1nF F t t− =θ  

and  

( ) ( )1 1
2 2nF t F t− −= θ  or equivalently, ( )( )1

2 2nF F t t− =θ . 

The method is robust but not very efficient as only two points are used here to 
obtain moment type of equations and there is also arbitrariness on the choice of 
these two points. Castillo and Hadi [9] have improved this method by first se-
lecting a set of two points, ( ){ },i jS t t=  and obtain a set of corresponding PM 
estimators and finally define the final estimators according to a rule to select 
from the set of PM estimators generated by the set ( ){ },i jS t t= . The question 
on arbitrariness on selecting the set ( ){ },i jS t t=  is still not resolved with this 
method.  

Instead of solving moment type of equations, for parametric estimation in 
general not necessary for the GPD with the vector of parameters 

( )1, , mθ θ ′= θ , LaRiccia and Wehrly [1] proposed to construct quadratic dis-
tance based on the discrepancy of ( ) ( )1 1

n i iF t F t− −− θ  using k m>  selected 
points it ’s with 1 20 1nt t t< < < < < , so that we can define the following two 
vectors nz  and zθ  with 

( ) ( )( )1 1
1 , ,n n n kF t F t− − ′=z    

which is based on the sample and its model counterpart defined as  

( ) ( )( )1 1
1 , , kF t F t− − ′=z θ θ θ . 

This leads to a class of quadratic distance of the form 

( ) ( )( )n n z′− −z z H zθ θθ                     (1) 

and the quadratic distance (QD) estimators are found by minimizing the objec-
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tive function given by expression (1), ( )H θ  is a class of symmetric positive 
definite matrix which might depend on θ . Goodness-of-fit test statistics can 
also be constructed using expression (1), see Luong and Thompson [10].  

By quadratic distance estimation without further specializing it is continuous 
we mean that it is based on quadratic form as given by expression (1), it also fits 
into classical minimum distance (CMD) estimation and closely related to Gene-
ralized Methods of moment (GMM) and by GMM without further specializing 
that it is continuous GMM, we mean GMM based on a finite number of moment 
conditions, see Newey and McFadden [11] (p 212-2128). 

Using the asymptotic theory of QD estimation or CMD estimation, it is well 
known that by letting ( )H θ  to be the inverse of the asymptotic covariance 

matrix of ( )0nn ′−z zθ  under 0θ , we can obtain estimators which are the 

most efficient within the class being considered as given by expression (1), so we 
can let 

( ) ( )* 1
0 0

−=H θ θΣ  and  

( )0θΣ  is the asymptotic covariance matrix of ( )0nn ′−z zθ . 

In fact, it has been shown that it suffices to use a consistent estimate for 
( )0θΣ  to obtain asymptotic equivalent estimators. For example, first we obtain 

a preliminary consistent estimate ( )0θ  and if we can construct a consistent es-
timate 

( )( )0
n θΣ  for ( )0θΣ , i.e., ( )( ) ( )0

0
p→n θ θΣ Σ   

then we can construct a consistent estimate which is given ( )( )01−
n θΣ  for 

( )1
0

− θΣ  as in general, 

( )( ) ( )01 1
0

p− −→n θ θΣ Σ . 

In practice, for QD estimation we let ( )( )01−= nΗ θΣ  to obtain QD estimators 
and the asymptotic efficiency is identical as QD estimators based on ( )1

0
− θΣ  

and it is simpler to obtain them numerically. 
For GMM estimation, it is quite straightforward to construct ( )( )01−

n θΣ , see 
expression (4.2) given by Newey and McFadden [11] (p2155). The authors also 
pointed out that this might not be the case for CMD estimation or QD estima-
tion. This is a point that we shall address when generalizing the quadratic dis-
tance methods using a finite number of quantiles to method using quantile func-
tion over a continuous range which we shall refer to as continuous quadratic 
distances (CQD); we shall use an approach based on the influence functions of 
the sample quantiles to estimate the optimum kernel which is the analogous of 
the use of ( )( )01−

n θΣ  to estimate ( )1
0

− θΣ  for the continuous set-up. 
Continuous GMM theory makes use of Hilbert space linear operator theory 

and have been developed in details by Carrasco and Florens [12] and as men-
tioned it is closely related to the theory for continuous QD, we shall make use of 
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their results to establish consistency and asymptotic normality of continuous 
quadratic distance estimators and since the paper aims at providing results for 
practitioners for their applied works, the presentation will emphasize metho-
dologies with less technicalities so that it might be more suitable for applied re-
searchers for their works. First, we shall briefly outline how to form the quadrat-
ic distance to obtain the CQD estimators and postpone the details for later sec-
tions of the paper. 

CQD estimators can be viewed as estimators based on minimizing a conti-
nuous quadratic form as given by 

( ) ( ) ( )( ) ( ) ( )( ) ( )1 1 1 1 , d d
b b o

n n na a
Q F s F s F t F t k s t s t− − − −= − −∫ ∫ θ θθ       (2) 

with: 
1) ( ),ok s t  is an optimum symmetric positive definite kernel assumed to be 

fully specified. 
2) a and b are chosen values with a being close to 0 and b close to 1 and 

0 1a b< < < . 
In practice, we work with an asymptotic equivalent objective function ( )a

nQ θ  
instead of ( )nQ θ  where ( ),ok s t  is estimated by a degenerate kernel ( ),o

nk s t , 
i.e.,  

 ( ) ( ) ( )( ) ( ) ( )( ) ( )1 1 1 1 , d d
b ba o

n n n na a
Q F s F s F t F t k s t s t− − − −= − −∫ ∫ θ θθ .     (3) 

Since the kernel ( ),nk s t  is degenerate and in our case, we can find explicitly 
n eigenvalues ( ) , 1, ,n

j j nλ =   with corresponding closed form eigenfunctions 
( ) ( ) , 1, ,n
j t j nφ =  . These eigenfunctions can be computed explicitly. 
As in the spectral decomposition of a symmetric positive defined matrix for 

the Euclidean space, spectral decomposition in Hilbert space allows the kernel  

( ),o
nk s t  to be represented as ( ) ( ) ( ) ( ) ( ) ( )1, n n n no

n j j jjk s t s tλ φ φ
=

= ∑ , and using this  

representation, we can express ( )a
nQ θ  as a sum of n components, i.e., 

( ) ( ) ( ) ( )( ) ( ) ( )( )( )2
1 1

1 d
bn n na

n j j ni a
Q t F t F t tλ φ − −

=
= −∑ ∫ θθ            (4) 

which is similar to the expression used to obtain continuous GMM estimators as 
given by Carrasco and Florens [12] (page 799). 

Spectral decompositions in functional space have been used in the literature, 
see Feuerverger and McDunnough [13] (page 312), Durbin [14] (page 292-294). 
Furthermore, if ( ) , 1, ,n

j j nλ =   are not stable, they can be replaced by suitable 
defined ( ) , 1, ,n

j j nαλ =   without affecting the asymptotic theory of the CQD 
estimators. In practice, we work with 

( ) ( ) ( ) ( )( ) ( ) ( )( )( )2
1 1

1 dnn
bn n

n j j ni a
Q t F t F t tαα λ φ − −

=
= −∑ ∫ θθ          (5) 

to obtain CQD estimators. Unless otherwise stated, by CQD estimators we mean 
estimators using the objective function of the form as defined by expression (5). 

Carrasco and Florens [6] (page 799) developed perturbation technique, a 

https://doi.org/10.4236/ojs.2019.94028


A. Luong 
 

 

DOI: 10.4236/ojs.2019.94028 426 Open Journal of Statistics 

 

technique to obtain ( ) , 1, ,n
j j nαλ =   from the eigenvalues ( ) , 1, ,n

j j nλ =  . The 
perturbation technique will also be used for constructing a degenerate optimum 
kernel for CQD estimation. 

The objectives of the paper are to develop CQD estimation based on quantiles 
with the aims to have estimators which are robust in the sense of bounded in-
fluence functions and have good efficiencies. For technicalities, we refer to the 
paper by Carrasco and Florens [12] who have introduced continuous GMM es-
timation.  

The paper is organized as follows. Section 2 gives some preliminary results 
such as statistical functional and its influence function from which the sample 
quantiles can be viewed as robust statistics with bounded influence functions. 
CQD estimation using quantiles will inherit the same robustness property. Some 
of the standard notions for the study of kernel functions will also be reviewed. 
By linking a kernel to a linear operator in the Hilbert space of functions which 
are square integrable over the range ( ),a b  with an inner product, it allows a 
norm .  to be introduced. Also, the notion of self adjoint linear operator 
which can be viewed as analogous to a symmetric matrix in Euclidean space is 
also introduced in Section 2. Section 3 gives asymptotic properties of the CQD 
estimators based on an estimate optimum kernel. An estimate of the covariance 
matrix is also given in Section 3.  

Finally, we shall mention that simulation studies are not discussed in this pa-
per as numerical quadrature methods are involved for evaluating the integrals 
over the range [ ],a b  for computing the objective function, we prefer to gather 
numerical aspects and simulation aspects together for further works and include 
these type of results in a separate paper leaving this paper focusing only on the 
methodologies. 

2. Some Preliminaries 

In this section we shall review the notion of statistical functional and its influ-
ence function and view a sample quantile as a statistical functional. Using its in-
fluence function, we can see that the sample quantile is a robust statistic and us-
ing the influence functions of two sample quantiles, we can also obtain the 
asymptotic covariance of the two sample quantiles. 

2.1. Statistical Functional and Its Influence Function 

Often, a statistic can be represented as a functional of the sample distribution 

nF  which we can denote by ( )nT F . For example, the sth-sample quantile is de-
fined as ( )1

nF s− . Associated with ( )nT F , there is its influence function which 
is a weak functional directional derivative at 

0
F Fθ=  in the direction of 

( )x Fδ − , xδ  is the degenerate distribution at x. More specifically, the influ-
ence function of ( )nT F  as a function of x is defined as 

( ) ( )
( )( ) ( )

0lim x
T xF

T F F T F
IC x T F

δ
δ → +

+ − −
′= − = =




, 
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FT ′  is a linear function in the functional space. It is not difficult to see that we 
can also compute ( )TIC x  using the usual derivative 

( )
( )( )

0

d
d

x
T

T F F
IC x

δ

=

+ −
=






. 

Furthermore, since a Taylor type of approximation in a functional space can 
be used, we then have the following approximation expressed with a remainder 
term nr  

( ) ( ) ( )nFn nT F T F T F F r′= + − +  

or equivalently using 1

1
i

n
n xiF

n
δ

=
= ∑ , 

( ) ( ) ( )1

1
i

n
n x nF iT F T F T F r

n
δ

=

 ′= + − + 
 
∑  and using FT ′  is linear, 

( ) ( ) ( )1

1
i

n
n x ni FT F T F T F r

n
δ

=
′= + − +∑ , 

( ) ( ) ( )1

1 n
n T i niT F T F IC x r

n =
− = + +∑ .  

If ( )TIC x  as a function of x is bounded, the statistics is robust and the re-
mainder is ( )1 2

po n−  with ( )1 2
po n−  being a term which converges to 0 in 

probability faster than 1 2 0n− →  as n →∞ . 
Therefore, if we want to find the asymptotic variance of  

( ) ( )( )( ) nVar n T F T F− , it is given by the variance of ( )TIC x  as 

( ) ( )( ) ( ) ( )( )2 2 0, ,L
n T T Tn T F T F N Var IC xσ σ− → =  

The influence function of the sth-sample quantile ( )1
nF s−  can be obtained 

and it is given by 

( )
( )
( )( ) 0 0

1

1
, , ,0 1

sQ

I x F s s
IC x f f F F s

f F s θ θ

−

−

 ≤ − = − = = < <          (6) 

from which we can obtain the asymptotic variance of 

( ) ( )( ) ( )( ) ( )
( )( )( )

1 1
21

1
sn Q

s s
n F s F s Var IC x

f F s
− −

−

−
− = = , 

See Serfing [3] (page236), Hogg et al. [15] (page 593). Also, using the influ-
ence function representation for the sth-sample quantile ( )1

nF s−  and the cor-
responding one for the tth-sample quantile ( )1

nF t− , it can be shown that the 
asymptotic covariance of the following sample quantiles ( )1

nF s−  and ( )1
nF t−  

is given by 

( ) ( )( ) ( ) ( )( )( )
( )

( )( ) ( )( )

1 1 1 1

1 1

,

min ,
, 0 1, 0 1

n nCov n F s F s n F t F t

s t st
s t

f F s f F t

− − − −

− −

− −

−
= < < < <

 

see LaRiccia and Wehrly [1] (page 743).  
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If we define the covariance kernel as 

( ) ( )
( )( ) ( )( ) 0 01 1

min ,
, , , ,0 1

s t st
k s t f f F F s

f F s f F t− −

−
= = = < <θ θ          (7)  

then associated to this kernel there is a linear operator K  in a functional space 
which can be defined as follows, let a function ( )f t  which belongs to the 
functional space being considered, K is defined as 

( )( ) ( ) ( ) ( ), d
b

a
f f t k s t f s s g t= = =∫K K . 

We can see that for a suitable functional space, it is natural to consider the 
Hilbert space of functions which are square integrable so that a norm and linear 
operators can be defined in this space. This will facilitate the studies of kernels 
which are function of ( ),s t . The necessary notions are introduced in the fol-
lowing section.  

2.2. Linear Operators Associated with Kernels in a Hilbert Space 

The functional space that we are interested is the space of integrable function 
with the range [ ], ,0 1a b a b< < <  and it is natural to introduce an inner prod-
uct ( ) ( ) ( ), d

b

a
f g f t g t t= ∫  and therefore, a norm .  can be defined as  

( ) ( ) ( )( )1 2
, d

b

a
f f f f t g t t= = ∫ . 

For a Euclidean space, the composition of two linear operators A  and B  
where A  and B  are matrices produces a matrix C  with = ⋅C A B . For li-
near operators in the Hilbert space the composition of the linear operators A  
and B  is a linear operator = ⋅C A B  with its kernel ( ),k s tC  and  

( )( ) ( ) ( ) ( )( )( ), d
b

Ca
f f t k s t f s s f t= = =∫C C A B . 

Just as a matrix A  has its transpose *A  matrix and if A  is symmetric 
then *=A A , these notions can be extended to a functional space as a linear 
operator A  has its adjoint *A  and if the kernel defining A  is symmetric 
then *=A A , A  is called self adjoint.  

More precisely, given *,A A  is found using the following equality, see Defini-
tion 6 given by Carrasco and Florens [12] (page 823), 

( ) ( )*, , .f g f g=A A  

Furthermore,  
if *=A A  then ( ) ( ), ,f g f g=A A . 

In this paper we focus on positive definite symmetric kernel ( ),k s t  which 

can be viewed as the covariance of ( ),s tY Y  for some stochastic process { }tY ; 

therefore, the objective function is of the type ( ) ( ) ( ), d d
b b

a a
f s f t k s t s t∫ ∫  is al-

ways positive unless ( ) 0f s =  then ( ) ( ) ( ), d d 0
b b

a a
f s f t k s t s t =∫ ∫ , see Luen-

berger [16] (page 152) for this notion. 
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Unless otherwise stated, we work with linear operators associated with posi-
tive definite symmetric kernels. For the Euclidean space if the covariance matrix 
K  is invertible with the inverse given by 1−K  assumed to exist after regulari-

zations then there are symmetric positive definite symmetric matrices denoted 
by 1 2K  and 1 2−K  so that 

1 2 1 2 1 1 2 1 2, − − −= =K K K K K K                 (8) 

see Hogg et al. [15] (pages 179-180) for square root of a symmetric positive defi-
nite matrices and they can be computed using the technique of spectral decom-
position of matrices. 

If K  is linear operator with covariance kernel ( ),k s t , the analogous prop-
erties given by expression (8) continues to hold but unlike matrices where closed 
forms for the matrices can be found, one might not be able to display the kernel 
of 1−K  or 1 2−K  explicitly as no closed form expressions are available despite 
that both 1−K  and 1 2−K  exist subject to some technical regularizations as 
discussed in section 4 by Carrasco and Florens [12] (pages 506-510).  

For our purpose, we shall focus on a linear operator K  with its kernel de-
fined by Equation (7) for the rest of the paper. Since K  and 1−K  are related 
and if we can construct an estimator for K , we can construct an estimator for 

1−K  and the construction of these estimators will be discussed in the next 
sub-section. 

2.3. Estimation of K and K−1 

The methods used to construct an estimator for K  follows from the techniques 
proposed by Carrasco and Florens [12]. The steps are given below: 

1) We need a preliminary consistent estimate ( )0θ  for 0θ , for our case we 
can minimize the following simple objective function to obtain ( )0θ , 

( ) ( )( )21 1 d
b

na
F t F t t− −−∫ . 

2) Use ( )0θ  and the sample of observations to construct a degenerate kernel 
( ),nk s t  which has the form 

( ) ( ) ( )1

1, n
n s i t iik s t h x h x

n =
= ∑ , ( )s ih x  and ( )t ih x  depends on ( )0θ . 

For our set-up, i.e., CQD estimation, we should use the influence function of 
the sample quantiles as given by expression (6) to specify ( ) ( )

ss Qh x IC x= , 
( ) ( )

tt Qh x IC x= . 
The notion of influence function was not mentioned in Carrasco and Florens 

[12].  
3) Since ( ),nk s t  is a degenerate kernel it only has n eigenvalues 
( ) , 1, ,n
j j nµ =   with the corresponding eigenvectors ( ) ( ) , 1, ,n

j t j nφ =  , these 
eigenvectors have closed forms. The procedures to find these eigenvalues and 
eigenvectors have been given Carrasco and Florens [12] (page 805) and will be 
summarized in the next paragraphs. Let ( )nµ  be one of these n eigenvalues with 
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its corresponding eigenvector ( ) ( )n tφ , ( ) ( )n tφ  needs to satisfy 
( ) ( ) ( ) ( ) ( )n n nt tφ µ φ=K , i.e., ( ) ( ) ( ) ( ) ( ),

b n n
na

k s t s tφ φ=∫ . 

4) Use the spectral decomposition to express ( ),nk s t  using its eigenvalues 
and eigenfunctions, i.e., 

( ) ( ) ( ) ( ) ( ) ( )1, n n n n
n j j jjk s t s tµ φ φ

=
= ∑ . 

The above expression is similar to the representation of a positive definite 
matrix A  using the spectral decomposition and from which we only need to 
adjust the eigenvalues if we want to find 1−A , the inverse of the matrix A  or 
the matrices 1 2A  and 1 2−A . 

We can proceed as follows in order to find ( ) , 1, ,n
j j nµ =   and  

( ) ( ) , 1, ,n
j t j nφ =  , following Carraco and Florens [12] (page 805). First we form 

a matrix 1 , 1, , ; 1, ,ijc i n j n
n

 = = = 
 

C  
 with  

( ) ( )db
ij s i s ja

c h x h x s= ∫ . 

It turns out that ( )n
jµ  for each j is also an eigenvalue of the matrix C  and its 

eigenvectors is jβ with respect to the matrix C  with 

( )1 , ,j j j
nβ β ′= β  and ( ) , 1, ,nj j

j j nµ= =C β β . 

The eigenfunction can be expressed as  ( ) ( ) ( )1

1 nn j
j i t iit h x

n
φ β

=
= ∑  and they  

can be computed as statistical packages often offer routines to compute eigenva-
lues and eigenvectors for a given matrix.  

For numerical evaluations of , 1, , ; 1, ,ijc i n j n= =   a numerical quadra-
ture procedure is needed to compute the integrals over a range [ ],a b . 

Now we turn into attention of constructing 1
n
−K  and 1 2

n
−K  to estimate 

1−K  and 1 2−K . 
It appears then the kernel of 1

n
−K  can be defined as  

( ) ( )
( ) ( ) ( ) ( )1

1, n n no
n j jj n

j

k s t s tφ φ
µ=

= ∑ , see Definition 3 given by Carrasco and Flo-

rens [12] (page 807). Howewer, Carrasco and Florens [12] (page 799) have 

shown that ( )
1

n
jµ

 will create numerical instabilities and need to be regularized 

and instead of ( )
1

n
jµ

, we need to replace it by ( )
( )

( )( )2 , 1, ,n

n
j

j
n

j n

j nα µ
λ

µ α
= =

+
 , 

and since ( ) , 1, ,n
j j nµ =   are positive in probability, we can also let 

( )
( )

( )( )2 , 1, ,n

n
j

j
n

j n

j nα
µ

λ
µ α

= =
+

  and these expressions might be easier to handle 

numerically. 

Now we can define define ( ) ( ) ( ) ( ) ( ) ( )1, nn n no
n j j jjk s t s tαλ φ φ

=
= ∑  to be the kernel 
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of 1
nα
−K , 1

nα
−K  will be a valid estimator for 1−K  providing that the sequence 

0nα →  and 3 2
nnα →∞  using their Theorem 7 on page 810.  

For example, if we let 0.65n
d

n
α =  for some d chosen to be positive then the 

requirements for the sequence nα  are met. 

This also means that the kernel for 1 2
nα
−K  can be defined as 

( ) ( ) ( ) ( ) ( )1
nn n n

j j jj s tαλ φ φ
=∑                     (9) 

and again 1 2
nα
−K  is a valid estimator for 1 2−K . 

This also means that 1−K  and 1 2−K  can be replaced by 1
nα
−K  and 1 2

nα
−K  

whenever they appear in expressions or equations used to derive asymptotic 
properties for the CQD estimators based on their Theorem 7. 

In Section 3 we shall turn our attention to asymptotic properties of CQD es-
timators using the objective function ( )n

nQα θ  an using the norm . , it can 
also be expressed neatly as  

( ) ( )
21 2n

nn tQ K uα
α
−=θ θ  with ( ) ( ) ( )1 1

t nu F t F t− −= − θθ  and 

1 2
nα
−K  is the linear operator as defined by expression (9). 
For consistency, we shall make use the basic consistency Theorem, i.e., Theo-

rem 2.1 as given by Newey and McFadden [12] (page 2121). For establishing 
asymptotic normality for the CQD estimators, the procedures are similar to 
those used for establishing asymptotic normality of continuous GMM estimators 
as given by Theorem 8 given by Carrasco and Florens [12] (page 811, page 825). 

3. Asymptotic Properties 

3.1. Consistency 

Assuming ∈Ωθ  and Ω  is compact and observe that  

( ) ( ) ( )( ) ( ) ( )( ) ( )1 1 1 1 , d dn
n

b b o
n n na a

Q F s F s F t F t k s t s tα
α

− − − −= − −∫ ∫ θ θθ .     (10) 

Now if we assume that the integrand can be dominated by a function ( ),g s t  

which does not depend θ  and furthermore ( ), d d
b b

a a
g s t s t < ∞∫ ∫  then we have 

uniform convergence in probability, i.e., ( ) ( )0
n p

nQ Qα →θ θ  uniformly with 

( ) ( ) ( )( ) ( ) ( )( ) ( )
0 0

1 1 1 1
0 , d d

b b o
a a

Q F s F s F t F t k s t s t− − − −= − −∫ ∫ θ θ θ θθ , 

( ),ok s t  is the optimum symmetric positive definite kernel of 1−K . Therefore, 
( )0Q θ  is uniquely minimized at 0=θ θ , this implies consistency of the CQD 

estimators given by the vector θ̂  using the basic consistency Theorem. There-
fore, 0

ˆ p→θ θ , the symbol p→  denotes convergence in probability. We 
implicitly assume that the conditions 0nα →  and 3 2

nnα →∞  are met. 

3.2. Asymptotic Normality 

The basic assumption used to establish asymptotic normality for the CQD esti-
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mators is the model quantile function is twice differentiable which allows a 
standard Taylor expansion the estimating equations.  

Assuming the first derivative vector 
( )1F t−∂

∂
θ

θ
 and the second derivative ma-

trix 

( ) ( )2 1 2 1

, 1, , ; 1, ,
j i

F t F t
i m j m

− − ∂ ∂
= = =  ′∂ ∂ ∂ ∂ 

 

θ θ

θ θ θ θ
 exist. 

Before considering the Taylor expansion, we also need the following notation 
and the notion of a random element with zero mean and covariance given by the 
kernel of the associated linear operator K, i.e., ( )~ 0,tY N K , see Remark 2 as 
given by Carrasco and Florens [12] (page 803). Note that if we let 
( ) ( ) ( )1 1

t nu F t F t− −= − θθ , using the Mean value Theorem, we then have 

( ) ( ) ( ) ( )
1

0 0
ˆ

t t

F t
u u

−

=

∂
= − −

′∂
θ

θ θ

θ θ θ θ
θ

, 

θ  lies in the segment joining θ̂  and 0θ . Now we have θ̂  which satisfies 

( )ˆ
0

n
nQα∂

=
∂

θ

θ
 which is also given by 

( ) ( ) ( )
ˆ

ˆ , d d 0
n

sb b o
ta a

u
u k s t s tα

∂
=

∂∫ ∫
θ

θ
θ

             (11) 

as ( ),
n

ok s tα  is symmetric. Using inner product and Hilbert space as in the 
proofs of Theorem 2 by Carrasco and Florens [12] (page 825), expression (11) 
can be expressed as  

( ) ( )1 2 1 2
ˆ

ˆ, 0
n n

s
t

u
uα αθ

− −
 ∂
  =
 ∂
 

K K
θ

θ .             (12) 

Using expression (12), we then have  

( )
( ) ( ) ( )

1
1 2 1 2

0 0

ˆ
ˆ, 0

n n

s
t

u F t
uα α

−
− −

=

 ∂  ∂  − − =
  ′∂ ∂  

K K θ

θ θ

θ
θ θ θ

θ θ
. 

Now using 1 2
nα
−K  is a linear operator, 

( ) ( )1
su F s−∂ ∂

= −
∂ ∂

θθ
θ θ

, rearranging the 

terms gives the following equality in distribution 

( ) ( ) ( ) ( )
( )0 0 0

11 1 1
1 1

0 0
ˆ

n n

d
t

F s F t F s
n nuα α

−− − −
− −

   ∂ ∂ ∂
− =       ′∂ ∂ ∂   

K Kθ θ θθ θ θ
θ θ θ

. 

Note that ( )0
d

t tnu Y=θ  and the symbol d=  denotes equality in distribu-
tion. 

Let ( )
( ) ( )

0 0

1 1
1

0

F s F t
K

− −
−

 ∂ ∂
=   ′∂ ∂ 

θ θ θ

θ θ
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And 
( )

( )0

1
1

0t

F s
Z nu

−
−

 ∂
=   ∂ 

Kθ θ
θ

 then it is easy to see that 

( )( )00,d N=Z θ , 

so that 

( ) ( )( )1
0 0

ˆ 0,Ln N
−

 −  →θ θ θ                (13) 

with the symbol L→  denotes convergence in law or in distribution.  
The matrix ( )0θ  plays the same role as the information matrix for maxi-

mum likelihood (ML) estimation. Clearly, ( )0θ  needs to be estimated, an es-
timate is given as 

( ) ( ) ( )1 1
ˆ ˆ1ˆ

n

F s F t
α

− −
−

 ∂ ∂
=   ′∂ ∂ 

n Kθ θθ
θ θ

 ,               (14) 

using the spectral decomposition technique, the ( ),i j  element of ( )ˆn θ  can 
be expressed as 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1
ˆ ˆ

1 d d , 1, , ; 1, ,n
b bn n n

k k kk a a
i j

F s F t
s s t t i m j mαλ φ φ

− −

=

  ∂ ∂
= =    ∂ ∂  

∑ ∫ ∫  

θ θ

θ θ
(15) 

4. Summary and Conclusion 

The proposed method is similar to the continuous GMM method with the esti-
mators obtained using sample distribution function obtained by minimizing 

( ) ( )( ) ( ) ( )( ) ( )0
0 0

, d d
n

T T
n nF s F s F t F t w s t s tα− −∫ ∫ θ θ  with ( )0 ,

n
w s tα  

being an optimum kernel but using a sample distribution function nF  instead 
of the sample quantile function as studied by Carrasco and Florens [12] (page 
816) for nonnegative continuous distributions. The kernel ( )0 ,

n
w s tα  is con-

structed with the use of ( ) [ ] ( ) ( )oth x I x t F t
θ

= ≤ − , [ ].I  being the usual indi-
cator function. 

The authors also showed that by letting T →∞ , the continuous GMM esti-
mators are as efficient as ML estimators.  

For robustness sake for continuous GMM estimation we might want to let 𝑇𝑇 
be finite and the lower bound be 0a >  so that the optimum kernel ( )0 ,

n
w s tα  

remains bounded for the regions of the double integrals used to define the con-
tinuous GMM objective function. This can be viewed as equivalent to choose 

0a >  and 1b <  for the integrals of the objective function for CQD estimation. 
For robustness sake, it appears simpler to work with the domain (a, b) instead of 
( ),a T  as numerical quadrature methods applied over the range (a, b) might be 
simpler to implement. We conjecture that CQD estimators can also be fully effi-
cient just as the continuous GMM estimators as defined above despite a proof is 
still lacking for the time being by letting 0a → , 1b → . More numerical and 
more simulation studies are needed but we hope that based on the presentation 
of this paper the proposed method is implementable and its asymptotic proper-
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ties useful so that applied researchers might want to consider to use them for 
their works especially for fitting models where the model quantile function is 
simpler to handle than its model distribution or density function and especially 
when there is a need for robust estimation with the data.  

Acknowledgements 

The helpful and constructive comments of a referee which lead to an improve-
ment of the presentation of the paper and support from the editorial staffs of 
Open Journal of Statistics to process the paper are all gratefully acknowledged. 

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this pa-
per. 

References 

[1] LaRiccia, V.N. and Wehrly, T.E. (1985) Asymptotic Properties of a Family of Min-
imum Quantile Distance Estimators. Journal of the American Statistical Associa-
tion, 80, 742-747. https://doi.org/10.1080/01621459.1985.10478178 

[2] Castillo, E., Hadi, A.S., Balakrishnan, N. and Sarabia, J.M. (2005) Extreme Value 
and Related Models with Applications in Engineering and Science. Wiley, New 
York. 

[3] Serfling, R.J. (1980) Approximation Theorems of Mathematical Statistics. Wiley, 
New York. https://doi.org/10.1002/9780470316481 

[4] Hosking, J.R.M. and Wallis, J.R. (1987) Parameter and Quantile Estimation for the 
Generalized Pareto Distribution. Technometrics, 29, 339-349.  
https://doi.org/10.1080/00401706.1987.10488243 

[5] Kotz, S. and Nadarajah, S. (2000) Extreme Value Distributions. Imperial College 
Press, London. https://doi.org/10.1142/p191 

[6] Dupuis, D.J. (1988) Exceedances over High Thresholds: A Guide to Threshold Se-
lection. Extremes, 1, 251-261. 

[7] Juarez, S.F. and Schucany, W.R. (2004) Robust and Efficient Estimation for the Ge-
neralized Pareto Distribution. Extremes, 7, 237-251.  
https://doi.org/10.1007/s10687-005-6475-6 

[8] Klugman, S.A., Panjer, H.H. and Willmot, G.E. (2012) Loss Models: From Data to 
Decisions. Fourth Edition, Wiley, New York.  
https://doi.org/10.1002/9781118787106 

[9] Castillo, E. and Hadi, A.S. (1997) Fitting the Generalized Pareto Distribution to Da-
ta. Journal of the American Statistical Association, 92, 1619-1620.  
https://doi.org/10.1080/01621459.1997.10473683 

[10] Luong, A. and Thompson, M.E. (1987) Minimum Distance Methods Based on Qu-
adratic Distance for Transforms. Canadian Journal of Statistics, 15, 239-251.  
https://doi.org/10.2307/3314914 

[11] Newey, W.K. and McFadden, D. (1994) Large Sample Estimation and Hypothesis 
Testing. In: Engle, R. and McFadden, D., Eds., Handbook of Econometrics, Volume 
4, Elsevier, Amsterdam, 419-554. 

[12] Carrasco, M. and Florens, J.-P. (2000) Generalization of GMM to a Continuum of 

https://doi.org/10.4236/ojs.2019.94028
https://doi.org/10.1080/01621459.1985.10478178
https://doi.org/10.1002/9780470316481
https://doi.org/10.1080/00401706.1987.10488243
https://doi.org/10.1142/p191
https://doi.org/10.1007/s10687-005-6475-6
https://doi.org/10.1002/9781118787106
https://doi.org/10.1080/01621459.1997.10473683
https://doi.org/10.2307/3314914


A. Luong 
 

 

DOI: 10.4236/ojs.2019.94028 435 Open Journal of Statistics 

 

Moment Condition. Econometric Theory, 16, 797-834.  
https://doi.org/10.1017/S0266466600166010 

[13] Feuerverger, A. and McDunnough, P. (1984) On Statistical Transform Methods and 
Their Efficiency. Canadian Journal of Statistics, 12, 303-317.  
https://doi.org/10.2307/3314814 

[14] Durbin, J. and Knott, M. (1972) Components of the Cramer-von Mises Statistics. 
Journal of the Royal Statistical Society, Series B, 34, 290-307.  
https://doi.org/10.1111/j.2517-6161.1972.tb00908.x 

[15] Hogg, R.V., McKean, J.W. and Craig, A.T. (2013) Introduction to Mathematical 
Statistics. Seventh Edition, Pearson, Hoboken. 

[16] Luenberger, D.G. (1968) Optimization by Vector Space Methods. Wiley, New York. 

 

https://doi.org/10.4236/ojs.2019.94028
https://doi.org/10.1017/S0266466600166010
https://doi.org/10.2307/3314814
https://doi.org/10.1111/j.2517-6161.1972.tb00908.x

	Robust Continuous Quadratic Distance Estimation Using Quantiles for Fitting Continuous Distributions
	Abstract
	Keywords
	1. Introduction
	2. Some Preliminaries
	2.1. Statistical Functional and Its Influence Function
	2.2. Linear Operators Associated with Kernels in a Hilbert Space
	2.3. Estimation of K and K−1

	3. Asymptotic Properties
	3.1. Consistency
	3.2. Asymptotic Normality

	4. Summary and Conclusion
	Acknowledgements
	Conflicts of Interest
	References

