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Abstract 
In this paper, generalized KdV equations are investigated by using a mathe-
matical technique based on the reduction of order for solving differential eq-
uations. The compactons, solitons, solitary patterns and periodic solutions for 
the equations presented in this paper are obtained. For these generalized KdV 
equations, it is found that the change of the exponents of the wave function u 
and the coefficient a, positive or negative, leads to the different physical 
structures of the solutions. 
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1. Introduction 

Late in the 19th century, Korteweg and de Vries developed a theory to describe 
weakly nonlinear wave propagation in shallow water. The classical Korteweg-de 
Vries (KdV) equation is usually written as  

6 0.t x xxxu uu u+ + =                      (1) 

After a long time, the KdV equation has been found to be involved in a wide 
range of physics phenomena, especially those exhibiting shock waves, travelling 
waves, and solitons. Certain theoretical physics phenomena in the quantum 
mechanics domain can be explained by means of KdV model. 

As is well known, the classical KdV equation has been played a central role in 
the study of nonlinear phenomena, especially solitons phenomena which exist 
due to a balance between weak nonlinearity and dispersion. As one of the most 
fundamental equations of solitons phenomena, Equation (1) has caused great 
attention from many researchers, all forms of modified KdV equations have 
been studied extensively (see [1]-[10]). 
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Tzirtzilakis, et al. [1] discussed second and third order approximations of water 
wave equations of KdV type. Analytical expression for solitary wave solutions for 
some special equations was derived. By using a Fourier pseudospectral method 
combined with a finite-difference scheme, a detailed numerical study of these 
solutions obtained in [1] was carried out. The stability of these solitary wave 
solutions was also established. 

Rosenau and Hyman [2] introduced and studied a class of KdV equations—
( ),K m n  equation. They discovered that the solitary solutions of these equations, 

for certain m and n, have compact support, namely they vanish outside a finite 
core region. Solitons with finite wavelength are called compactons. 

In [3], Rosenau subsequently studied the model  

( ) ( )1 0, 1,n n
t x xx x

u a u u u n+  + + = ≥                (2) 

where 0a > . This model emerged in nonlinear lattices and was used to describe 
the dispersion of dilute suspensions for 1n = . But Rosenau [3] only got general 
formulas in terms of the cosine for model (2). With the use of new ansatze 
methods, Wazwaz [4] examined model (2) for two cases, 0a >  and 0a < . 
And the exact travelling solutions in terms of sine, cosine function, the 
hyperbolic function sinh and cosh were derived. 

Wazwaz investigated variants of the KdV equations respectively in [5] and [6] 
as follows:  

( ) ( ) 0, 1,n n
t x xx x

u au u u u n + + = >              (3) 

( ) ( ) 0, 3,n n
t x xx x

u au u u u n + + = ≥              (4) 

where a is a nonzero constant. The compactons and solitary pattern solutions 
were presented. 

The present work aims to extend the work made by Wazwaz [5] [6]. We 
desire to seek another method to solve nonlinear equations. For this purpose, the 
wave variable x ctξ µ= −  is introduced to carry the PDEs into ODEs. By using 
this variable replacement method, some new exact solutions including solitons 
can be obtained. In fact, the method in this paper is efficient to solve many 
nonlinear equations. It avoids tedious algebra and guesswork and also can be 
used in higher dimensional space. 

In this paper, we will discuss generalized KdV equations, Equaiton (3) and 
Equaiton (4) and the following equations with negative exponents: 

( ) ( ) 0, 1,n n
t x xx x

u au u u u n− − + + = >             (5) 

( ) ( ) 0, 3,n n
t x xx x

u au u u u n− − + + = ≥             (6) 

where a is a nonzero constant. In the sense of ignoring the constants of 
integration resulted from solving Equations (3)-(6), the exact travelling solutions 
have been obtained which contain the main results made in [5] [6] as special 
cases. 

https://doi.org/10.4236/am.2019.107044


J. Chen 
 

 

DOI: 10.4236/am.2019.107044 621 Applied Mathematics 
 

2. The Generalized KdV Equations with Positive Exponents 
2.1. Exact Travelling Wave Solutions for Equation (3) 

Firstly, we assume that the travelling wave solutions of Equation (3) take the 
form  

( ) ( ), , ,u x t u x ctξ ξ µ= = −                   (7) 

in which 0µ ≠ , 0c ≠ . 
Notice that  

3 3
3

3 3

d d d, , .
d d d

c
t x x

µ µ
ξ ξ ξ

∂ ∂ ∂
= − = =

∂ ∂ ∂
            (8) 

Substituting (7) and (8) into Equation (3) gives the following nonlinear ODE  

( ) ( )3 0.n ncu a u u u uξ ξ ξξ ξ
µ µ  − + + =  

              (9) 

Integrating Equation (9) once and setting the constant of integration to be 
zero, we find  

( )3 1 0.
1

n nanu u u cu
nξξ

µµ ++ − =
+

                (10) 

Considering 0u ≠ , we get  

( )3 0.
1

n nanu u c
nξξ

µµ + − =
+

                  (11) 

Set nV u= , then  

3 0.
1

anV V c
nξξ
µµ + − =
+

                     (12) 

Letting 
d
d
V Z
ξ
= , we get 

2

2

d d
dd

V ZZ
Vξ

= . So Equation (12) becomes  

3 d 0.
d 1

Z anZ V c
V n

µµ + − =
+

                   (13) 

By using the separating variants method, we have  

( )
3

2 2 .
2 2 1

anZ cV V
n

µ µ
= −

+
                    (14) 

That is  
2

3

d 2 .
d 1
V V anc V

n
µ

ξ µ
   = −   +  

                   (15) 

Case 1. 0a > : Solving Equation (15) gives  

( ) 22 1 1sin ,
2 1

c n anV
an n

ξ
µ µ

 +
=   + 

                 (16) 

and 

( ) 22 1 1cos .
2 1

c n anV
an n

ξ
µ µ

 +
=   + 

                 (17) 
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Hence, we limit the domain of ξ , obtain the following compacton solutions:  

( )
( ) ( )

1

22 1 1sin , 2 ,, 12 1

0, otherwise,

nc n an anx ctu x t nan n
µ ξ µ

µ µ


  +  − ≤ π  =  ++   


 (18) 

and 

( )
( ) ( )

1

22 1 1cos , ,, 12 1

0, otherwise.

nc n an anx ctu x t nan n
µ ξ µ

µ µ


  +  − ≤ π  =  ++   


  (19) 

Case 2. 0a < : Solving Equation (15), we get the solitary pattern solutions as 
follows:  

( ) ( ) ( )
1

22 1 1, sinh ,
2 1

nc n anu x t x ct
an n

µ
µ µ

  + = − − −  
+   

        (20) 

and 

( ) ( ) ( )
1

22 1 1, cosh .
2 1

nc n anu x t x ct
an n

µ
µ µ

  + = − −  
+   

         (21) 

Remark 1. Letting 1µ =  in (18) and (19), we have  

( )
( ) ( )

1

22 1 1sin , 2 ,, 12 1

0, otherwise,

nc n an anx ct ctu x t nan n


  +  − − ≤  =  ++   

π




   (22) 

and 

( )
( ) ( )

1

22 1 1cos , ,, 12 1

0, otherwise.

nc n an anx ct ctu x t nan n


  +  − − ≤  =  ++   

π




    (23) 

which just are the main results for Equation (3) obtained by Wazwaz [5]. In 
other words, solutions (22), (23) made in [5] are special cases of formulas (18), 
(19). 

2.2. Exact Travelling Wave Solutions for Equation (4) 

Following the analysis presented above, we use the wave variable x ctξ µ= −  
into Equation (4) to get the following ODE:  

3 1 0.
1

nau u cu
nξξ
µµ −+ − =
+

                   (24) 

Letting d
d

uY
ξ

= , we get 
2

2

d d
dd

u YY
uξ

= . Then  

3 1d 0.
d 1

nY aY u cu
u n

µµ −+ − =
+

                  (25) 
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Solving Equation (25) yields  
2

2
3

d 1 2 .
d 2 1

nu c au u
n n

µ
ξ µ

−   = −   − +  
                (26) 

Setting nW u−= , we have  
1

,nu W
−

=                            (27) 
1 11d d .nu W W

n
− −

= −                        (28) 

Substituting (27) and (28) into Equation (26) gives  
2 2

2
3

d 2 .
d 2 1
W n c aW W

n n
µ

ξ µ
   = −   − +  

                (29) 

Case 1. 0a > : For this case, solving Equation (29), we get  

( )
( )

22
sec ,

2 1 2 1
a n n aW

c n n
µ

ξ
µ

 −
=   + + 

                (30) 

and 

( )
( )

22
csc .

2 1 2 1
a n n aW

c n n
µ

ξ
µ

 −
=   + + 

                (31) 

Therefore, we obtain the following compacton solutions:  

( )
( )
( ) ( )

1

22 1
sin , 2 ,, 12 2 1

0, otherwise,

nc n n a ax ct nu x t na n n
µ ξ µ

µ µ


  +  − ≤  =  +− +  

π




 (32) 

and 

( )
( )
( ) ( )

1

22 1
cos , ,, 12 2 1

0, otherwise.

nc n n a ax ct nu x t na n n
µ ξ µ

µ µ


  +  − ≤  =  +− + 

π
 



 (33) 

Case 2. 0a < : Solving Equation (29), we have the solitary pattern solutions 
given by  

( ) ( )
( ) ( )

1

22 1
, sinh ,

2 2 1

nc n n au x t x ct
a n n

µ
µ µ

  + = − − −  
− +   

        (34) 

and 

( ) ( )
( ) ( )

1

22 1
, cosh .

2 2 1

nc n n au x t x ct
a n n

µ
µ µ

  + = − −  
− +   

         (35) 

3. The Generalized KdV Equations with Negative Exponents 

In fact, Equation (3) and Equation (4) and Equation (5) and Equation (6) have 
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the symmetric property about n respectively. We replace n by −n in Equation (3) 
and Equation (4) and the corresponding travelling wave solutions in Section 2. 
So we have the following results: 

3.1. Exact Travelling Wave Solutions for Equation (5) 

Case 1. 0a > : The periodic solutions are given by  

( ) ( ) ( )
1

2 1, sec ,
2 1 2 1

nan anu x t x ct
c n n

µ µ
µ

   = −  
− −   

          (36) 

and 

( ) ( ) ( )
1

2 1, csc .
2 1 2 1

nan anu x t x ct
c n n

µ µ
µ

   = −  
− −   

          (37) 

Case 2. 0a < : The soliton solutions have the forms of 

( ) ( ) ( )
1

2 1, sech ,
2 1 2 1

nan anu x t x ct
c n n

µ µ
µ

   = − −  
− −   

         (38) 

and 

( ) ( ) ( )
1

2 1, csch .
2 1 2 1

nan anu x t x ct
c n n

µ µ
µ

   = − − −  
− −   

        (39) 

3.2. Exact Travelling Wave Solutions for Equation (6) 

Case 1. 0a > : In this case, we get the following soliton solutions:  

( ) ( )
( ) ( )

1

22
, sech ,

2 1 2 1

na n n au x t x ct
c n n
µ

µ
µ

  + = − −  
− −   

         (40) 

and 

( ) ( )
( ) ( )

1

22
, csch .

2 1 2 1

na n n au x t x ct
c n n
µ

µ
µ

  + = − − −  
− −   

        (41) 

Case 2. 0a < : We have the following periodic solutions:  

( ) ( )
( ) ( )

1

22
, sec ,

2 1 2 1

na n n au x t x ct
c n n
µ

µ
µ

  + = −  
− −   

          (42) 

and 

( ) ( )
( ) ( )

1

22
, csc .

2 1 2 1

na n n au x t x ct
c n n
µ

µ
µ

  + = −  
− −   

          (43) 

4. Conclusions 

The method based on the reduction of order is a powerful tool for acquiring 
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some special solutions of nonlinear PDEs. In this paper, we study three types of 
generalized KdV equations with positive and negative exponents by using this 
mathematical technique. Different from others, this technique carries some 
partial differential equations into ordinary equations which are easier to be 
solved. And the analytical expression of travelling wave solutions, containing 
compactons, solitons, solitary patterns and periodic solutions, are derived. 

The obtained results in Section 2 and Section 3 each represent two completely 
different sets of models, which has been shown that the variation of exponents 
and coefficient, positive or negative, could cause the quantitative change in the 
physical structure of the solutions. The physical structures of the compactons 
solutions and the solitary patterns solutions deepen our understanding of many 
scientific processes, such as the super deformed nuclei, preformation of cluster 
in hydrodynamic models, the fission of liquid drops, and the inertial fusion. 
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