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Abstract 
This is a second follow up paper on a model, which treats the black hole as a 
4-D spatial ball filled with blackbody radiation. For the interior radiative mass 
distribution, we employ a new type of truncated probability distribution func-
tion, the exponential distribution. We find that this distribution comes closest 
to reproducing a singularity at the center, and yet it is finite at 4-D radius, 

0r = . This distribution will give a constant gravitational acceleration for a test 
particle throughout the black hole, irrespective of radius. The 4-D gravitational 

acceleration is given by the expression, ( )4 20.1 0.2 Rg c GM Rλ λ= − = − , where 
R is the radius of the black hole, RM  is its mass, and λ  is the exponential 
shape parameter, which depends only on the mass, or radius, of the black 
hole. We calculate the gravitational force, and the entropy within the black 
hole interior, as well as on its surface, identified as the event horizon, which 
separates 3-D from 4-D space. Similar to a truncated Gaussian distribution, 
the gravitational force increases discontinuously, and dramatically, upon en-
try into the 4-D black hole from the 3-D side. It is also radius dependent 
within the 4-D black hole. Moreover, the total entropy is shown to be much 
less than the Bekenstein result, similar to the truncated Gaussian. For the 

gravitational force, we obtain, ( )4 2
, 0.1G r rF c Mλ= − , where rM  is the radiative 

mass enclosed within a 4-D volume of radius r. This unusual force law in-
dicates that the gravitational force acting upon a layer of blackbody photons 
at radius r is strictly proportional to the enclosed radiative energy, 2

rM c , 
contained within that radius, with 0.1λ being the constant of proportionali-
ty. For the entropy at radius, r, and on the surface, we obtain an expression 
which is order of magnitude comparable to the truncated Normal distribu-
tion. Tables are presented for three black holes, one having a mass equal to 
that of the sun. The other two have masses, which are ten times that of the 
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sun, and 106 solar masses. The corresponding λ  parameters are found to 
equal, ( ) ( )8, , 0.039569,0.0037996,3.01229 10A B Cλ λ λ −= × , respectively. We 

compare these results to the truncated Gaussian distribution, which were 
worked out in another paper. 
 

Keywords 
Black Holes, 4-D Spatial Blackbody Radiation Model, Exponential  
Distribution 

 

1. Introduction 

This is a follow up paper, where we consider another probability distribution 
function (pdf), the exponential distribution, and apply it to modeling the radia-
tive mass concentration within the interior of a black hole. We assume that the 
black hole is a 4-D spatial ball embedded in 3-D space, and that it is filled 
(packed) with blackbody photons. Moreover, the radiative energy, in all its 
forms, internal, pressure, and heat, makes up the radiative mass within the black 
hole. See references [1] [2] for a detailed description of the model, which we will 
not reproduce here. We will only give the briefest of sketches, and then proceed 
to model the interior distribution of radiative mass, employing the truncated 
exponential function. 

In paper [1], we considered the event horizon. We conjectured/hypothesized 
that a rip or tear in the spatial continuum occurs there, and not at the black hole 
center. For it is there that we transition from 3-D space to 4-D space. A four di-
mensional black hole filled with blackbody radiation has many advantages over a 
3-D counterpart. First, we can pack an enormous amount of mass, i.e., radiative 
energy within a, from our perspective, relatively small 3-D volume. Second, em-
ploying such a model, the temperature decreases precipitously when we enter 
the black hole. This follows from a generalized version of the Stefan-Boltzmann 
law, which was derived for radiative transfers between different adjoining spatial 
dimensions. Third, the energy density in all its forms, internal, heat, and pres-
sure reduce significantly upon entering the 4-D space. Fourth, we have a natural 
barrier which prevents wholesale entry of CMB photons, and potentially other 
forms of radiation, such as dark energy. Fifth, there can only be zero, or net pos-
itive radiative inflow within this model, as outside net outflow is not allowed, 
except through evaporative processes such as Hawking radiation. Sixth, we have 
an inherent positive radiative surface tension, which allows for inherent black 
hole formation, and keeps the event horizon positively curved and stable. The 
Young-Laplace relations were also considered, and generalized, within a 3-D/4-D 
context. All these factors/advantages were shown and derived in the first work. 
For a detailed description we refer the reader to reference [1]. 

In the 2nd paper, reference [2], we focused on what the interior of a black hole 
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might consist of. We modeled the radiative mass (energy) distribution as a 
probability distribution function. The specific choice was a truncated Gaussian, 
i.e., truncated Normal distribution. It was shown that a uniform truncated dis-
tribution, in contrast, within this space cannot accommodate gravitational forces 
within its interior. A temperature gradient is needed for that, which a Normal 
distribution can satisfy. Moreover, this gradient increases as the 4-D radius de-
creases. Thus the internal energy density, the heat density, the radiative pressure, 
the entropy density, etc. all increased, as the radius decreased. For a 4-D spatial 
black body, the internal energy density is proportional to the fifth power of 
temperature, 5

rT , where rT  is defined as the temperature in an infinitesimal 
layer at radius, r. The radiative pressure and radiative heat are likewise propor-
tional to, 5

rT , whereas the entropy density is proportional to 4
rT .  

The entropy density is treated as a state variable, and it has a well-defined 
value within a specific layer. Utilizing our truncated Gaussian distribution, we 
were able to derive localized, as well as other non-localized attributes/characteris- 
tics, within the black hole. The localized quantities held within a particular 
layer, whereas the other properties were the cumulative effects up to, and en-
closing, a specific radius. Examples of localized attributes are the mass density, 
the radiative pressure, the radiative force, the internal energy density, the heat 
density, the entropy density, etc. These hold within a specific layer at radius, r. 
Examples of non-localized quantities are enclosed mass, gravitational force, 
enclosed entropy, etc., all defined within an enclosing volume of 4-D radius, r. 
Our results were listed in table form. We considered three black holes, which 
we labeled A, B and, C. Black hole A has a mass equal to that of the sun, whe-
reas black holes, B and C had masses, 10 times, and 106 times, the mass of the 
sun, respectively. In this way comparisons between various massive black 
holes could be made. The localized quantities were given in Tables 1-3, re-
spectively, as a function of radius. The non-localized characteristics were ta-
bulated under Tables 4-6, respectively for the three black holes under con-
sideration. 

Of particular interest in the second paper was the probability distribution 
function [3]-[9]. All results relating to the interior of the black hole depended on 
this choice of function. Quite simply, the pdf told us how the black hole is 
packed, radiative energy (mass) wise. This determined the internal forces, both 
radiative and gravitational, the pressures and the densities within the black hole. 
We chose a truncated Gaussian distribution. In this paper we will select another 
pdf, the truncated exponential, [ ]exp ;0, Rλ . The question is how will the results 
change qualitatively and quantitatively with this choice? Are there specific pecu-
liarities associated with this new choice? To this we now turn. We keep in mind 
that the truncated exponential distribution is particularly simple in that it is de-
termined by one, and only one, parameter, λ , called the shape parameter. This 
parameter is defined over the range and has support, [ ]0,r R∈ . Outside of this 
range, it does not exist. 
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Table 1. For a Blackhole having 1 Solar Mass. 

r/R fr/fR ρr ur pr qr Tr sr Fr dTr/dr Cr = dur/dTr dur/dr 

  
(kg/m4) (Joules/m4) 

(Newtons/ 
m3) 

(Joules/m4) (K) 
(Joules/ 
(m4K)) 

(Newtons) (K/m) 
(Joules/ 

m4K) 
(Joules/m5) 

0.000001 5.99E+49 1.60E+34 5.75E+50 1.44E+50 7.18E+50 4.14E+12 1.74E+38 7.31E+43 −8.40E+14 6.95E+38 −5.84E+53 

0.03 5.40E+49 5.34E+20 1.92E+37 4.80E+36 2.40E+37 8.34E+09 2.88E+27 6.59E+43 −6.04E+07 1.15E+28 −6.95E+35 

0.06 3.96E+49 4.90E+19 1.76E+36 4.40E+35 2.20E+36 5.17E+09 4.25E+26 4.84E+43 −2.23E+07 1.70E+27 −3.80E+34 

0.09 2.37E+49 8.67E+18 3.12E+35 7.79E+34 3.89E+35 3.66E+09 1.06E+26 2.89E+43 −1.34E+07 4.26E+26 −5.69E+33 

0.12 1.15E+49 1.78E+18 6.38E+34 1.60E+34 7.98E+34 2.67E+09 2.99E+25 1.40E+43 −9.47E+06 1.20E+26 −1.13E+33 

0.15 4.54E+48 3.59E+17 1.29E+34 3.23E+33 1.61E+34 1.94E+09 8.34E+24 5.55E+42 −7.13E+06 3.34E+25 −2.38E+32 

0.18 1.46E+48 6.69E+16 2.40E+33 6.01E+32 3.00E+33 1.38E+09 2.17E+24 1.78E+42 −5.42E+06 8.69E+24 −4.71E+31 

0.21 3.82E+47 1.10E+16 3.96E+32 9.90E+31 4.95E+32 9.64E+08 5.13E+23 4.66E+41 −4.08E+06 2.05E+24 −8.37E+30 

0.24 8.13E+46 1.57E+15 5.64E+31 1.41E+31 7.06E+31 6.53E+08 1.08E+23 9.93E+40 −2.99E+06 4.32E+23 −1.29E+30 

0.27 1.41E+46 1.91E+14 6.86E+30 1.72E+30 8.58E+30 4.29E+08 2.00E+22 1.72E+40 −2.12E+06 8.01E+22 −1.70E+29 

0.3 1.98E+45 1.96E+13 7.05E+29 1.76E+29 8.81E+29 2.72E+08 3.24E+21 2.42E+39 −1.45E+06 1.30E+22 −1.88E+28 

0.5 2.15E+37 4.60E+04 1.65E+21 4.13E+20 2.07E+21 5.11E+06 4.04E+14 2.63E+31 −4.17E+04 1.62E+15 −6.75E+19 

1 1.00E+00 2.67E−34 9.60E−18 2.40E−18 1.20E−17 1.15E−01 1.04E−16 1.22E−06 −1.81E−03 4.17E−16 −7.54E−19 

 
Table 2. For a Blackhole having 10 Solar Masses. 

r/R fr/fR ρr ur pr qr Tr sr Fr dTr/dr Cr = dur/dTr dur/dr 

  
(kg/m4) (Joules/m4) 

(Newtons/ 
m3) 

(Joules/m4) (K) 
(Joules/ 
(m4K)) 

(Newtons) (K/m) 
(Joules/ 

m4K) 
(Joules/m5) 

0.000001 5.87E+47 1.57E+31 5.63E+47 1.41E+47 7.04E+47 1.03E+12 6.80E+35 7.16E+43 −2.10E+13 2.72E+36 −5.72E+49 

0.03 5.31E+47 5.25E+17 1.89E+34 4.72E+33 2.36E+34 2.09E+09 1.13E+25 6.49E+43 −1.51E+06 4.52E+25 −6.81E+31 

0.06 3.95E+47 4.88E+16 1.75E+33 4.39E+32 2.19E+33 1.30E+09 1.69E+24 4.82E+43 −5.56E+05 6.75E+24 −3.75E+30 

0.09 2.41E+47 8.81E+15 3.17E+32 7.92E+31 3.96E+32 9.22E+08 4.29E+23 2.94E+43 −3.32E+05 1.72E+24 −5.70E+29 

0.12 1.20E+47 1.86E+15 6.68E+31 1.67E+31 8.36E+31 6.76E+08 1.24E+23 1.47E+43 −2.35E+05 4.95E+23 −1.16E+29 

0.15 4.94E+46 3.91E+14 1.40E+31 3.51E+30 1.76E+31 4.95E+08 3.55E+22 6.03E+42 −1.77E+05 1.42E+23 −2.52E+28 

0.18 1.66E+46 7.61E+13 2.74E+30 6.84E+29 3.42E+30 3.57E+08 9.59E+21 2.03E+42 −1.36E+05 3.84E+22 −5.21E+27 

0.21 4.59E+45 1.32E+13 4.76E+29 1.19E+29 5.94E+29 2.51E+08 2.37E+21 5.60E+41 −1.03E+05 9.46E+21 −9.74E+26 

0.24 1.04E+45 2.01E+12 7.22E+28 1.80E+28 9.02E+28 1.72E+08 5.24E+20 1.27E+41 −7.62E+04 2.09E+21 −1.60E+26 

0.27 1.93E+44 2.62E+11 9.42E+27 2.36E+27 1.18E+28 1.15E+08 1.03E+20 2.36E+40 −5.47E+04 4.11E+20 −2.25E+25 

0.3 2.95E+43 2.91E+10 1.05E+27 2.62E+26 1.31E+27 7.39E+07 1.77E+19 3.60E+39 −3.80E+04 7.08E+19 −2.69E+24 

0.5 6.70E+35 1.43E+02 5.15E+18 1.29E+18 6.43E+18 1.61E+06 3.99E+12 8.18E+31 −1.26E+03 1.60E+13 −2.02E+16 

1 1.00E+00 2.67E−35 9.60E−19 2.40E−19 1.20E−18 7.26E−02 1.65E−17 1.22E−04 −1.10E−04 6.61E−17 −7.24E−21 
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Table 3. For a Blackhole having 106 Solar Masses. 

r/R fr/fR ρr ur pr qr Tr sr Fr dTr/dr Cr = dur/dTr dur/dr 

  
(kg/m4) (Joules/m4) 

(Newtons/ 
m3) 

(Joules/m4) (K) 
(Joules/ 
(m4K)) 

(Newtons) (K/m) 
(Joules/ 

m4K) 
(Joules/ 

m5) 

0.000001 5.21E+37 1.39E+16 5.00E+32 1.25E+32 6.25E+32 1.01E+09 6.19E+23 6.36E+43 −2.05E+05 2.48E+24 −5.08E+29 

0.03 4.82E+37 4.77E+02 1.71E+19 4.28E+18 2.14E+19 2.05E+06 1.05E+13 5.89E+43 −1.46E−02 4.18E+13 −6.10E+11 

0.06 3.81E+37 4.71E+01 1.69E+18 4.24E+17 2.12E+18 1.29E+06 1.64E+12 4.65E+43 −5.28E−03 6.57E+12 −3.47E+10 

0.09 2.58E+37 9.45E+00 3.40E+17 8.49E+16 4.24E+17 9.35E+05 4.54E+11 3.15E+43 −3.10E−03 1.82E+12 −5.63E+09 

0.12 1.49E+37 2.31E+00 8.29E+16 2.07E+16 1.04E+17 7.05E+05 1.47E+11 1.82E+43 −2.19E−03 5.88E+11 −1.29E+09 

0.15 7.39E+36 5.84E−01 2.10E+16 5.25E+15 2.63E+16 5.36E+05 4.90E+10 9.02E+42 −1.67E−03 1.96E+11 −3.27E+08 

0.18 3.13E+36 1.43E−01 5.14E+15 1.29E+15 6.43E+15 4.05E+05 1.59E+10 3.82E+42 −1.31E−03 6.36E+10 −8.35E+07 

0.21 1.13E+36 3.26E−02 1.17E+15 2.93E+14 1.47E+15 3.01E+05 4.87E+09 1.38E+42 −1.03E−03 1.95E+10 −2.02E+07 

0.24 3.50E+35 6.77E−03 2.43E+14 6.08E+13 3.04E+14 2.20E+05 1.38E+09 4.28E+41 −8.06E−04 5.53E+09 −4.46E+06 

0.27 9.28E+34 1.26E−03 4.52E+13 1.13E+13 5.65E+13 1.57E+05 3.60E+08 1.13E+41 −6.16E−04 1.44E+09 −8.88E+05 

0.3 2.10E+34 2.08E−04 7.47E+12 1.87E+12 9.34E+12 1.09E+05 8.53E+07 2.57E+40 −4.60E−04 3.41E+08 −1.57E+05 

0.5 1.94E+28 4.14E−11 1.49E+06 3.72E+05 1.86E+06 5.00E+03 3.72E+02 2.37E+34 −3.15E−05 1.49E+03 −4.68E−02 

1 1.00E+00 2.67E−40 9.60E−24 2.40E−24 1.20E−23 7.26E−03 1.65E−21 1.22E+06 −8.69E−11 6.61E−21 −5.74E−31 

 
Table 4. For a Blackhole having 1 Solar Mass. 

r/R FCDF
r Mass = Mr Ur Qr Wr Gr Mr Gr gr φG,r FG,r Sr 

  
(kg) (Joules) (Joules) (Joules) (N m3/kg) (N m3/kg2) (m/s2) (Joules/kg) (Newtons) (Joules/K) 

0.000001 1.21E−05 2.40E+25 8.64E+41 1.08E+42 2.16E+41 1.80E+01 7.48E−25 −6.97E+08 −1.08E+18 8.37E+33 1.63E+29 

0.03 3.50E−01 6.97E+29 2.50E+46 3.13E+46 6.26E+45 1.46E+19 2.09E−11 −2.09E+13 −1.07E+18 7.16E+42 2.29E+36 

0.06 6.36E−01 1.27E+30 4.55E+46 5.69E+46 1.14E+46 2.33E+20 1.84E−10 −4.18E+13 −1.07E+18 2.47E+43 6.25E+36 

0.09 8.27E−01 1.64E+30 5.91E+46 7.39E+46 1.48E+46 1.18E+21 7.17E−10 −6.28E+13 −1.07E+18 4.42E+43 1.01E+37 

0.12 9.31E−01 1.85E+30 6.66E+46 8.32E+46 1.66E+46 3.73E+21 2.01E−09 −8.37E+13 −1.06E+18 5.90E+43 1.31E+37 

0.15 9.77E−01 1.94E+30 6.99E+46 8.73E+46 1.75E+46 9.10E+21 4.68E−09 −1.05E+14 −1.05E+18 6.75E+43 1.48E+37 

0.18 9.94E−01 1.98E+30 7.10E+46 8.88E+46 1.78E+46 1.89E+22 9.55E−09 −1.26E+14 −1.04E+18 7.13E+43 1.57E+37 

0.21 9.99E−01 1.99E+30 7.14E+46 8.92E+46 1.78E+46 3.50E+22 1.76E−08 −1.46E+14 −1.03E+18 7.26E+43 1.61E+37 

0.24 1.00E+00 1.99E+30 7.15E+46 8.94E+46 1.79E+46 5.96E+22 3.00E−08 −1.67E+14 −1.02E+18 7.30E+43 1.62E+37 

0.27 1.00E+00 1.99E+30 7.15E+46 8.94E+46 1.79E+46 9.55E+22 4.80E−08 −1.88E+14 −1.00E+18 7.30E+43 1.63E+37 

0.3 1.00E+00 1.99E+30 7.15E+46 8.94E+46 1.79E+46 1.46E+23 7.32E−08 −2.09E+14 −9.82E+17 7.30E+43 1.63E+37 

0.5 1.00E+00 1.99E+30 7.15E+46 8.94E+46 1.79E+46 1.12E+24 5.65E−07 −3.49E+14 −8.18E+17 7.30E+43 1.63E+37 

1 1.00E+00 1.99E+30 7.15E+46 8.94E+46 1.79E+46 1.80E+25 9.04E−06 −6.97E+14 −4.49E+16 7.30E+43 1.63E+37 
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Table 5. For a Blackhole having 10 Solar Masses. 

r/R FCDF
r Mass = Mr Ur Qr Wr Gr Mr Gr gr φG,r FG,r Sr 

  
(kg) (Joules) (Joules) (Joules) (N m3/kg) (N m3/kg2) (m/s2) (Joules/kg) (Newtons) (Joules/K) 

0.000001 1.18E−05 2.35E+26 8.46E+42 1.06E+43 2.12E+42 1.73E+03 7.33E−24 −6.69E+07 −1.03E+18 7.87E+35 6.38E+32 

0.03 3.44E−01 6.84E+30 2.46E+47 3.07E+47 6.14E+46 1.40E+21 2.04E−10 −2.01E+12 −1.03E+18 6.74E+44 8.98E+39 

0.06 6.26E−01 1.25E+31 4.48E+47 5.60E+47 1.12E+47 2.24E+22 1.79E−09 −4.02E+12 −1.03E+18 2.34E+45 2.46E+40 

0.09 8.18E−01 1.63E+31 5.85E+47 7.31E+47 1.46E+47 1.13E+23 6.96E−09 −6.02E+12 −1.03E+18 4.22E+45 4.02E+40 

0.12 9.25E−01 1.84E+31 6.61E+47 8.27E+47 1.65E+47 3.58E+23 1.94E−08 −8.03E+12 −1.02E+18 5.69E+45 5.21E+40 

0.15 9.74E−01 1.94E+31 6.96E+47 8.70E+47 1.74E+47 8.73E+23 4.51E−08 −1.00E+13 −1.01E+18 6.55E+45 5.95E+40 

0.18 9.92E−01 1.97E+31 7.10E+47 8.87E+47 1.77E+47 1.81E+24 9.18E−08 −1.20E+13 −1.00E+18 6.95E+45 6.34E+40 

0.21 9.98E−01 1.99E+31 7.14E+47 8.92E+47 1.78E+47 3.36E+24 1.69E−07 −1.41E+13 −9.90E+17 7.10E+45 6.50E+40 

0.24 1.00E+00 1.99E+31 7.15E+47 8.93E+47 1.79E+47 5.72E+24 2.88E−07 −1.61E+13 −9.77E+17 7.14E+45 6.56E+40 

0.27 1.00E+00 1.99E+31 7.15E+47 8.94E+47 1.79E+47 9.17E+24 4.61E−07 −1.81E+13 −9.61E+17 7.15E+45 6.58E+40 

0.3 1.00E+00 1.99E+31 7.15E+47 8.94E+47 1.79E+47 1.40E+25 7.03E−07 −2.01E+13 −9.45E+17 7.16E+45 6.59E+40 

0.5 1.00E+00 1.99E+31 7.15E+47 8.94E+47 1.79E+47 1.08E+26 5.42E−06 −3.35E+13 −7.86E+17 7.16E+45 6.59E+40 

1 1.00E+00 1.99E+31 7.15E+47 8.94E+47 1.79E+47 1.73E+27 8.67E−05 −6.69E+13 −4.49E+16 7.16E+45 6.59E+40 

 
Table 6. For a Blackhole having 106 Solar Masses. 

r/R FCDF
r Mass = Mr Ur Qr Wr Gr Mr Gr gr φG,r FG,r Sr 

  
(kg) (Joules) (Joules) (Joules) (N m3/kg) (N m3/kg2) (m/s2) (Joules/kg) (Newtons) (Joules/K) 

0.000001 1.05E−05 2.09E+31 7.52E+47 9.40E+47 1.88E+47 1.36E+13 6.51E−19 −5.28E+02 −8.25E+17 5.52E+33 5.81E+38 

0.03 3.07E−01 6.11E+35 2.20E+52 2.75E+52 5.50E+51 1.10E+31 1.80E−05 −1.59E+07 −8.25E+17 4.78E+42 8.23E+45 

0.06 5.71E−01 1.14E+36 4.08E+52 5.10E+52 1.02E+52 1.77E+32 1.55E−04 −3.17E+07 −8.23E+17 1.71E+43 2.30E+46 

0.09 7.64E−01 1.52E+36 5.47E+52 6.83E+52 1.37E+52 8.94E+32 5.88E−04 −4.76E+07 −8.19E+17 3.21E+43 3.87E+46 

0.12 8.86E−01 1.76E+36 6.34E+52 7.92E+52 1.58E+52 2.82E+33 1.60E−03 −6.34E+07 −8.14E+17 4.54E+43 5.20E+46 

0.15 9.52E−01 1.89E+36 6.81E+52 8.51E+52 1.70E+52 6.90E+33 3.64E−03 −7.93E+07 −8.08E+17 5.46E+43 6.15E+46 

0.18 9.82E−01 1.95E+36 7.02E+52 8.78E+52 1.76E+52 1.43E+34 7.32E−03 −9.51E+07 −8.00E+17 5.98E+43 6.72E+46 

0.21 9.94E−01 1.98E+36 7.11E+52 8.89E+52 1.78E+52 2.65E+34 1.34E−02 −1.11E+08 −7.91E+17 6.22E+43 7.02E+46 

0.24 9.98E−01 1.99E+36 7.14E+52 8.92E+52 1.78E+52 4.52E+34 2.28E−02 −1.27E+08 −7.81E+17 6.32E+43 7.16E+46 

0.27 1.00E+00 1.99E+36 7.15E+52 8.93E+52 1.79E+52 7.24E+34 3.64E−02 −1.43E+08 −7.69E+17 6.35E+43 7.21E+46 

0.3 1.00E+00 1.99E+36 7.15E+52 8.94E+52 1.79E+52 1.10E+35 5.55E−02 −1.59E+08 −7.55E+17 6.36E+43 7.23E+46 

0.5 1.00E+00 1.99E+36 7.15E+52 8.94E+52 1.79E+52 8.51E+35 4.28E−01 −2.64E+08 −6.30E+17 6.36E+43 7.24E+46 

1 1.00E+00 1.99E+36 7.15E+52 8.94E+52 1.79E+52 1.36E+37 6.85E+00 −5.28E+08 −4.49E+16 6.36E+43 7.24E+46 
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Before we start, we point out some notable differences between our model and 
the conventional picture. A good survey article on the thermodynamics of black 
holes is given in reference [10]. The deviations between our model and the stan-
dard picture will be given in bullet form, and the list is not all-inclusive. Howev-
er, these are among the most important differences, which will be seen as we 
move through the text. It is best to highlight them now such that misconceptions 
will be avoided. We note that in our model: 

1) Our entropy calculation is an extensive quantity depending on 4-D spatial 
volume. The conventional Beckenstein-Hawking entropy depends on surface 
area, according to a holographic principle. For a comparable mass black hole, 
our extensive 4-D entropy calculation will give much reduced values for total 
entropy. To find the total entropy, we integrate over a 4-D spatial volume. The 
Bekenstein entropy, by contrast, is proportional to the surface area of the event 
horizon, and therefore, an intensive variable. More correctly, it is proportional 
to the sum of Planck surface units enclosing the black hole. 

2) There is no information loss (only information gain) upon transitioning 
from 3-D space (the surroundings) to 4-D space, the black hole, if only blackbo-
dy radiation is considered. Our black hole can be thought of as a special, exotic 
type of 4-D spatial capacitor, where pure states, in the form of blackbody radia-
tion obeying Bose-Einstein statistics, are possible within specific layers. Not only 
is radiative mass stored within the 4-D black hole, but in addition, entropy and 
many other attributes. Entropy will increase upon massive and massless inflow. 
Of all isothermal radiating bodies, a black body is that unique body which pro-
duces the largest amount of entropy for a given energy. See, for example, refer-
ence [11]. 

3) Reduced temperatures just inside the event horizon of a black hole is a di-
rect consequence of a spatial transition from 3-D space to 4-D space, as was 
shown explicitly in reference [1]. Upon transitioning from 3-D to 4-D space, 
surface area increases dramatically, and as a consequence, temperature decreases 
discontinuously, and dramatically, according to a generalized version of the Ste-
fan-Boltzmann law. The temperature within the black hole in our model is not 
due to evaporative processes, such as in Hawking radiation. 

4) Because the temperature changes abruptly, all blackbody attributes which 
depend exclusively on temperature, such as internal energy density, radiative 
pressures, entropy density, etc. also change abruptly at the 3-D/4-D interface, 
identified as the event horizon. The temperature, however, will increase as one 
penetrates to smaller radii within the 4-D black hole. Thus, all these quantities 
which can be defined within specific layers will also increase. Ultimately, this 
will make up the mass of the black hole within this very simplified model. 

5) Layer by layer, within the black hole, outward expansion due to radiative 
pressures and forces are held in check by gravitational forces pulling in. Hydros-
tatic equations apply as was shown explicitly in reference [2]. At the surface, we 
also have gravitational forces, and radiative pressure. Black holes are in thermal 
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equilibrium with the surrounding CMB temperature when there is no net inflow. 
Radiative forces are such that there will always be a net positive curvature, both 
within, and on the surface of the black hole. This is not guaranteed on the sur-
face for a 3-D/3-D spatial transition. 

6) The gravitational force increases dramatically and abruptly as one enters 
the spatial 4-D black hole. This is a consequence of the spatial dimension 
changing. The probability distribution function chosen will determine how the 
radiative mass is packed or stored within the 4-D space. Typically, in 4-D space, 
the gravitational constant is a function of radius. 

7) Since our 4-D black holes consist of blackbody radiation in this very sim-
plified model, radiative pressure, radiative force, energy density, and entropy 
density are fixed very specifically in terms of temperature, ( ) rT T r T= = . De-
rived quantities such as gravitational force, entropy, specific heat, are also fixed. 
Our heat capacity is not negative as in the standard picture, and it does decrease 
with increasing 4-D radius. Associated MKS units for heat capacity in 4-D space 
are Joules/(m4 K). The gravitational force in 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 increases with increasing 
radius, [ ]0,r R∈ . 

8) By and large, we ignore Hawking radiation and other evaporative processes. 
This has to be worked out in another series of papers. Our temperatures just in-
side the event horizon depend on the size, or mass, of the black hole. They typi-
cally are much higher than the corresponding 3-D Hawking temperature, al-
though much lower than the surrounding CMB temperature. The temperature is 
not constant throughout the black hole in our model, nor is it due to evaporative 
processes. 

Clearly, these assumptions go contrary to much of what is believed to hold 
true for black holes. Our premise is an unconventional one, as we are dealing 
with a 4-D spatial object. 

The general outline for this paper follows that of reference [2], although in 
less detail. In Section 2, we introduce the exponential pdf, and determine the 
shape parameters needed for each of the three black holes under consideration. 
We analyze the same three black holes as was done in reference [2], black holes 
A, B, and, C, such that direct comparisons can be made. In this section, we use 
the temperature just inside the event horizon, within the 4-D black hole to find 
the associated shape parameters, ( ), ,A B Cλ λ λ . With these values, we will be in a 
position to map out the interior. Since we can find the various densities, the ra-
diative pressures, and the radiative forces at the surface just inside the event ho-
rizon, we can determine these values within the interior for any arbitrary radius 
knowing the various shape parameters. In Section 3, we consider specifically the 
localized variables which hold within a particular layer, within the interior of the 
4-D black hole. We are considering the internal energy density, the radiative 
pressure, the entropy density, the radiative force, the temperature, and the heat 
capacity, among other variables. The localized properties are tabulated under 
Tables 1-3.  
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In Section 4, we derive and calculate certain cumulative properties. These are 
cumulative quantities, which hold within an enclosing radius. In this section, we 
focus on radiative mass, the gravitational force, the gravitational acceleration, 
and the entropy, all defined within an enclosing radius. The cumulative charac-
teristics are listed under Tables 4-6. The key formulae are given in the text. Fi-
nally in Section 5, we discuss our results, and remark upon the similarities, as 
well as deviations, from the corresponding Normal distribution counterparts. 
We shall see that particular pdf’s lead to particular ramifications. 

2. The Exponential Distribution 

We first derive a general relation which all pdf’s have to obey within our model 
[1]. On the inside surface of a black hole, just inside the event horizon, the radia-
tive force is given by 

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

4 4 4 3 3
1 2

3 3
2

43 2

0.8

0.8 3

0.8 3 2.725 4π

R R R

R

F p A p A

u A

a R

≡ =

=

=

                  (2-1) 

We have assumed that the outside temperature is the CMB temperature and 
that, consequently, d d 0Q t = , where d dQ t  is the radiative heat entering the 
black hole. An isolated, static black hole is in thermal equilibrium with its sur-
roundings at this external temperature. In Equation, (2-1), ( )4

1p  is the radiative 
pressure just inside the event horizon, where the temperature is 1T . The black 
body radiative pressure just outside the event horizon, on the 3-D side, is given 
by, ( )3

2p , and this is defined at a different temperature, 2T . For an isolated, stat-
ic black hole, where, d d 0Q t = , the outside temperature, 2  2.725 KT = . The 
quantity, ( )4 2 32πRA R= , is the 4-D surface area. The three dimensional surface 
area is, ( )3 24πRA R= . The internal energy density, ( )3

2u , on the 3-D side is equal 
to, ( ) ( ) ( ) ( )3 3 3 34 4 4

2 2 24 4 2.725u a T c T cσ σ= = = , where,  
( )3 8 2 45.68 10 Watts m Kσ −= ⋅× , is the Stefan Boltzmann constant. The constant, 
( ) ( )3 3 164 7.5657 10a cσ −≡ = × , in MKS units. All superscripts within brackets 

over a quantity refer to the spatial dimension over which the quantity is defined. 
If it is obvious that we are in 4 spatial dimensions, we will dispense with the su-
perscript, such as in Sections 3, 4, and 5. 

We next recognize that, according to our model, the radiative pressure just in-
side the 4-D black hole surface, is related to the radiative mass density, ( )4

1ρ , at 
that radius, by means of 

( ) ( ) ( )4 4 42 2
1 1 110e c p cρ = =                    (2-2) 

In this relation, the radiative energy density, ( )4
1e , is defined at temperature, 

1T , which is the temperature just inside the event horizon. The total 4-D energy 
density, which consists of internal energy density, radiative pressure, and heat 
density, is assumed to contribute to the radiative mass. When multiplied by a 
4-D volume and/or 4-D surface area, ( )4

rA  the units match. For example,  
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )4 4 4 4 4 4 4 4
r r r r r r r re A u A p A q A= + +               (2-3) 

The heat density at radius, r, is designated by, ( )4
rq . As shown in reference [1], 

this can be rewritten a variety of ways, 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )4 4 4 4 4 4 4 410 4 10 2r r r r r r r re A u A p A q A= = =          (2-4) 

This is due to the particular coefficients, which hold only in 4-D space,  
( ) ( )4 4 4r rp u= , ( ) ( )4 45 4r rq u= , ( ) ( )4 45 4r r rs u T=         (2-5) 

In another spatial dimension, these factors would assume different values. 
Equation, (2-5), gives us the relative contributions towards total energy density 
within any layer at radius r, or at a particular radius r. Those contributions are, 

( )1 2r rq e= , ( )1 10r rp e= , and, ( )4 10r ru e= . 
We multiply Equation, (2-2), by the 4-D surface area, ( )4

rA . And then, we use 
Equation, (2-1), to eliminate, ( ) ( )4 4

1 Rp A , on the right hand side of the new expres-
sion obtained. The result is  

( ) ( ) ( )( ) ( ) ( )44 4 32 2
1 10 8 3 2.725 4πRA c a Rρ =           (2-6) 

According to our model, this is precisely equal to, 
( ) ( )4 4
1 R R RA f Mρ =                      (2-7) 

where, Rf , is the value of the probability distribution function at r R= . The R 
is the full radius of the black hole, related to its mass via the Schwarzschild rela-
tion, 22 RR GM c= . A quick proof follows. 

We introduce, quite generally, a pdf, rf , which satisfies, 

( ) 2

1
1 2. d

r
rr

Probl r r r f r≤ ≤ = ∫               (2-8) 

For a truncated pdf with limits or bounds, [ ] [ ], 0,a b R= , we thus have 

( )
0

. 0 d 1
R

rProbl r R f r≤ ≤ = =∫              (2-9) 

i.e., 100% probable. The cumulative distribution function (cdf), CDF
rF , is de-

fined as, 

0
d

rCDF
r rF f r≡ ∫                        (2-10) 

The cdf is the sum of all probabilities starting from 0r =  up to, and includ-
ing, radius, r. The radiative mass within the black hole is assumed to obey such a 
function. In other words, 

0
d

r CDF
r R r R rM M f r M F= =∫              (2-11) 

Moreover, since d dr r r r rM V A rρ ρ= =  is the radiative mass contained with-
in volume, ( ) ( )4 4d dr rV A r= , within a layer between r and dr r+ , we see that, 

0
d

r
r r rM A rρ= ∫                    (2-12) 

Comparing the last two equations, we see that 

r r R rA M fρ =                     (2-13) 
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Equation, (2-7), is a special case of relation, (2-13). 
We next set the right hand side of Equation, (2-7), equal to the right hand side 

of Equation, (2-6), and solve for Rf . This gives 

( )( ) ( ) ( )432 232π 3 2.725R Rf R M c a=               (2-14) 

We now make use of the Schwarzschild relation to further simplify this ex-
pression. Using the relation, 22 RR GM c= , we eliminate RM  in favor of R, 
to obtain for (2-14),  

( ) ( ) ( )432 5664π 3 2.725 2.31 10Rf G c a R R−= = ×          (2-15) 

To obtain the last line, we have used the numerical value, ( )3 167.5657 10a −= × , 
in MKS units. Equation, (2-15), tells us that the value of the probability distribu-
tion function is very small just inside the event horizon, on the 4-D side. There-
fore, the radiative energy density, the internal energy density, the radiative pres-
sure, etc. … are also close to being zero. See Equation, (2-7). This holds even for 
very massive black holes, where the radius is significant. In fact, Rf  scales as, or 
is proportional to, R. In previous cosmological epochs, the CMB temperature 
was higher, and the factor sitting out in front of R in Equation, (2-15), would be 
different. However the proportionality with respect to R would not change. Even 
though the numerical value of Rf  is small, it is not insignificant. This value will 
set the boundary condition for the radiative mass profile, and internal energy 
profile, the heat profile, the entropy density profile, etc. within the black hole. 
All that has to be chosen is an appropriate pdf. Equation, (2-15), will hold for 
any pdf chosen. 

In this paper, we consider three specific black holes. Black hole A has a mass 
equal to that of the sun. Black holes B and C will have masses 10 times and 106 
times the mass of the sun, respectively. For the masses chosen, the radii are given 
by the Schwarzschild relation, and we obtain, 

( ) ( )30 31 36, , 1.989 10 ,1.989 10 ,1.989 10 kgA B CM M M = × × ×  

( ) ( )3 4 9, , 2.954 10 ,2.954 10 ,2.954 10 metersA B CR R R→ = × × ×    (2-16) 

Substituting these radii into Equation, (2-15), gives 

( ) ( )53 52 47 1
, , ,, , 6.8292 10 ,6.8292 10 ,6.8292 10 metersR A R B R Cf f f − − − −= × × ×  (2-17) 

We see very clearly that these values are quite low, even for very massive black 
holes. 

We now specify the exponential distribution. The probability distribution 
function can be written in the form, 

( )e 1 er R
rf

λ λλ − −= −                       (2-18) 

where, λ , is the shape parameter, the only parameter associated with the expo-
nential distribution. Equation, (2-18), satisfies Equations, (2-8) and (2-9). The 
associated cdf defined by Equation, (2-10), is easily derived. The resulting ex-
pression is, 
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( ) ( )1 e 1 eCDF r R
rF λ λ− −= − −                     (2-19) 

It is obvious that, 1CDF
RF = . From Equation, (2-18), it follows that 

( )e R r
r Rf f λ −= (TE = truncated exponential) (2-20) 

This is to be contrasted to what we had previously, in reference [2], where we 
considered the truncated Gaussian. There the corresponding expression was, 

( )2 2 22
e

R r
r Rf f

σ−
= (TG = truncated gaussian) (2-21) 

For the Gaussian or Normal distribution, the parameters, ( ) ( ), 0,µ σ σ= , 
such that the mode was found at 0r = . The quantity, σ , is the shape parame-
ter for the TG distribution. These two expressions, Equations, (2-20) and, (2-21), 
will lead to very different results for what happens within the black hole, as we 
shall soon see. 

We now will fix the exponential shape parameters for the three black holes 
being analyzed. We do this by specializing Equation, (2-12), to r R= , which 
places us 4-dimensionally, just inside the event horizon. There, 

( )e 1 eR R
Rf

λ λλ − −= −                     (2-22) 

For our three black holes, we have specific Rf  values, as seen from Equations, 
(2-17). We substitute these on the left hand side of Equation, (2-22). We also 
know the respective radii, as these are given by our relations, (2-16). If we subs-
titute the appropriate radii on the right hand side, then we can then use a trial 
and error approach to find the respective λ  values for each of the black holes. 
The equalities will hold in each instance only for a unique value of λ . We find 
that Equation, (2-22), is satisfied, if we make the following choices: 

( ) ( )8 1, , 0.039569,0.0037996,3.01229 10 metersA B Cλ λ λ − −= ×     (2-23) 

An analytical expression/solution for λ  in Equation, (2-22), does not seem 
possible as λ  occurs at various places on the right hand side. 

3. Radiative Pressure, Internal Energy Density, Heat Density,  
and Other Quantities within Specific Layers 

Next we construct tables for black holes A,B and C, where we calculate impor-
tant attributes as a function of radii. This will give us a snapshot of how the black 
hole is structured internally. According to our exponential distribution, we will 
have a very specific profile for all the key attributes within the black hole. We 
consider in this section, the radiative mass density, ( )4

rρ , the internal energy 
density, ( )4

ru , the heat density, ( )4
rq , the entropy density, ( )4

rs , the temperature, 

rT , the radiative force, ( )4
rF , among other values. These are all defined in 4-D 

space, and henceforth, we will suppress the superscripts unless comparisons with 
three dimensional quantities are made. Tables 1-3 will hold for black holes A, B 
and C, respectively. We go through the same steps and follow the same format, 
as was done in reference [2], for a truncated Gaussian distribution. We extend 
the analysis to the exponential distribution. 
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As was shown in reference [2], the temperature just inside the black hole is 
determined by the black hole mass, or equivalently, by its radius, because of the 
Schwarzschild proportionality. The result was, 

1 5
1 0.569T R−=                     (3-1) 

where, 1T , is the temperature just inside the black hole event horizon, at radius, 
R. Using this expression, the temperatures for the three black holes under con-
sideration are, 

( ) ( )1, 1, 1,, , 0.115 K,0.0726 K,0.00726 KA B CT T T =            (3-2) 

This allows us to find the internal energy density, the radiative pressure, the 
heat density, and the entropy density just inside the black hole event horizon. As 
shown in reference [2], 

( ) ( )18 19 24 4
1, 1, 1,, , 9.60 10 ,9.60 10 ,9.60 10 J mA B Cu u u − − −= × × ×       (3-3) 

( ) ( )18 19 24 3
1, 1, 1,, , 2.40 10 ,2.40 10 ,2.40 10 N mA B Cp p p − − −= × × ×     (3-4) 

( ) ( )17 18 23 4
1, 1, 1,, , 1.20 10 ,1.20 10 ,1.20 10 J mA B Cq q q − − −= × × ×      (3-5) 

( ) ( ) ( )16 17 21 4
1, 1, 1,, , 1.04 10 ,1.65 10 ,1.65 10 J m KA B Cs s s − − −= × × × ⋅     (3-6) 

These values are very small, but then the temperature, just within the event 
horizon is very small. According to Equation, (2-2), we can also write, 

( ) ( )34 35 40 4
1, 1, 1,, , 2.67 10 ,2.67 10 ,2.67 10 kg mA B Cρ ρ ρ − − −= × × ×     (3-7) 

These are the radiative mass densities just inside the event horizon, defined in 
4-D space. We note that the units in all the above quantities conform to 4-D 
space. The subscript “1” in all these quantities refers to the temperature, 1T , 
which is the temperature just inside the event horizon, within the black hole. 
This subscript could just as well be replaced by “R”, as this temperature holds at 
radius, R. In other words, 1, ,A R Au u= , 1, ,B R Bu u= , etc.. The subscripts, A, B, C, 
refer to black holes, A, B, and, C, respectively. 

We next make use of our relations, (2-13), and, (2-20). Combining both ex-
pressions, we see that, 

( ) ( ) ( )expr r R R r RA A f f R rρ ρ λ= = −                (3-8) 

This equation allows us to find r rAρ  at any radius, r, within the black hole. 
We know the radii as these are specified under Equations, (2-16). We also have 
specific values for the shape parameters as these are worked out in Equations, 
(2-23). Finally we have the mass densities at the surface. See relations, (3-7). The 
4-D surface area, 2 32πRA R= . So we have all that is needed to calculate, r rAρ , 
and, rρ , within the interior. At any radius, r, the surface area, 2 32πrA r= . Be-
cause the radius varies, we have to tabulate the above quantities in table form, 
and these values are listed as entries in Tables 1-3. Under column one, we con-
sider various radii. In column two, we calculate the function indicated by Equa-
tion, (3-8). And under column three, various radiative mass density values are 
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worked out. 
Once rρ  is specified, we can easily evaluate the internal energy density, ru , 

the radiative pressure, rp , the heat density, rq , and the temperature, rT . 
These are given under columns 4, 5, 6, and, 7, respectively in Tables 1-3. We 
have made use of the following relations, which are easily proved once we realize 
that, in 4-D space [1],  

( ) ( ) ( ) ( ) ( )4 4 4 45 5 13 53π 2 4.7481 10r r r ru u r a T c T Tσ −= = = = ×        (3-9) 

The Stefan-Boltzmann constant in 4-D space [12] [13] [14] is given by, 
( ) ( )4 5 3 5  3.021 10 Watts m Kσ − ⋅= × . Using Equation, (3-9), and the relations, (2-2), 

with (2-5), we can show that, 

( )5
r R r R r R r R r R r Ru u q q p p e e T Tρ ρ= = = = =       (3-10) 

We know r Rρ ρ , from Equation, (3-8). The Rρ  values are listed under 
Equations, (3-7). And the rρ  values are listed under column 3 in each of the 
tables. We also know the Ru  values, the Rp  values, the Rq  values, and, the 

RT  values. These are given by Equations, (3-3), (3-4), (3-5), and, (3-2), respec-
tively. Therefore, using Equations, (3-10), and, (3-8), it is possible to find, ru , 

rp , rq , and, rT , as a function of radius. 
When comparing these values with those in reference [2], which holds for a 

truncated Gaussian, we notice a difference. The black holes are the same, and we 
had the same temperatures, densities, and radiative pressures at the surface. 
However the distribution is now different as we are using a truncated exponen-
tial, and therefore, the radiative mass density, the energy densities, and the 
pressures are “packed” differently within the black hole. Hence, we have the dif-
ferences in the tabulated entries. We will come back to this point when we make 
formal comparisons between the two distributions (pdf’s) in Section 5. 

The entropy density, rs , will be considered next. This is most easily evaluated 
by using the relation, r r rs q T= , which is a consequence of Equations, (2-5b), 
and, (2-5c). The rq  and the rT  values are listed under columns 6, and 7, re-
spectively. So all we have to do is take the value in one column and divide out by 
its corresponding value in the other column. The rs  values are entered under 
column 8 in each of the tables. 

An alternative method is to recognize that the ratio 

 

( )( ) ( ) ( )( )
( ) ( )( ) ( )
( ) ( )
( ) ( )

3

3 3/5 1 5

12 5 4 5

12 5 exp 0.8

r R r R R r r R R r

r R r R

r R

s s q q T T R r f f T T

R r f f R r f f

R r f f

R r R rλ

− −

= =

=

=

= −  

        (3-11) 

For the first line, we used Equations (2-5b,c), (3-10), and the first equality in 
(3-8). For the second line, another equality in Equation, (3-10), and the first 
equality in (3-8), were employed. And for the 4th line, the second equality in (3-8) 
was utilized. 
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An even simpler formulation is to use another version of Equation, (3-10), 
and realize that it is also possible to write, 

( )( ) ( )4
r R r R R r R rs s q q T T T T= =                (3-12) 

We can use either Equation, (3-11), or Equation, (3-12), to evaluate rs . For 
the former, we need, Rs , R, λ, and r. However, these are specified by Equations, 
(3-6), (2-16), (2-23), and column 3. The other alternative is to use Equation, 
(3-12). There, we need only, Rs , RT , and the rT  values specified under column 
6. The Rs  and RT  values are listed in Equations, (3-6), and, (3-2), respectively. 
These are alternative approaches to calculating the entropy density.  

Equation, (3-11), makes explicit use of the shape parameter, full radius, and 
considered radius, r. The final expression is quite different than the one obtained 
for a truncated Gaussian (TG) distribution, obtained in reference [2]. There we 
had, 

( ) ( )12 5 2 2 2exp 0.4r Rs s R r R r σ= − 
   (TG)         (3-13) 

For that distribution, the shape parameters for the three black holes under 
consideration were evaluated, and the results were, 

( ) ( )2 3 8, , 1.951 10 ,1.992 10 ,2.241 10 mA B Cσ σ σ = × × ×  (TG)   (3-14) 

Again, a different pdf leads to a different distribution of radiative mass, and 
other quantities within the black hole for the same size, or same total mass, black 
hole. 

The next column entry in the tables is column 9, which relates to radiative 
force. By definition the radiative force is the radiative pressure at a particular 𝑟𝑟 
value, multiplied by the surface area at the same radius, r. When looked at from 
the interior, this is a force acting inwards. When looked at from the outside, it is 
a force directed outwards. Per definition, 

( ) ( ) ( )4 4 4 2 32πr r r r r r rF F p A p A p r= = = =         (3-15) 

Using this definition, and Equations, (3-10), with, (3-8), we can convince 
ourselves that 

( ) ( ) ( )expr R r r R R r r R R r RF F p A p A A A f f R rρ ρ λ= = = = −    (3-16) 

For a particular value of r, we can evaluate the right hand side recognizing 
that both λ  and R are known for the three black holes being analyzed. We can 
also easily evaluate RF  on the left hand side, as this is just,  

2 32πR R R RF p A p R= = . The radii to be employed are as listed in Equations, 
(2-16). The radiative pressure at the surface, just inside the black hole, is speci-
fied by Equations, (3-4). Thus it is possible for us to determine, RF , and using 
the right hand side of Equation, (3-16), the values for rF , as well. These are the 
values worked out in column 9.  

An alternative evaluation for rF  would have been to multiply the column 
entries for pressure, given under column 5, with the corresponding surface areas, 
evaluated as, 2 32πrA r= . This approach, however, which is Equation, (3-15), 
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does not show us directly how the distribution and shape parameters come into 
play. Equation, (3-16), on the other hand, does. Equation, (3-16), can also be 
compared to its corresponding counterpart, where a truncated Gaussian is cho-
sen as the pdf. This was worked out in reference [2], and we had 

( )2 2 2exp 2r R r RF F f f R r σ= = − 
        (TG) (3-17) 

The function on the right hand side is different, and thus the radiative force 
within the interior of the black hole has a different profile. The surface radiative 
force, RF , however, has the same value for both distributions, and in fact, for all 
distributions. 

We give three further columns in Tables 1-3. In column 10, we give the tem-
perature gradient, d drT r , as a function of 4-D radius within the black hole. 
Under column 11, we list the specific heat, d dr r rC u T≡ , as a function of radius. 
And finally, under column 12, we calculate the internal energy gradient, d dru r , 
within the black hole. We take each in turn. 

We start with the results of Equations, (3-11), and (3-12). These can be 
equated to each other since the left hand sides are equal. From this we see that, 

( ) ( )3 5 0.2e R r
r RT T R r λ −=                  (3-18) 

We differentiate this expression with respect to r, both left and right hand 
sides. We find that, 

( ) ( ) ( ) ( )3 50.2 3 5 3 51 d d e 0.2 3 5R r
R rT T r R r R rλ λ− −= − + − 

    (3-19) 

We next divide the left hand side of Equation, (3-19), by the left hand side of 
Equation, (3-18), and do the same on the right hand side. The result is 

( ) ( ) ( )8 5 3 51 d d 0.2 3 5 0.2 3 5r rT T r r r rλ λ−= − − = − −     (3-20) 

Therefore,  

( )d d 3 5r rT r r Tλ= − +           (TE) (3-21) 

We know λ  and rT  for each of the black holes. The exponential shape pa-
rameters, λ , are listed in Equations, (2-23). And the rT  values are listed under 
column 7 in each of the tables. Therefore, with the help of Equation, (3-21), we 
can evaluate d drT r  for selected values of radii, r. As mentioned, these values 
are tabulated under column 10 in Tables 1-3. 

For a truncated Gaussian distribution, the counterpart to Equation, (3-21), 
was 

( )2d d 3 5r rT r r r Tσ= − +          (TG) (3-22) 

This was worked out in reference [2]. Upon comparing the two results, we no-
tice that the second terms on the right hand side are equal. The first term differs 
due to the differing shape parameters. 

For the 11th column, we want to evaluate the quantity, d dr ru T , which can be 
identified as the specific heat. To calculate this we make use of Equation, (3-9). 
We differentiate both left and right hand sides of this expression with respect to 
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temperature, rT . The result is 
( ) ( ) ( )4 4 44d d 5 5 4 4r r r r r r r ru T a T u T q T s= = = =            (3-23) 

Equations, (2-5b), and, (2-5c), have been used. The specific heat, therefore, in 
4-D space, is equal to 4 times the entropy density, a simple result. We use the 
entries under entropy, column 8, and multiply these by a factor of four to find, 

d dr r rC u T= . Those particular values are entered under column 11 in each of 
the tables. 

For the last entries, column 12, we evaluate the internal energy density gra-
dient, d dru r . The simplest way to do that is to make use of the identity, 

( )( ) ( )d d d d d d d dr r r r r ru r u T T r C T r= =            (3-24) 

We just determined both, rC  and, d drT r . These are given under columns 
11, and 10, respectively. Therefore we multiply the entry in column 10 by the 
corresponding entry in column 11 to obtain the internal energy density gradient, 
d dru r , at a particular radius. These drop off rather dramatically with increas-
ing radius, as can be seen in Tables 1-3, for the three black holes being analyzed. 

4. Radiative Mass, Gravitational Forces, and Entropy as  
Functions of Radius 

We have focused on radiative mass density, internal energy density, radiative 
pressure, heat density, entropy density, temperature, and radiative forces within 
the black hole. These held within specific layers inside the black hole. It is now 
time to consider cumulative effects. What is the total mass contained within an 
enclosing radius, r? What is the total internal energy, the total heat, the total 
gravitational force, the total entropy, etc. enclosed within radius, ? And what are 
the values at the surface, where r R= ? It is now time to consider these ques-
tions. We gave an answer to these questions in a previous paper but these held 
for a truncated Gaussian distribution. We wish to formulate answers but ones, 
which now hold for a truncated exponential. The goal is to compare results, and 
see what the similarities and differences are. 

We will follow the same format as in reference [2]. We investigate the same 
variables, and give similar tables, which will summarize our results. In the next 
section we will compare what we discover here with what was determined in 
paper [2], where we had a different pdf. Just like in the previous paper, we con-
struct three Tables 4-6, at the end of the references. Table 4 holds for black hole 
A, which has one solar mass. Table 5 and Table 6 refer to black holes Table 2 
and Table 3, respectively. They have masses 10 times, and 106 times, the mass of 
the sun. 

We start with the cumulative distribution function (cdf), defined by Equation, 
(2-10). For the pdf under consideration, the exponential distribution, the integral 
gives Equation, (2-19). We know the values for R and λ  as these are fixed in 
Equations, (2-16), and, (2-23), for the three black holes under investigation. 
Therefore it is straightforward to calculate the cdf, CDF

rF , using Equation, 
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(2-19). The results are presented under column 2 in each of the Tables 4-6. 
Moreover, from Equation, (2-11), we also can calculate the radiative mass from 

0r =  up to, and including, radius, r. We simply multiply the total mass, which 
is given, by the appropriate cdf value. These results are presented under column 
3 in each of the tables. 

The radiative energy at radius, r, is also quite simple. We know that the radia-
tive energy at radius r, between r and dr r+ , must equal  

2d d d dr r r r r r rE e V e A r c A rρ= = = . The d rV  is the infinitesimal volume asso-
ciated with that layer. This infinitesimal energy contribution can be integrated to 
find the radiative energy, up to, and including radius, r. The result is, using Equ-
ations, (2-13), (2-10), and (2-11), 

2 2 2
0 0

d d
r r

r r r R r rE c A r M c f r M cρ= = =∫ ∫            (4-1) 

All quantities are 4-D, and we have dispensed with the superscripts (4) over 
the individual entities. As expected, the total radiative energy up to a particular 
radius is simply, 2

rM c . 
The total radiative energy is not entered under any specific column. Rather, 

we focus on the constituent parts, which are the internal energy, rU , the heat 
energy, rQ , and the work done against radiative pressure, rW , which has to be 
contained by gravity. The sum of these three contributions will give us,  

2
r rE M c= . In 4-D space we found that [2], 

24
10r rU M c= , 21

2r rQ M c= , 21
10r rW M c=       (4-2) 

The factors of 
4

10
, 5

10
, and, 1

10
, in all these relations remain the same,  

whether we consider, a layer, an enclosing volume, or the total volume. The fac-
tors are imposed upon us by the dimensionality of space and the fact that we are 
dealing with blackbody radiation. What is obvious with these relations is the fact 
that the internal energy makes up 40% of the total energy, the trapped heat 
represents 50% of the total energy, and the work done against pressure makes up 
10% of the total. In 3-D space, the proportions would be different. In three  

dimensions, the corresponding proportions would be, 3 37.5%
8
= , 4 50%

8
= , 

and, 1 12.5%
8
= . 

The values for, rU , rQ , and, rW , are entered under columns 4, 5, and, 6, 
respectively in each of the Tables 4-6. Again their sum equals, 2

r rE M c= , as 
we are assuming that all contributions make up the mass of the black hole. What 
holds the black hole together under radiative forces, which wants to blow it out, 
is gravity. This provides the surface tension necessary to contain the enclosed 
radiation. As was shown in a previous work, the 4-D hydrostatic equation reads 

( ) ( ) ( ) ( ) ( )4 4 4 4 43d d 3r r r r rp r G M r p rρ= − −            (4-3) 

The net radiative pressure pushing out is balanced by the gravitational force 
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pulling in. The second term on the right hand side takes into account the change 
in areas between the upper part of the layer and the lower part. Equation, (4-3), 
holds for each layer making up the 4-D black hole. See references [2] for more 
details. 

We next focus on the gravitational force. Equation, (4-3), will be our starting 
point. We know from Equations, (3-10), and, (3-8), that 

( ) ( ) ( )e R r
r r R R r r R Rp A p A A A λρ ρ −= =             (4-4) 

We take the derivative of the first and last part of this equation with respect to 
radius, and find 

( ) ( ) ( )d d d d e R r
r r r r R Rp r A p A r p A λλ −+ = −            (4-5) 

We next divide the left hand side of Equation, (4-5), by the left hand side of 
Equation, (4-4). We do the same for the right hand side. This allows us to write, 

( )1 d d 1 d dr r r rp p r A A r λ+ = −            (4-6) 

However, in 4-D space, 2 32πrA r= , and thus, 2 2d d 6πrA r r= . Therefore, we 
can simplify Equation, (4-6), to 

( )d d 3r rp r r pλ= − +                      (4-7) 

This we substitute into Equation, (4-3), to obtain 

( ) ( )4 33 3r r r r rr p G M r p rλ ρ− + = − −            (4-8) 

The second terms on both left and right hand sides cancel. Our next step is to 
recognize that, 

 2 210r r re c p cρ = =                      (4-9) 

The second equality in Equation, (2-4), has been utilized to obtain the final 
equality. We also substitute this expression into Equation, (4-8), in order to 
eliminate the rρ  term. This allows us to write, after we cancel the rp  term, 

( )4 2 30.1r rG M c rλ=  (TE)               (4-10) 

This is a remarkably simple expression, and shows us that the 4-D gravita-
tional “constant” is not a constant. In fact, this expression is quite similar to that 
obtained for the truncated Gaussian distribution in reference [2]. There we had, 
as a corresponding expression, 

( )4 2 4 20.1r rG M c r σ=  (TG)              (4-11) 

We notice a certain degree of similarity. The difference is in the power law. In 
Equation, (4-10), ( )4

r rG M  is proportional to 3r , whereas Equation, (4-11), it is 
proportional to 4r , for a given size (mass) black hole. The ( )4

r rG M  values, as 
calculated in Equation, (4-10), are tabulated under column 7 for each of the 
black holes under consideration, in Tables 4-6. Also listed in the tables, under 
column 8, are the ( )4

rG  values as calculated using Equation, (4-10). It is clearly 
seen that ( )4

rG  varies with 4-D radius, which seems to be a feature of 4-D space. 
The units are also different. 

We specialize Equation, (4-10), to r R= . At the event horizon,  
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( )4 2 30.1R RG M c Rλ=  (TE)              (4-12) 

Using the Schwarzschild relation, 22 RR GM c= , this equation can be recast 
in the form, 

( )4 20.2RG G Rλ=  (TE)                (4-13) 

There will be a sharp discontinuity in the gravitational constant from its 3-D 
value, G, which is Newton’s constant, to a new value, ( )4

RG , upon entering 4-D 
space. It will turn out that, 20.2 1Rλ ≠ . From the tables, it is seen that,  

( )4
RG G� . We have listed ( )4

rG  under column 8. This drastic and abrupt in-
crease in gravitational coupling “constant” when entering 4-D space has to do 
with the discontinuity of space itself. Even though the radius does not change, 
the surface area, and volume do. Therefore many quantities upon entry into the 
4-D black hole experience a sharp discontinuity. The temperature decreases ab-
ruptly. So do the internal energy density, the radiative pressure, the heat density, 
etc. We referred to this as our waterfall model, and the details are explained in 
reference [1]. 

For the truncated Gaussian distribution, detailed in reference [2], we had a 
similar state of affairs. We found that at, r R= , the counterparts to Equations, 
(4-12), and (4-13), are, 

( )4 2 4 20.1R RG M c R σ=  (TG)           (4-14) 

And, 
( )4 3 20.2RG GR σ=  (TG)             (4-15) 

Except for the power law, we see a certain similarity between these Equations, 
and Equations, (4-12), and, (4-13).  

We next derive a surprising result. As shown in reference [2], utilizing a 4-D 
version of Gauss’ law, we saw, quite generally, that the gravitational acceleration 
within the black hole, reduced to, ( )4 3

r r rg G M r= − . Spherical symmetry was 
assumed in 4-D space. If we substitute Equation, (4-10), into this expression, we 
obtain, 

( )4 3 20.1 a constantr r rg G M r c λ= − = − =  (TE)      (4-16) 

A test particle within the 4-D black hole will thus experience the same gravita-
tional force, irrespective of radius! Moreover, the exponential shape parameter, 
which depends only on the mass, or size, of the black hole, will determine its 
numerical strength. This holds true only for the truncated exponential distribu-
tion. Even though the acceleration due to gravity is a constant for the truncated 
exponential distribution (TE), we have listed them under column 9 for each 
black hole being analyzed in Tables 4-6. This is to emphasize a point, but also to 
show the differences between the various masses. 

For the truncated Gaussian distribution, we had quite another result. There, 
we obtained, 

( )4 3 2 20.1r r rg G M r c r σ= − = −          (TG) (4-17) 
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which is proportional to, r, for a given size (mass) black hole. The gravitational 
acceleration increased linearly with radius in 4-D space, even though the radia-
tive mass density was not a constant. What we see with these two examples is 
that the pdf chosen will determine the gravitational “packing” within the black 
hole, i.e., how radiative mass is stored, and contained within the black hole. 

We have already mentioned that at the 3-D/4-D interface, which is at the sur-
face, or event horizon, of the black hole in our model, we can expect discontinu-
ities. This holds true for the gravitational acceleration as well. We consider the 
gravitational acceleration at the event horizon, where r R= . Using Equations, 
(4-16), and, (4-17), we notice that 

20.1Rg c λ= −  (TE) 2 20.1Rg c R σ= −  (TG)      (4-18) 

These values can be compared to the acceleration due to gravity on the 3-D 
side. There we would obtain, ( )3 2 20.5R Rg GM R c R= − = − , where in the 
second equality, we have used Schwarzschild relation. It is clear that all three 
values are different, and unique. None can be made to equal the other, and so, 
we have a discontinuity. 

We next turn to the gravitational potential, rϕ . This is a four dimensional 
quantity which depends on radius, r. The defining equation is 

0 0
d

r
r rg rϕ ϕ− = −∫                      (4-19) 

The constant of integration will be fixed by setting the gravitational potential 
in 4-D space equal to that in 3-D space at the event horizon. In this way we can 
guarantee for the same equipotential surface in both spaces. 

For the truncated exponential distribution, we saw that the gravitational acce-
leration within a specific black hole is just a constant. Refer to Equation, (4-16). 
The integral thus becomes trivial, and we obtain, 

( )( )2
0 0.1r c rϕ ϕ λ=−                   (4-20) 

This becomes, at radius, R, 

( )( )2
0 0.1r c Rϕ ϕ λ=−                   (4-21) 

We demand that, ( ) ( )4 3
R R RGM Rϕ ϕ= = − . This gives 

( )2 2
0 0.1 0.5Rc R GM R cϕ λ+ = − = −            (4-22)  

For the last equality, the Schwarzschild relation was used. Therefore, putting 
all this together, we obtain for the constant of integration, 

 ( ) ( )2
0 0.5 0.1 1 0.2Rc R GM R Rϕ λ λ= − + = − +         (4-23) 

This we substitute into Equation, (4-20), and simplify. The final result for the 
gravitational potential is thus, 

 ( )2
0 0.1 1 0.2r Rc r GM R R rϕ ϕ λ λ= + = − + −    (TE) (4-24) 

We note that at, r R= , we obtain the three dimensional result. Also, as the 
radius decreases, the gravitational potential becomes more and more negative. 

Equation, (2-24), can be compared to the corresponding truncated Gaussian 
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result, worked out in reference [2]. There we found that 

( ) ( )2 2 21 0.1r RGM R R rϕ σ= − + − 
   (TG)           (4-25) 

Upon comparing results, there is a certain similarity in that solutions match at 
the 3-D/4-D interface, and the gravitational potential becomes more and more 
negative as the radius decreases. But there the similarity ends as we have, in Eq-
uation, (4-24), an entirely different function. 

We have tabulated the values for the gravitational potential, using Equation, 
(4-24), for various radii. These values are given under column 10, in Tables 4-6. 
All that was needed were the total radii, and the shape parameters, for each of 
the black holes we are investigating. These values were specified in Equations, 
(2-16), and, (2-23). 

We have two more column entries, columns 11 and 12. Under column 11 we 
calculate the gravitational force at particular radii, and under column 12, we give 
the entropy, also as a function of radius. We first consider the 4-D gravitational 
force. Within a layer between, r, and, dr r+ , we have a well-defined gravita-
tional force acting on that layer, 

( ) ( )( )2
,d d 0.1 dG r r r rF g M c Mλ= = −            (4-26) 

Equation, (4-16), was used. To find the total gravitational force at a specific 
radius, we integrate this expression, and find, 

2 2
, 0

0.1 d 0.1
r

G r r rF c M c Mλ λ= − = −∫            (4-27) 

From this equation, we see that the gravitational force at radius, r, is simply 
proportional to the radiative energy enclosed within that radius, 2

rM c . The 
shape parameter determines the constant of proportionality. That the gravita-
tional force should be proportional to rM  is not surprising, but that it depends 
on little else is. In fact, a force which is proportional to stored energy is very un-
usual. The gravitational force is listed under column 11 in Tables 4-6. We only 
need the rM  values, given under column 2, and the shape parameters, speci-
fied by Equations, (2-16). 

For a truncated Gaussian or Normal distribution, the corresponding expres-
sion for the gravitational force was somewhat different. There we needed the 
4-D radiative force at the surface, RF . The expression for the gravitational force 
was [2], 

( )( ) ( )( )

( ) ( )( )

( ) ( )

( ) ( )
( )2 2 22 2

2 2
,

2 2

2 2
2 2

2

2 2

0 0

0

0

0
2 2

2

22

d 0.1 d

0.1 d

0.1 exp d
2

0.1 exp d
2

  e e

G r r r r R r

R

r r

r
r

R R

R R

R rR
R

r

r

F g A r c r M f r

M c r f r

R rM c r f r

R rM c f r r

F
σσ

ρ σ

σ

σ
σ

σ
σ

−

= = −

= −

  −
= −      

  −
= −      

= − 
  

−

∫ ∫

∫

∫

∫

 (TG)    (4-28) 
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As stated, ( ) ( )4 4
1R RF p A= , is the 4-D radiative force just inside the black hole, 

at radius, R. This radiative force can be calculated. We find, using the arguments 
of reference [2], 

( ) ( ) ( ) ( ) ( )

( )

( ) ( )
( )( )

4 4 4 3 3
1 2

3 2
2

43 2

416 2

13 2

0.8

0.8 3 4π

32π 30 2.725

16π 15 7.5657 10 2.725

1.398 10

R R R RF F p A p A

u R

a R

R

R

−

−

= = =

=

=

= ×

= ×

×

(ISBH)      (4-29) 

Equation, (4-29), holds for an isolated static black hole (ISBH), and all quanti-
ties are in the MKS system of units. Using Equation, (4-29), we can determine 
the gravitational force, in Equation, (4-28). Even though Equation, (4-29), holds 
technically only for an isolated, static black hole, it can also be applied with a 
new temperature, 2 2.725 KT > , for a dynamic situation, when there is net in-
flow. The point is that the gravitational force can be calculated in terms of the 
radiative force, in either scenario. 

We next compare the gravitational forces at the event horizon, where, r R= , 
for both the exponential distribution and the Gaussian distribution. We focus on 
a static situation. For the truncated exponential distribution, we use Equation, 
(4-27), and for the truncated Gaussian distribution, we use Equation, (4-28), 
with Equation, (4-29). For the former we obtain, 

2
, 0.1G R RF M c λ= −  (TE)                (4-30) 

For the latter, we find, 
2 22

, e 1R
G R RF F σ = − −   (TG)             (4-31) 

We evaluate numerically both sets of values for each of the black holes under 
consideration. We have the radii specified in Equations, (2-16) . The λ  values 
are indicated in Equations, (2-23). We also have the σ  values specified for each 
of the black holes in Equations, (3-14). Numerically, the results are, 

( ) ( )44 44 44
, , ,, , 7.07 10 ,6.79 10 ,5.38 10 NewtonsA B C

G R G R G RF F F = × × ×  (TE) (4-32) 

These forces are for the truncated exponential. For the truncated Gaussian, 
the corresponding calculations give, 

( ) ( )43 45 43
, , ,, , 7.30 10 ,7.16 10 ,6.36 10 NewtonsA B C

G R G R G RF F F = × × ×  (TG) (4-33) 

Upon comparing these two sets of results, we notice that they are comparable 
in value. 

Finally, let us consider the entropy. There are many ways to calculate the en-
tropy, ( )4

r RS S= , as a function of radius. Perhaps the most direct way is to use 
Equation, (3-11). First, we recognize that within a particular layer, between r and, 

dr r+ , the entropy amounts to, d d dr r r r rS s V s A r= = , where, 2 32πrA r= , is 
the 4-D surface area. If we multiply Equation, (3-11), by r RA A , we obtain 
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( ) ( ) ( ) ( ) ( ) ( )3 12 5 3 50.8 0.8 e eR r R r
r r R Rs A s A r R R r r Rλ λ− −= =       (4-34) 

We next integrate both the left and right hand sides over dr. The result is, 

( ) ( ) ( )3 0.8

0 0
d e d

r r R r
r r R Rs A s A r r R rλ −=∫ ∫  

( )[ ] ( )
8

3 5 0.850
1 8 31 5 5 ,0.8 3 e

4 5 5
R

R R rs A S S R r λλ
λ

      − = − Γ − Γ            
 (4-35) 

In this equation, ( ),s xΓ , is the upper incomplete gamma function, and, 
( )sΓ , is the regular gamma function. We set our constant of integration, 0S , 

equal to zero since, at 0r = , we can assume no entropy. 
We next multiply Equation, (4-35), through by R Rs A , and simplify to obtain, 

( )8 52 12 5 0.88 3 32π 5 4 ,0.8 e
5 5 5

R
r RS s R r λλ λ    = − Γ − Γ        

      (4-36) 

We have values for, ,Rs R , and, λ , for each of the black holes being ana-
lyzed. Refer to Equations, (3-6), (2-16), and, (2-23), respectively. Therefore, rS , 
can be evaluated as a function of radius for each of the black holes in question. 
We have listed the rS  entries under column 12 in Tables 4-6, for the specific 
radii indicated under column 1. 

We can specialize to, r R= , and compare these values for entropy. We find, 
upon referring to the last row in Tables 4-6, that the following values for total 
entropy hold. 

 ( ) ( )36 40 46, , 4.01 10 ,1.65 10 ,1.99 10 Joules KA B C
R R RS S S = × × ×  (TE) (4-37) 

These values are very low when compared to the Bekenstein entropy [15] [16] 
[17], just as in the truncated Gaussian case. This would seem to suggest that, if 
this model is correct, the black hole is a highly ordered state. This is very con-
trary to what is commonly thought. 

We have calculated the entropy using our truncated Gaussian distribution. As 
seen in reference [2], we obtained,  

( ) ( )

( ) ( )

2

2

2

2

23 29
8 55 55

2

23 29
8 55 55

2

4 2 45 2 , e
5 55

4 25 2 , e
5 5

R

r R R

R

R R

rS F T R

rF T R

σ

σ

σ
σ

γ σ
σ

−

−

    = − Γ −Γ    
    

 
= +  

 

 (TG) (4-38) 

here, ( ) ( ) ( ), , 0s x s s xγ = Γ −Γ > , is the lower incomplete gamma function. We 
notice that the term within the brackets on the right hand side of Equation, 
(4-36), involving the gamma functions, cannot be simplified. But here, in Equa-
tion, (4-38), the terms can be combined. Both Equations, (4-36), and, (4-38), are 
rather complicated, but they both give values for the total entropy, which are low. 
Perhaps black holes are indeed, highly ordered objects. The counterpart to Equ-
ation, (4-37), is 

( ) ( )37 40 46, , 1.63 10 ,6.59 10 ,7.24 10 Joules KA B C
R R RS S S = × × ×  (TG) (4-39) 
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This holds for a truncated Gaussian, and these results are obtained using Equ-
ation, (4-38). When compared to Equation, (4-37), we see that these values are 
comparable. They are however, definitely larger in value. It is well known that 
the truncated Gaussian has the maximum mathematical entropy of all probabil-
ity distribution functions. This holds true with support, [ ]0,r R∈ , or without. 

5. Discussion of Results 

Now that the values have been evaluated, and entered into the tables, it is time to 
compare results. We start with Tables 1-3. We consider values at 0.01r R= , 
and compare those values to the corresponding quantities at the surface. The ra-
dius, 0.01r R= , is close to the core, and it will be insightful to compare those 
values to surface values. We will also give, right next to the truncated exponen-
tial values, the corresponding truncated Gaussian values. This will enable us to 
make further comparisons. 

We start with temperature. Ultimately, for a black body, everything depends 
on temperature. This includes the internal energy density, the radiative pressure, 
the radiative forces, the heat density, the entropy density, etc.. These quantities 
are, by and large, some factor times the temperature taken to the fifth power. 
Entropy density is an exception, as well as radiative force. The temperature, 

0.01RT , holds at 0.01r R= , whereas, 1 RT T= , is the temperature at the surface, 
just inside the black hole. The superscripts A, B, and, C, refer to the three specif-
ic black holes under consideration. The corresponding Tables 1-3. Resorting to 
the tables, we find (all temperatures are in K) 

10
0.01

9 2
0.01

6 3
0.01

, 2.05 10 ,0.115

, 5.16 10 ,7.26 10

, 5.16 10 ,7.26 10

A A
R R

B B
R R

C C
R R

T T

T T

T T

−

−

   = ×   
   = × ×   
   = × ×   

(TE)          (5-1) 

We see very clearly that the smaller the black hole (lessor mass), the higher the 
core temperature. Equations, (5-1), can be compared to the corresponding val-
ues for a truncated Normal distribution. These values were worked out in refer-
ence [2], and referring to those tables, we had 

10
0.01

9 2
0.01

6 3
0.01

, 1.64 10 ,0.115

, 4.11 10 ,7.26 10

, 4.02 10 ,7.26 10

A A
R R

B B
R R

C C
R R

T T

T T

T T

−

−

   = ×   
   = × ×   
  = × ×    

(TG)         (5-2) 

The surface temperatures are the same as in Equations, (5-1). The core tem-
peratures are comparable, but less than in relations, (5-2). The least massive 
black holes have the highest core temperatures. 

Another quantity we focus on as it relates to Tables 1-3, is radiative force, rF . 
The radiative force, 0.01RF , will refer to the radiative force at, 0.01r R= , whe-
reas, RF , is the value at the surface. The superscripts refer to the black holes be-
ing analyzed. The radiative force can be calculated, using,  
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2 32πr r r rF p A p r= = . The pressure values are entered under column 4, and we 
multiply the pressure by the 4-D surface area to find the rF  values. We find 

44 6
0.01

44 4
0.01

44 6
0.01

, 2.20 10 ,1.22 10

, 2.22 10 ,1.22 10

, 2.22 10 ,1.22 10

A A
R R

B B
R R

C C
R R

F F

F F

F F

−

−

+

   = × ×   
   = × ×   
   = × ×   

(TE)         (5-3) 

All forces are measured in Newtons. As is plain to see, the radiative forces are 
close to zero at the surface but quite substantial at the core. In fact, at the core, 
they have almost identical values. 

Equations, (5-3), can be compared to the corresponding values for a truncated 
Normal distribution. Those values are found in the same manner, and referring 
to the tables in reference [2], we obtain, 

43 6
0.01

43 4
0.01

43 6
0.01

, 7.23 10 ,1.22 10

, 7.08 10 ,1.22 10

, 6.31 10 ,1.22 10

A A
R R

B B
R R

C C
R R

F F

F F

F F

−

−

+

  = × × 
  = × × 
  = ×

  
  

×    

(TG)         (5-4) 

The surface radiative forces are the same as in Equations, (5-3). The core val-
ues are likewise very close to each other, irrespective of the size (mass) of the 
black hole. The core radiative forces in Equations, (5-4), are less than those in-
dicated in Equations, (5-3). 

We next proceed to Tables 4-6. These quantities are cumulative in nature, i.e., 
they hold from, 0r = , up to, and including, some finite value for r. We start 
with radiative mass. Using the same conventions as before, and referring to the 
Tables 4-6, we find, 

30 30
0.01

31 31
0.01

36 36
0.01

, 1.37 10 ,1.99 10

, 1.34 10 ,1.99 10

, 1.17 10 ,1.99 10

A A
R R

B B
R R

C C
R R

M M

M M

M M

  = × ×  
  = × × 
  = × × 


  
  

(TE)         (5-5) 

These masses are in, kg. Upon comparing the core values to the surface values, 
we notice something surprising. The core values are exceedingly large in relation 
to the total mass. Within one percent of the radius, we already have the follow-
ing proportions of the entire (total) mass. 

( ) ( )1.37 1.99,1.34 1.99,1.17 1.99 69%,67%,59%= (TE)    (5-6) 

These proportions are quite high but then we are dealing with an exponential 
distribution, where the concentration is very near the center. This is the distri-
bution which comes closest to mimicking a singularity at the center. It comes 
close to being singular but still is finite at, 0r = , as can be seen from equation, 
(2-18). If we set 0r =  in this equation, then, ( )0 1 e Rf λλ −= − . Even though 
this value is large, it is not infinite. 

The truncated Normal distribution does not come close to packing/concen- 
trating the radiative mass (energy) within such a small volume. As can be seen 
by referring to the tables in reference [2], we have 
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29 30
0.01

30 31
0.01

35 36
0.01

, 2.39 10 ,1.99 10

, 2.35 10 ,1.99 10

, 2.09 10 ,1.99 10

A A
R R

B B
R R

C C
R R

M M

M M

M M

  = × ×  
  = × × 
  = × × 


  
  

(TG)            (5-7) 

These values are decidedly less. Here the corresponding proportions are, 

( ) ( )0.239 1.99,0.235 1.99,0.209 1.99 12%,12%,11%= (TG)     (5-8) 

These percentages are still, surprisingly, relatively high, indicating large pack-
ing within the interior, but they are not as high as in Equations, (5-6). 

Another series of entries in Tables 4-6, deal with the gravitational “constant” 
in 4-D space. As we can clearly see, these values are not constant, but radius de-
pendent. See Equation, (4-10). For the truncated Gaussian distribution, we had a 
similar state of affairs, i.e., ( )4

rG  was a function of radius. There the evaluation 
rests on relation, (4-11). Moreover, in both instances, when we transition from 
3-D space, where G is a constant, to 4-D space where it is no longer a constant, 
we find a jump or discontinuity in value. We obtain a dramatic increase in the 
gravitational coupling constant. We have found this condition for many va-
riables because in transitioning from three-dimensional space, to 4-D space, 
there is a break in spatial dimension. In reference [1], this was referred to as a 
“waterfall” model. 

We first give the gravitational coupling in 4-D space using our truncated ex-
ponential distribution. Using the same notation as before, and referring to the 
Tables 4-6, we find, 

12 6
0.01

11 5
0.01

6 0
0.01

, 6.69 10 ,4.61 10

, 6.56 10 ,4.43 10

, 5.95 10 ,3.51 10

A A
R R

B B
R R

C C
R R

G G

G G

G G

− −

− −

−

  
 

  = × × 
  = × × 
  = × ×

 

   

(TE)          (5-9) 

The units are different than their three dimensional counterpart,  
11 2 26.67 10 Newtons m kgG −= × ⋅ . In 4-D space, ( )4

r rG G=  is measured in, 
Newtons∙m3/kg2. We notice that, at the event horizon, we have a sharp increase 
in gravitational coupling upon entering the 4-D space. Second, the gravitational 
coupling decreases substantially as one enters the black holes interior. Thirdly, 
the largest, most massive, black holes have the largest gravitational coupling 
constants. And finally, upon entering 4-D space, the units change. 

We compare the results in Equations, (5-9), with the corresponding values for 
a truncated Gaussian distribution. These were worked out in reference [2], and 
we repeat them here in order to make comparisons. The values obtained there 
were 

13 6
0.01

12 5
0.01

7 0
0.01

, 7.51 10 ,9.04 10

, 7.36 10 ,8.67 10

, 6.53 10 ,6.85 10

A A
R R

B B
R R

C C
R R

G G

G G

G G

− −

− −

−

  
 

  = × × 
  = × × 
  = × ×

 

   

(TG)         (5-10) 

Again, we notice the discontinuous increase in gravitational coupling between 
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masses upon entry from 3-D space. Again, the gravitational coupling decreases 
as one enters the interior. And, as before, the largest, most massive black holes 
have the strongest gravitational couplings. The units for gravitational coupling 
also change when entering 4-D space from 3-D space. The values here depend 
on the Gaussian shape parameter, σ . Comparatively, the results in equations, 
(5-9), and, (5-10), are quite similar, although Equations, (5-10), have somewhat 
stronger values at the surface. Close to the core, however, the exponential dis-
tribution gives larger rG  values. This comes as no surprise because the mass 
concentration is more intense there. 

Next, we look at the gravitational acceleration. For a truncated exponential 
distribution, the surprising result is that it is a constant throughout the black 
hole. Therefore, referring to the Tables 4-6, we find that 

14 14
0.01

13 13
0.01

8 8
0.01

, 3.56 10 , 3.56 10

, 3.41 10 , 3.41 10

, 2.71 10 , 2.71 10

A A
R R

B B
R R

C C
R R

g g

g g

g g

   = − × − ×   
   = − × − ×   
   = − × − ×   

(TE)     (5-11) 

For black holes with larger mass, the gravitational acceleration does decrease. 
However, for a specific mass, this value is uniform. We compare this to the cor-
responding values if one were to use a truncated Normal distribution instead. 
Employing the tables in reference [2], we notice that 

12 14
0.01

11 13
0.01

6 8
0.01

, 6.97 10 , 6.97 10

, 6.69 10 , 6.69 10

, 5.28 10 , 5.28 10

A A
R R

B B
R R

C C
R R

g g

g g

g g

  
 

  = − × − × 
  = − × − × 
  = − × − × 

 
  

(TG)     (5-12) 

Here, obviously, the values are not constant within the black hole. The gravi-
tational acceleration does decrease, as one decreases the 4-D radius. When Equ-
ation, (5-12), is compared to Equation, (5-11), we see that the values at the sur-
face are comparable. However within the interior, we have far lessor values for 
gravitational acceleration if the distribution is Gaussian versus exponential. For 
the truncated Gaussian, the gravitational acceleration is proportional to radius, r, 
as can be seen by Equation, (4-17). 

We focus on two more sets of entries. The first is the gravitational force, ,G rF , 
at radius r. 

Referring to the Tables 4-6, we see that 
44 44

,0.01 ,

44 44
,0.01 ,

44 44
,0.01 ,

, 4.88 10 ,7.07 10

, 4.58 10 ,6.79 10

, 3.17 10 ,5.38 10

A A
G R G R

B B
G R G R

C C
G R G R

F F

F F

F F

  = × × 
  = × × 
  = × ×

 
  

    

(TE)        (5-13) 

All values are in, Newtons. Looking at these values, we notice that there is very 
little variation. In fact, in terms of percentages, the core values are a substantial 
part of the total gravitational force at the surface. We have 

( ) ( )4.88 7.07 ,4.58 6.79,3.17 5.38 69%,67%,59%= (TE)     (5-14) 
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These are the same percentages as in Equations, (5-6), which hold for the ra-
diative mass. That the two are proportional is not surprising. That the core val-
ues are a high percentage of the total is. The gravitational force at the surface is a 
major contribution to the surface tension, as shown in reference [1]. 

We compare this to the corresponding expressions for the truncated normal 
distribution. Referring to the Tables 4-6, in reference [2], we find that 

41 43
,0.01 ,

43 45
,0.01 ,

41 43
,0.01 ,

, 8.32 10 ,7.30 10

, 7.83 10 ,7.16 10

, 5.50 10 ,6.36 10

A A
G R G R

B B
G R G R

C C
G R G R

F F

F F

F F

   = × ×   
   = × ×   
   = × ×   

(TG)        (5-15) 

With the exception of black hole B, these values are weaker than the above. 
Also the percentages are far smaller if we compare the core values with the sur-
face values. Setting up the ratios, we obtain, 

( ) ( )0.0832 7.30,0.0783 7.16,0.055 6.36 1.14%,1.09%,0.865%=  (TG) (5-16) 

These values seem reasonable, given that the core radius is 1% of the surface 
radius. We are not sure why black hole, B, has a much greater gravitational force 
both within, and on the surface, when compared to the other values. The entries 
have been checked more than once, and we find the same results. This anomaly 
of the truncated Gaussian must have an explanation, but one which is not ob-
vious.  

Finally, we consider the entropy, rS . Using our by now familiar formalism, 
for a TE distribution, we find, 

36 36
0.01

39 40
0.01

45 46
0.01

, 1.46 10 ,4.01 10

, 5.75 10 ,1.65 10

, 5.29 10 ,1.99 10

A A
R R

B B
R R

C C
R R

S S

S S

S S

   = × ×   
   = × ×   
   = × ×   

(TE)        (5-17) 

The units are in, Joules/K. We see that the largest, i.e., most massive black 
holes have the highest entropies. But when compared to the values, as predicted 
by Bekenstein, these values are very low. Bekenstein calculates the entropy as an 
intrinsic (surface dependent), versus extrinsic (volume dependent) variable. His 
formula for entropy is, ( ) ( )( )3 2

Bekenstein 1 4 4πBS c k G R= � . Using this formula, 
the entropy at the surface would calculate to, ( )54 56 661.50 10 ,1.50 10 ,1.50 10× × × , 
all in Joules/K, for black holes A, B, and, C, respectively. When compare to the 
surface values in Equations, (5-17), we notice that our values are exceedingly low. 
As mentioned, our values would seem to indicate that black holes are much 
more highly ordered states, than what is commonly thought. 

It is also noteworthy to mention that the core values for entropy, in Equations, 
(5-17), are a high percentage of the surface values. This seems to be a pattern for 
the exponential distribution. If we calculate the percentages, we find, 

( ) ( )1.46 4.01,5.75 16.5,5.29 19.9 36%,35%,27%= (TE)        (5-18) 

Within the core we already have a substantial proportion of the total black 
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hole entropy. 
For comparison purposes, we also give the corresponding values for a trun-

cated Gaussian distribution. Referring to the tables in reference [2], we obtain 
35 37

0.01

39 40
0.01

45 46
0.01

, 4.08 10 ,1.63 10

, 1.60 10 ,6.59 10

, 1.45 10 ,7.24 10

A A
R R

B B
R R

C C
R R

S S

S S

S S

  = × ×  
  = × × 
  = × × 


  
  

(TG)        (5-19) 

These values are comparable to the above, as indicated by Equations, (5-17). 
And they are also very much less than the Bekenstein entropy values calculated 
above. In terms of percentages, the core values here are very much less than the 
surface values. In fact, we find using the numbers in Equations, (5-19), that  

( ) ( )0.0408 1.63,0.160 6.59,0.145 7.24 2.5%,2.4%, 2.0%= (TG) (5-20) 

When compared to the corresponding percentages in Equations, (5-18), we 
notice a large difference. For a truncated Gaussian, the entropy is not concen-
trated disproportionately at the center. 

6. Conclusion 

Summarizing, by studying various pdf’s, we have a rich structure by which to 
analyze and explore various scenarios for the internal structure of a black hole. If 
we accept this model of a 4-D spatial ball for a black hole filled with black body 
radiation (and potentially other forms of radiation), we can investigate various 
unique characteristics within the black hole. These characteristics within the 
black hole will lead to specific surface conditions which can be measured from 
our 3-D perspective. We are thinking of surface forces, surface entropy, surface 
acceleration, etc., attributes, which will define which pdf is best suited for mod-
eling the interior. In this way valuable insights can be gained, and perhaps, fi-
nally, a complete picture as to what is happening within the black hole, and with 
space itself. This concludes our discussion. 
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