
Creative Education, 2019, 10, 1745-1752
http://www.scirp.org/journal/ce

ISSN Online: 2151-4771
ISSN Print: 2151-4755

DOI: 10.4236/ce.2019.107124 Jul. 31, 2019 1745 Creative Education

Analysis of Several Difficult Problems in
Assembly Language Programming

Wenbing Wu

Fuzhou University of International Studies and Trade, Fuzhou, China

Abstract
In assembly language teaching process, Some problems in assembly language
programming are difficult to explain. In order to improve the quality of teach-
ing, the best way is to verify them by experiments. This paper is an experi-
mental verification of several main problems encountered in the teaching
process, and gives a detailed explanation. This paper includes the specific al-
location of memory in runtime, the calculation of transfer address in transfer
instruction, the differences between hard interrupt and soft interrupt. The
purpose of this paper is to provide a clear understanding of the difficult
problems in assembly language programming.

Keywords
Assembly Language, Teaching, Address Assignment, Interrupt

1. Introduction

Assembly language is a programming language directly oriented to processors.
The processor works under the control of instructions. Each instruction that the
processor can recognize is called a machine instruction. Each processor has its
own set of instructions that can be recognized, called instruction set. When the
processor executes instructions, it takes different actions according to different
instructions and completes different functions. It can not only change its inter-
nal working state, but also control the working state of other peripheral circuits
(Wang, 2013).

Because assembly language has the characteristic of “machine dependence”,
when programmers write programs in assembly language, they can fully arrange
various resources within the machine, so that they are always in the best use
state. The program written in this way has short execution code and fast execu-
tion speed. Assembly, language is one of the most closely related and direct pro-

How to cite this paper: Wu, W.B. (2019).
Analysis of Several Difficult Problems in
Assembly Language Programming. Crea-
tive Education, 10, 1745-1752.
https://doi.org/10.4236/ce.2019.107124

Received: May 21, 2019
Accepted: July 28, 2019
Published: July 31, 2019

Copyright © 2019 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

 Open Access

http://www.scirp.org/journal/ce
https://doi.org/10.4236/ce.2019.107124
http://www.scirp.org
https://doi.org/10.4236/ce.2019.107124
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

W. B. Wu

DOI: 10.4236/ce.2019.107124 1746 Creative Education

gramming languages with hardware and the highest efficiency in time and space.
It is one of the compulsory courses of computer application technology in Col-
leges and universities. It plays an important role in training students to master
programming technology and familiarize themselves with computer operation
and program debugging technology. This paper is the author’s teaching of as-
sembly language course. Several difficult problems encountered here are written
for your reference.

2. Assignment of Program Space in Assembler Runtime

Storage space allocation is needed when assembler runs, which is done by the
operating system. When each assembler runs, it first allocates a segment prefix
PSP, because DOS uses PSP to communicate with the loaded program.

PSP is 256 bytes, as shown in Figure 1. When the executable file is generated
to a certain extent, the program is first transferred into memory when it is ex-
ecuted. At this time, the segment address of the program stored in memory is
stored in DS. PSP occupies the first 256 bytes of DS:0000H segment. The con-
tents are some instructions of the program, such as how much space the pro-
gram occupies, etc. Then the real program address is the program address, and
CS is pointed here, IP. Setting it to 0000, it is for this reason why CS is 10H larg-
er than DS in general.

The following is a practical program to observe this effect.
The program of Figure 2 runs in DEBUG step by step as shown in Figure 3

and Figure 4. From the execution process of Figure 3, it can be seen that the
address space of the program starts from 075A:0000, followed by the program
segment prefix PSP of 256 bytes, followed by the data segment. The address
space starts from 076A:0000, the data segment size is 16 bytes, then the stack
segment of 16 bytes, and the address space starts from 076B:0000. The address
space starts at 076C:0000. Through the above experiments, it can be clearly ex-
plained to students how the address space of an assembly language program is

Figure 1. PSP.

https://doi.org/10.4236/ce.2019.107124

W. B. Wu

DOI: 10.4236/ce.2019.107124 1747 Creative Education

Figure 2. Assembly programme 1.

Figure 3. The running result 1 of assembly programme 1.

Figure 4. The running result 2 of assembly programme 1.

https://doi.org/10.4236/ce.2019.107124

W. B. Wu

DOI: 10.4236/ce.2019.107124 1748 Creative Education

actually allocated in memory. For example, the following information can be
obtained from the above run result graph: when a program has just been loaded
into memory and has not yet started running, the DS register stores the starting
address of the program segment prefix of the program, and this is the beginning
address of the program segment prefix. The address is assigned by the DOS op-
erating system. If the definition order of data segment and stack segment in the
program is changed, that is to say, the green part of the above code is put in
front of the red code segment, and run as shown in Figure 4. Compared with
Figure 3 and Figure 4, it can be seen that after changing the order, the program
runs only to change the allocation order of the address of the data segment and
the stack segment, but the address allocated by the data segment and the stack
segment has not changed.

3. Address Calculation of Jump Instructions

The program is shown in Figure 5. The result of this program is shown in Fig-
ure 6. As can be seen from Figure 6, the instruction mov ax, 4c00h; the function
of int 21h is simply to point the IP pointer to their next instruction: start: mov
ax, 0.

Using disassembly instructions, Figure 7 is obtained for the above programs.
As can be seen from the figure, the physical address of label S1 is 076A:0018H,
the physical address of label S2 is 076A:0020H, and the instruction machine code
of instruction s2:jmp short S1 is EBF6, in which the meaning of EB is jmp, and
F6 represents the jump distance of the instruction. The distance value is calculated
as follows: when the CPU reads in the machine code EBF6, the content of its IP
pointer points to the next instruction nop. Its physical address is 076A:0022H,
and the distance from the address to the physical address 076A:0018H of the la-
bel S1 is 10 (decimal system). Because it is a jump up, its value is negative. The

Figure 5. Assembly programme 2.

Figure 6. The running result 1 of assembly programme 2.

https://doi.org/10.4236/ce.2019.107124

W. B. Wu

DOI: 10.4236/ce.2019.107124 1749 Creative Education

Figure 7. The running result 2 of assembly programme 2.

complement of decimal system-10 is F6, and its address calculation is derived
from 0022H + F6H = 0018H.

076A:0009 memory cells, and their machine codes are 90H, as shown in Fig-
ure 8. Then one-step running of the above program, when running to the in-
structions mov cs:[di], ax, as shown in Figure 9, the contents stored in the sto-
rage units 076A:0008 and 076A:0009 are programmed with EBF6, as shown in
Figure 10. Continue to run instruction s0:jmp shorts, then CS and IP become
076A:0008H, then CPU reads machine code EBF6, then IP becomes 0010H. Ac-
cording to the above address jump calculation method, it is concluded that when
machine code EBF6 is executed, IP will become 0000H, so the instruction mov
ax, 4c00h, int 21h will be executed again, and when the instruction is executed
again, the whole program will jump out of the node. Bundle, as shown in Figure
11. It can also be seen from the above process that when the instruction mov ax,
4c00h, int 21h is placed at the beginning of the program, its function is only to
point the IP pointer to the next instruction address of this instruction, but when
this instruction is executed during the execution of the program, it will cause the
IP pointer to jump out of the whole program.

4. The Explanation of Hard Interrupt and Soft Interrupt

Figure 12 is an assembler program that uses keyboard and screen for input and
output. The result is that the number is displayed on the screen when the num-
ber is input from the keyboard, and the “*” number is displayed when other
characters are input. The results are shown in Figure 13.

Internal interruption means that the CPU does not follow the instructions
that have just been executed down, but instead moves on to handle this particu-
lar information. External interruption refers to the CPU in the computer system,
in addition to the ability to execute instructions and operations, but also should
be able to control external equipment, receive their input and output to them.
Statements in the program Mov ah, 7, int 21h belongs to function call No. 7 in
DOS interrupt, which receives keyboard input information and belongs to soft

https://doi.org/10.4236/ce.2019.107124

W. B. Wu

DOI: 10.4236/ce.2019.107124 1750 Creative Education

Figure 8. The running result 3 of assembly programme 2.

Figure 9. The running result 4 of assembly programme 2.

Figure 10. The running result 5 of assembly programme 2.

Figure 11. The running result 6 of assembly programme 2.

https://doi.org/10.4236/ce.2019.107124

W. B. Wu

DOI: 10.4236/ce.2019.107124 1751 Creative Education

Figure 12. Assembly programme 3.

Figure 13. The running result of assembly programme 3.

interrupt. Its process is to find the entry address of interrupt program according
to int 21h instruction. This interrupt program is used to read keyboard input
characters, and the interrupt is triggered by int 21h instruction; instruction in al,
60H is the information read directly into port 60h, and the information of port
60H is the same as that of port 60h. Sample from the keyboard input, the reading
process is still to use the same int 21h instruction pointed to the interrupt service
program, but this call process is triggered by the keyboard keys caused by the
changes in the keyboard internal circuit switch state, belongs to hard interrupt.
The substitution of these three instructions well explains the difference and rela-
tionship between soft interrupt and hard interrupt (Wu, Wang, & Liu, 2009;
Qian, 2004).

Summary: For beginners, assembly language, because of its close combination
with hardware, if their hardware knowledge is not enough, then the course will be
more difficult to grasp; For teachers, some of the concepts are particularly difficult
to explain clearly, This paper makes a preliminary discussion on some difficult
problems in assembly language through examination, including assignment of
program space, address calculation of jump instructions and explanation of hard
interrupt and soft interrupt, hoping that through a few practical examples, it can
be helpful to teachers and students engaged in this teaching work.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this pa-
per.

References
Qian, X. J. (2004). Recognition of Assembly Language. Teaching in China University,

https://doi.org/10.4236/ce.2019.107124

W. B. Wu

DOI: 10.4236/ce.2019.107124 1752 Creative Education

47-49.

Wang, S. (2013). Assembly Language (3rd ed.). Beijing: Tsinghua University Press.

Wu, W., Wang, X., & Liu, X. Y. (2009). Teaching Reform of Assembly Language Pro-
gramming. Journal of Southwest Normal University (Natural Science Edition), 34,
201-204.

https://doi.org/10.4236/ce.2019.107124

	Analysis of Several Difficult Problems in Assembly Language Programming
	Abstract
	Keywords
	1. Introduction
	2. Assignment of Program Space in Assembler Runtime
	3. Address Calculation of Jump Instructions
	4. The Explanation of Hard Interrupt and Soft Interrupt
	Conflicts of Interest
	References

