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Abstract 
A polyomino P is called L-convex if for every two cells there exists a mono-
tone path included in P with at most one change of direction. This paper is a 
theoretical step for the reconstruction of all L-convex polyominoes by using 
the geometrical paths. First we investigate the geometrical properties of all 
subclasses of non-directed L-convex polyominoes by giving nine geometries 
that characterize all non-directed L-convex polyominoes. Finally, we study 
the subclasses of directed L-convex polyominoes and we give necessary and 
sufficient conditions for polyominoes to be L-convex. 
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1. Introduction 

A planar discrete set is a finite subset of the integer lattice 2  defined up to 
translation. A discrete set can be represented either by a set of cells, i.e. unitary 
squares of the Cartesian plane, or by a binary matrix, where the 1’s determine 
the cells of the set [1] (see Figure 1).  

A polyomino P is a finite connected set of adjacent cells, defined up to transla-
tions, in the Cartesian plane. A row convex polyomino (resp. column-convex) is 
a self avoiding convex polyomino such that the intersection of any horizontal 
line (resp. vertical line) with the polyomino has at most two connected compo-
nents. Finally, a polyomino is said to be convex (or HV-convex) if it is both row 
and column-convex (see Figure 2).  

A directed polyomino is obtained by starting out from a cell called source and 
by adding some other cells in two pre-determined directions, for example east 
and south, that is, to the right of, or below, the existing cells. A directed convex 
polyomino is a directed polyomino having connected columns and rows (see 
Figure 3). 
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Figure 1. A finite set of ×  , and its representation in terms of a binary matrix and a 
set of cells. 
 

 
Figure 2. Row convex and convex polyomino. 

 

 
Figure 3. A directed convex polyomino. 

 
In this paper we study the geometrical aspects of a particular family of convex 

polyominoes, introduced in [2] as the first level in a classification of convex po-
lyominoes and called L-convex. In [2] the authors observed that L-convex po-
lyominoes have the property that every pair of cells is connected by a monotone 
path involving at most one direction. In this way each convex polyomino is cha-
racterized by a parameter k that represents the maximum number of changes of 
direction in these paths. More precisely, a convex polyomino is called k-convex 
if, for every pair of its cells, there is at least a monotone path with at most k 
changes of direction that connects them. When the value of k is 1 we have the 
so-called L-convex polyominoes.  

This class of polyominoes has been considered from different points of view. 
In [3] combinatorial aspects of L-convex polyominoes are analyzed, giving the 
enumeration according to the semiperimeter and the area. In [2] it is given an 
algorithm that reconstructs an L-convex polyomino from the set of its maximal 
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L-polyominoes. Similarly in [4] it is given another way to reconstruct an L-convex 
polyomino from the size of some special paths, called bordered L-paths.  

A problem frequently studied in literature is the reconstruction of a discrete 
set, on which some connectivity constraints are imposed, from partial informa-
tions. In particular, Discrete Tomography considers the problem of reconstruct-
ing a discrete set from measurements, generically known as projections, of the 
number of cells in the set that lie on lines with fixed scopes. In the special case of 
a convex polyomino P, one considers orthogonal (horizontal and vertical) pro-
jections, i.e. the pair ( ),H V  that gives the number of cells in each column and 
row of P, respectively. In [5] it is proved that each L-convex polyominoes P is 
uniquely determined by its horizontal and vertical projections while the same 
does not hold, in general, for convex polyominoes. Such projections may be seen 
as sizes (number of cells) of vertical and horizontal straight paths connecting 
cells of the opposite borders of P.  

This paper is divided into 5 sections. After basics on polyominoes, we investi-
gate in Section 3 the geometrical properties between the feet of all subclasses of 
non-directed L-convex polyominoes by giving nine geometries. Then these geome-
tries are simplified to four by creating the link between all of them. Finally, using 
these four geometries we give a theorem that allows us to control the L-convexity of 
all non-directed convex polyominoes. In Section 4, we introduce the properties 
of all subclasses of directed L-convex polyominoes and we give the conditions of 
the L-convexity. A final comment on these geometrical properties is given in Sec-
tion 5. 

2. Definitions and Notations 

To each discrete set S, represented as an m n×  binary matrix, we associate two 
integer vectors ( )1, , mH h h=   and ( )1, , nV v v=   such that, for each 
1 ,1i m j n≤ ≤ ≤ ≤ , ih  and jv  are the number of cells of S (elements 1 of the 
matrix) which lie on row i and column j, respectively [1]. The vectors H and V 
are called the horizontal and vertical projections of S, respectively (see Figure 4). 
By convention, the origin of the matrix (that is the cell with coordinates ( )1,1 ) 
is in the upper left position. 

For any two cells A and B in a polyomino, a path ABΠ , from A to B, is a sequence 
( ) ( ) ( )1 1 2 2, , , , , ,r ri j i j i j  of adjacent disjoint cells ∈  P, with ( )1 1,A i j= , and 

( ),r rB i j= . For each 1 k r≤ ≤ , we say that the two consecutive cells 
( ) ( )1 1, , ,k k k ki j i j+ +  form [1]:  

 

 
Figure 4. A polyomino P with ( )3,4,6,5,2H =  and ( )1,3,4,5,4,1V = . 
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• an east step if 1k ki i+ =  and 1 1k kj j+ = + ;  
• a north step if 1 1k ki i+ = −  and 1k kj j+ = ;  
• a west step if 1k ki i+ =  and 1 1k kj j+ = − ;  
• a south step if 1 1k ki i+ = +  and 1k kj j+ = .  

Let us consider a polyomino P. A path in P has a change of direction in the 
cell ( ),k ki j , for 2 1k r≤ ≤ − , if  

1 1 .k k k ki i j j− +≠ ⇔ ≠  

Finally, we define a path to be monotone if it is entirely made of only two of 
the four types of steps defined above [1].  

Proposition 1 (Gastiglione, Restivo). [2] A polyomino P is convex if and 
only if every pair of cells is connected by a monotone path.  

3. Geometrical Properties L-Convex Polyominoes 

In this section, we investigate the geometrical properties of L-convex polyomi-
noes in terms of monotone paths. 

Let ( ),H V  be two vectors of projections and let P be a convex polyomino, 
that satisfies ( ),H V . By a classical argument P is contained in a rectangle R of 
size m n×  (called minimal bounding box). Let ( ) ( )min ,maxS S     
( ( ) ( )min ,maxE E   , ( ) ( )min ,maxN N   , ( ) ( )min ,maxW W   ) be the in-
tersection of P’s boundary on the lower (right, upper, left) side of R (see [6]). By 
abuse of notation, for each 1 i m≤ ≤  and 1 j n≤ ≤ , we call ( )min S  (resp. 

( )min E , ( )min N , ( )min W ) the cell at the position ( )( ),minm S  (resp. 
( )( )min ,E n , ( )( )1,min N , ( )( )min ,1W ) and ( )max S  (resp. ( )max E , 
( )max N , ( )max W ) the cell at the position ( )( ),maxm S  (resp. ( )( )max ,E n , 

( )( )1,max N , ( )( )max ,1W ) [1] (see Figure 5).  
Definition 1. The segment ( ) ( )min ,maxS S    is called the S-foot. Similarly, the 

segments ( ) ( )min ,maxE E   , ( ) ( )min , maxN N    and ( ) ( )min ,maxW W    
are called E-foot, N-foot and W-foot [1].  

Proposition 2. Let ( ),H V  be two vectors of projections and let P be a convex 
polyomino, that satisfies ( ),H V . If ( )2, , , mH n h h=   or ( )1 2, , ,H h h n=   or 

( )2, , , nV m v v=   or ( )1 2, , ,V v v m=   then P is an L-convex polyomino.  
Proof. Let P be a convex polyomino such that ( )2, , , mH n h h=   (see Figure 

6), then the bar allows us to go from the first cell situated at the position ( )1,1  
to all other cells with at most one change of direction. Thus every two cells is con-
nected by a monotone path with at most one change of direction and hence P is 
an L-convex polyomino. (Similar reasoning holds for the other three cases).    

Let   (resp. L ) be the class of convex polyominoes (resp. L-convex polyo-
minoes) and let P be in   (resp. L ) such that P does not satisfy Proposition 2. 
Also suppose that P is not a directed polyomino, then one can define the follow-
ing subclasses of convex polyominoes: 
• ( ) ( ) ( ) ( ){ } | min min and min minP N S W Eα = ∈ = = .  

• 
( ) ( ) ( ) ( ){

( ) ( )}
 | min min and (min min

or min min

P N S W E

W E

β = ∈ = <

>


.  

https://doi.org/10.4236/am.2019.108046


K. Tawbe, S. Mansour 
 

 

DOI: 10.4236/am.2019.108046 650 Applied Mathematics 
 

 
Figure 5. Min and max of the four feet. 

 

 
Figure 6. An L-convex polyomino with ( )7,6,5,3,2H = . 

 

• 
( ) ( ) ( ) ( )( ){

( ) ( )}
 | min min or min min

and min min

P N S N S

W E

γ = ∈ < >

=


.  

• 
( ) ( ) ( ) ( )( ){

( ) ( ) ( ) ( )( )}
 | min min or min min

 and min min or min min

P N S N S

W E W E

µ = ∈ < >

< >


.  

• ( ) ( ) ( ) ( ){ } | min min and min minL LP N S W Eα = ∈ = = .  

• 
( ) ( ) ( ) ( )({

( ) ( ))}
 | min min and min min

or min min

L LP N S W E

W E

β = ∈ = <

>


.  

• 
( ) ( ) ( ) ( )( ){

( ) ( )}
 | min min or min min

 and min min

L LP N S N S

W E

γ = ∈ < >

=


.  

• 
( ) ( ) ( ) ( )( ){

( ) ( ) ( ) ( )( )
 | min min or min min

 and min min or min min

L LP N S N S

W E W E

µ = ∈ < >

< >


 (see Figure 7). 

Let us define the following sets:  
• ( ) ( ) ( ){ }, min and minWN i j P i W j N= ∈ < < ,  

• ( ) ( ) ( ){ }, max and maxSE i j P i E j S= ∈ > > .  

• ( ) ( ) ( ){ }, min and maxNE i j P i E j N= ∈ < > ,  

• ( ) ( ) ( ){ }, max and minWS i j P i W j S= ∈ > < .  
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Figure 7. Four L-convex polyominoes where (a): an element of the class Lα , (b): an ele-
ment of the class Lβ , (c): an element of the class Lγ , and (d): an element of the class 

Lµ . 

 
The following characterizations hold for convex polyominoes in the class 
, ,L L Lµ α β  and Lγ . 

Proposition 3. Let P be an L convex polyomino in the class Lµ  (resp. ,L Lα β  
and Lγ ), then there exists an L-path from ( )min N  to ( )max E  with a south 
step followed by an east step, and an L-path from ( )min W  to ( )max S  with 
an east step followed by a south step.  

Proof. It is an immediate result from the fact that P is an L-convex and P is 
not a directed polyomino (see Figure 7).                                

Proposition 4. Let P be an L-convex polyomino in the class Lα , then the feet of 
P are connected by at least an L-path from ( )min N  to ( )max S  with a south 
step followed by an east step, and an L-path from ( )min W  to ( )max E  with 
an east step followed by a south step (see Figure 8).  

Proof. It is an immediate result from the fact that P is an L-convex and P is 
not a directed polyomino (see Figure 8).                                

Proposition 5. Let P be an L-convex polyomino in the class Lβ , then at least 
one of the two following affirmations is true.   

1) The feet of P are connected by an L-path from ( )min N  to ( )max S  with 
a south step followed by an east step and an L-path from ( )min W  to ( )max E  
with a south step followed by an east step.  

2) The feet of P are connected by an L-path from ( )min N  to ( )max S  with 
a south step followed by an east step and an L-path from ( )max W  to ( )min E  
with an east step followed by a north step (see Figure 9).  

Proof. Here the result comes from the fact that P is an L-convex and P is not a 
directed polyomino and we consider one of the two cases (1) ( ) ( )min minW E<  
or (2) ( ) ( )min minW E>  (see Figure 9).                               

https://doi.org/10.4236/am.2019.108046


K. Tawbe, S. Mansour 
 

 

DOI: 10.4236/am.2019.108046 652 Applied Mathematics 
 

 
Figure 8. The two L-paths between the feet in the class Lα . 

 

 
Figure 9. The two different L-paths between the feet in the class Lβ . 

 
Proposition 6. Let P be an L-convex polyomino in the class Lγ , then at least 

one of the two following affirmations is true.   
1) The feet of P are connected by an L-path from ( )min W  to ( )max E  

with an east step followed by a south step and an L-path from ( )min N  to 
( )min S  with an east step followed by a south step.  

2) The feet of P are connected by an L-path from ( )min W  to ( )max E  
with an east step followed by a south step and an L-path from ( )max N  to 

( )min S  with a south step followed by a west step (see Figure 10).  
Proof. Here the result comes from the fact that P is an L-convex and P is not a 

directed polyomino and we consider one of the two cases 1) ( ) ( )max maxS N<  
or 2) ( ) ( )max maxS N>  (see Figure 10).                              

Proposition 7. Let P be an L-convex polyomino in the class Lµ , then at least 
one of the four following affirmations is true.   

1) The feet of P are connected by an L-path from ( )min N  to ( )max S  with an 
east step followed by a south step and an L-path from ( )min W  to ( )max E  with 
a south step followed by an east step.  

2) The feet of P are connected by an L-path from ( )min N  to ( )max S  with an 
east step followed by a south step and an L-path from ( )max W  to ( )min E  with 
an east step followed by a north step.  

3) The feet of P are connected by an L-path from ( )min W  to ( )max E  with a 
south step followed by an east step and an L-path from ( )max S  to ( )max N  with 
an east step followed by a north step.  

4) The feet of P are connected by an L-path from ( )max W  to ( )min E  with 
an east step followed by a north step and an L-path from ( )max S  to ( )max N  
with an east step followed by a north step (see Figure 11).  
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Figure 10. The two different L-paths between the feet in the class Lγ . 

 

 
Figure 11. The four different L-paths between the feet in the class Lµ . 

 
Proof. Here the result comes from the fact that P is an L-convex and P is not a 

directed polyomino and we consider one of the four cases (1) ( ) ( )min minW E<  
and ( ) ( )max maxS N<  or (2) ( ) ( )min minW E>  and ( ) ( )max maxS N<  or 
(3) ( ) ( )min minW E<  and ( ) ( )max maxS N>  or (4) ( ) ( )min minW E>  and 

( ) ( )max maxS N>  (see Figure 11).                                   
To summarize, if P is an L-convex polyomino (P is not directed), then the feet 

of P are characterized by the geometries shown in Figure 12. 
Proposition 8. Let P be an L-convex polyomino (P is not directed), then the 

feet of P are connected at least by one of the nine following geometries of the 
L-paths in Figure 12.   
• ( ) ( )2 5 Lα∈   
• ( ) ( )2 4 Lβ∈   
• ( ) ( )2 6 Lβ∈   
• ( ) ( )1 5 Lγ∈   
• ( ) ( )3 5 Lγ∈   
• ( ) ( )1 4 Lµ∈   
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Figure 12. The three types of L-paths between each two opposite feet. 
 
• ( ) ( )1 6 Lµ∈   
• ( ) ( )3 4 Lµ∈   
• ( ) ( )3 6 Lµ∈ .  

Proof. This is a direct summary of the last four propositions (see Figure 11).    
Remark 1. The geometries ( ) ( )1 4 , ( ) ( )2 5 , ( ) ( )2 6 , and ( ) ( )3 5  

mentioned in Proposition 8 give directly the two L-paths mentioned in Proposi-
tion 3.  

The geometries ( ) ( )2 4 , ( ) ( )3 4 , and ( ) ( )3 6  in Proposition 8 give 
directly the L-path from ( )min N  to ( )max E  with a south step followed by 
east step.  

The geometries ( ) ( )1 5  and ( ) ( )1 6  in Proposition 8 give directly the 
L-path from ( )min W  to ( )max S  with an east step followed by a south step.  

Now, we define the cells on the SE and WE borders to define the sets , ,X Z X ′  
and Z ′  from these cells.  

Let P be a convex polyomino in the class µ  (resp. ,α β  and γ ) (P is not 
directed) and let ( ) ( ) ( ){ }1 1 2 2, , , , , ,r rI i j i j i j=   be the set of cells belonging to 
P such that ( ) ( )( )1 1, ,maxi j m S= , ( ) ( )( ), max ,r ri j E n= , and for 2 1k r≤ ≤ − , 
let ( ),k ki j  be the cells situated on the border of the set SE.  

Similarly, let ( ) ( ) ( ){ }1 1 2 2, , , , , ,s sJ i j i j i j′ ′ ′ ′ ′ ′=   be the set of cells belonging to P 
such that such that ( ) ( )( )1 1, ,mini j m S′ ′ = , ( ) ( )( ), max ,1s si j W′ ′ = , and for 
2 1l s≤ ≤ − , let ( ),l li j′ ′  be the cells situated on the border of the set WS.  

Now let { }1, , , ,k rX x x x=    be the set of cells such that  

( ) ( )( )1 max 1,maxSx m v S= − + ,  , ( )1,
kk k j kx i v j= − + ,  , ( )( )min ,rx E n=  

and { }1, , , ,k rZ z z z=    be the set of cells such that ( )( )1 ,minz m S= ,  , 

( ), 1
kk k k iz i j h= − + ,  , ( ) ( )( )maxmax , 1r Ez E n h= − + .  

Similarly, let { }1, , , ,l sX x x x′ ′ ′ ′=    be the set of cells such that  

( ) ( )( )1 min 1,minSx m v S′ = − + ,  , ( )1,l l j ll
x i v j′ = − + ,  , ( )( )min ,1sx W′ =  

and { }1, , , ,l sZ z z z′ ′ ′ ′=    be the set of cells such that ( )( )1 ,maxz m S′ = ,  , 

( ), 1
ll l l iz i j h′ ′= + − ,  , ( ) ( )( )maxmax ,1 1s Wz W h′ = + −  (see Figure 13). 

Theorem 1. Let P be a convex polyomino such that P satisfies at least one of 
the following geometries   

https://doi.org/10.4236/am.2019.108046


K. Tawbe, S. Mansour 
 

 

DOI: 10.4236/am.2019.108046 655 Applied Mathematics 
 

 

Figure 13. Red cells are the cells situated on the border of SE and WS with ( )( ),maxm S , 

( )( )max ,E n , ( )( ),minm S  and ( )( )max ,1W .  

 
• ( ) ( )2 5 α∈   
• ( ) ( )2 4 β∈   
• ( ) ( )2 6 β∈   
• ( ) ( )1 5 γ∈   
• ( ) ( )3 5 γ∈   
• ( ) ( )1 4 µ∈   
• ( ) ( )1 6 µ∈   
• ( ) ( )3 4 µ∈   
• ( ) ( )3 6 µ∈ .  

Then P is an L-convex polyomino if and only if for 2 1k r≤ ≤ − , 2 1l s≤ ≤ −  
the cells situated at the positions ( ) ( )( )max ,min 1Sm v S− − ,  ,  

( ),
k kk j k ii v j h− − ,  , ( ) ( )( )maxmin 1, EE n h− −  and ( ) ( )( )min ,max 1Sm v S− + , 

 , ( ),
l ll j l ii v j h− + ,  , ( ) ( )( )maxmin 1,1 WW h− +  do not belong to P.  

Proof. Suppose that P is a convex polyomino. The intersections control the 
geometries and the L-path between feet. 

⇒  If P is an L-convex then obviously the cells situated at the positions 

( ) ( )( )max ,min 1Sm v S− − ,  , ( ),
k kk j k ii v j h− − ,  , ( ) ( )( )maxmin 1, EE n h− −  

and ( ) ( )( )min ,max 1Sm v S− + ,  , ( ),
l ll j l ii v j h− + ,  ,  

( ) ( )( )maxmin 1,1 WW h− +  do not belong to P. Indeed, these cells could be at-
tained only by using a 2L-path from the SE or WS borders. 

⇐  The cells situated at the positions ( ) ( )( )max ,min 1Sm v S− − ,  , 

( ),
k kk j k ii v j h− − ,  , ( ) ( )( )maxmin 1, EE n h− −  and ( ) ( )( )min ,max 1Sm v S− + , 

 , ( ),
l ll j l ii v j h− + ,  , ( ) ( )( )maxmin 1,1 WW h− +  control maximal rectangles 

from SE and WS. Thus, they control the L-convexity of the polyomino (see Fig-
ure 14). 
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Figure 14. An L-convex polyomino satisfying Theorem 1. 

4. Directed L-Convex Polyominoes 

Let P be a convex polyomino such that P does not satisfy Proposition 2. From 
the definition of directed convex polyominoes, let us define the following classes. 
• ( )( ) ( )( ){ } | 1,min min ,1P N Wδ = ∈ = .  
• ( )( ) ( )( ){ } | max ,1 ,minP W m Sψ = ∈ = .  
• ( )( ) ( )( ){ } | ,max max ,P m S E nδ ′ = ∈ = .  
• ( )( ) ( )( ){ } | 1,max min ,P N E nψ ′ = ∈ = .  
• ( )( ) ( )( ){ } | 1,min min ,1L LP N Wδ = ∈ =  (see Figure 15).  
• ( )( ) ( )( ){ } | max ,1 , minL LP W m Sψ = ∈ = .  
• ( )( ) ( )( ){ } | , max max ,L LP m S E nδ ′ = ∈ =  (see Figure 15).  
• ( )( ) ( )( ){ } | 1,max min ,L LP N E nψ ′ = ∈ = .  

Let us define the horizontal transformation (symmetry)  

( ) ( ): , 1,HS i j m i j→ − +  

which transforms the polyomino P from δ  to ψ , δ ′  to ψ ′ , Lδ  to Lψ , and 

Lδ ′  to Lψ ′ . Indeed the transformation acts on the feet of the polyomino as it is 
shown in the following table (see Table 1). Thus we only investigate the proper-
ties of the classes Lδ  and Lδ ′ . 

Proposition 9. Let P be an L-convex polyomino in the class Lδ , then there ex-
ist two L-paths from ( ) ( )min minN W=  to ( )max E  with a south step followed 
by an east step, and from ( ) ( )min minN W=  to ( )max S  with an east step 
followed by a south step.  

Proof. The two L-paths control the L-convexity of the feet (see Figure 16).    
Theorem 2. Let P be a convex polyomino in the class δ  such that there exist 

two L-paths from ( ) ( )min minN W=  to ( )max E  with a south then an east steps, 
and from ( ) ( )min minN W=  to ( )max S  with an east then a south steps. Then 
P is an L-convex polyomino if and only if the cell at the position  

( ) ( )( )max 1,max 1W N+ +  does not belong to P.  
Proof. The maximal rectangle from the point ( )1,1  has extremal cells in the 

position ( ) ( )( )max ,maxW N . That is the point at position  
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Figure 15. An element of the class Lδ  on the left and one of the class Lδ ′  on the right. 

 

 
Figure 16. An L-convex polyomino in the class Lδ . 

 
Table 1. The horizontal transformation HS  on the feet of P. 

N, S W, E 

S N
N S
→
→

 

 
W W
E E
→
→

 

W W
E E
→
→

 

 
W W
E E
→
→

 

 

( ) ( )( )max 1,max 1W N+ +   

is reachable from cell ( )1,1  by a 2L-path. Thus the point at the position 
( ) ( )( )max 1,max 1W N+ +  does not belong to P (see Figure 16).            

Proposition 10. Let P be an L-convex polyomino in the class Lδ ′ , then there 
exist two L-paths from ( ) ( )max maxE S=  to ( )min N  with a west step fol-
lowed by a north step, and from ( ) ( )max maxE S=  to ( )min W  with a north 
step followed by a west step.  

Theorem 3. Let P be a convex polyomino in the class δ ′  such that there ex-
ist two L-paths from ( ) ( )max maxE S=  to ( )min N  with a west step fol-
lowed by a north step, and from ( ) ( )max maxE S=  to ( )min W  with a north 
step followed by a west step. Then P is an L-convex polyomino if and only if the 
cell at the position ( ) ( )min 1,min 1E S− −  does not belong to P (see Figure 17).  
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Figure 17. An L-convex polyomino in the class Lδ ′ . 

5. Conclusion 

In this paper we studied the geometrical properties of all subclasses of directed 
and non-directed L-convex polyominoes and we gave necessary and sufficient 
conditions to characterize them. The results of this paper will be used in order to 
reconstruct all L-convex polyominoes using geometrical paths. This paper may 
help us to understand the geometrical behavior of kL-convex polyominoes and 
hence find a way to reconstruct them all. 
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