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Let D be the open unit disk in the complex plane C and let dA be the Le-

besgue area measure on D. For « >-1 the weighted Lebesgue measure dA,

is defined by
dA, =c, (1—|z|2)a dA(z),
where
. I'(2+a)
“ I'(a+1)

is a normalizing constant so that
A, (D)= dA, =1.

If 4 is a positive measure on D and p>0, we denote L"(x) the Le-
besgue space over I with respect to . Thatis, L"(u) consists of all func-
tions fdefined on D for which

o =(,]f @ du(2)) " <oo.

For a>-1 and p>0, the weighted Bergman space Af (D) is defined by
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AP (D)=H(D)NL"(D,dA,), where H (]ID) is the space of all analytic func-
tionson D.Thatis f e A”(D) ifitis holomorphic and
1

o) ;:(jm|f (z)|pdAa(z))p <.
Forany aeD and re(O,l) we write

A(arr)={zeD:p(z,a)<r},

|t

where p(z, a) = |(pa (Z)| is the pseudo-hyperbolic metric and

¢.(2)=(a-2)/(1-az).
Let 1:AP(D)— L(du) be an identity, we say u is a AP (D)-Carleson
measure, if there is a constant C >0 such that

1oy <]

L (du)

foreach f e A°(D).

Now we define the dominanting set of Bergman spaces.

Lemma 1 Let p>0, a>0 and G be a Lebesgue measurable subset of D .
We call G is a dominanting set of AP (D) if there is a constant C >0 such
that

[ [f]7dA, <[ |f]"dA, (1)

forall fe A (D).
Let y, is the characteristic function of G. According to the definition of
dominanting set, measure dg = y,dv satisfies the reverse inequality in Carle-

son measure definition, that is we have
[f]"dA, <C[ [f|" du

forall f e AP (D). We call reverse Carleson measure if the measure satidfy re-
verse Carleson inequality. The purpose of this paper is to study reverse A’ (D)
-Carleson measure. [1] and [2] provide some basic tools of Bergman space and
some analytic functions. [3] proved Carleson-type embedding theorems for
weighted Bergman spaces with Bkoll weights. In 1985, Luecking [4] first studied
the reverse Carleson measure in Bergman space on unit disk. The main research
tool of Luecking is the dominanting set in Bergman space. In [5], Luecking in-
troduces the necessary and sufficient conditions for dominating sets in Bergman
spaces on a unit disk. In recent years, Lou and Zhuo [6] generalized this work to
Fock space and gave the characterization of dominant set in Fock space. The
purpose of this paper is to extend dominating set and reverse Carleson measure
to weighted Bergman spaces. We can find some other concepts in [7] [8] [9] [10]
[11]. [12] is a survey on reverse Carleson measures for various Hilbert spaces of
analytic functions. We can use some definitions and proof methods in the paper
to prove our results. [13] discussed direct and reverse Carleson measures for the
de Branges-Rovnyak spaces H(b). We can refer to their method. In [14], Kor-

honen and Rattyd has proved the sampling measure by using dominating set and
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p-Carleson measure for weighted Bergman space with a weight ®, reference
resources [15] [16] [17] [18].

The main results is as follows.

Theorem 2 Suppose p>0. Then G is a dominanting set of AP (D) if and
only if there are constant §>0 and 0<n<1 such that

A, (GNA(a,7))>5A,(A(a7n)) (2)

for all set A(a,n) andall aeD.

In Section 2, we mainly give several key lemmas which can prove the main
result. In Section 3, we prove the main theorem by using the lemma obtained in
Section 2. Section 4 gives the conclusions of this paper and explains how to ex-

tend these results to other directions.

2. Preliminaries

In this section we collect several technical lemmas that we will need for the proof
of our main result. We used the convention that the letter C denotes a constant
which may differ from one occurrence to the next.

Lemma 3 (Exercise 1.1.3 (b) in) Let u be a Borel measure with u(X)=1.
We have

y
(Ix|f (x)|p d,u(X)) S exp(J'X Iog| f (x)|d,u(x)).
Lemma 4 (Lemma 1.24 in) For any real a and positive r there is constant
C>0 and ¢>0 such that
c(l—|z|2)2+a <A, (A(zr))< C(1—|z|2)

2+a

forall zeD.
Lemma 5 (Lemma 2.20 in) For each r >0 there is a positive constant C,
such that

Cl< L3 <C
r 1_|Z|2 r
and
1-[af
Clt<—L<C(,
|1—az|

forall 2aand zin D with p(a, Z) < r . Moreover, if ris bounded above, then we
may choose C, to be independent of r.

Lemma 6 (Corollary 2.21 in) Suppose —o<a <, 1[>0, 1,>0 and 1, >0.
Then there is a constant C >0 such that

L A(A@ER)
~ A (A(w,ry))

forall zand win D with p(Z,W)Srs.

<C

Lemma 7 (Lemma 2.24 in) Suppose r >0, p>0 and a >-1. Then there
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is a constant C >0 such that

c
| (2) Swhm

forall feH (]D)) and all zeD.Moreover we can obtain

It(2)f smh(m“ (w)|” dA, (w)

f (W)|ID dA, (w)

for all zeD where fis holomorphic and C; is a constant independent of f
and z

If the analytic function f €D and 0<A <1 we consider the local level sets
of £

E,(a)=E,(f.a)={zeA(an):|f(z)>2|f(a)]}
and the operator

= C0 P
A, (E, (a))jwa)'f' A

where C, isin Lemma 7.

By Lemma 7, we can get a inequality
jEA(a)|f|"dAa jA(aﬂ)|f|"dAa
* A (A(an)) .[El(a)|f|pdAa
J.El(a)| f |” dA, jA(a,'?)\E;L(a)' f |p dA, +IE;,(a)| f |p dA,
A, (A(a,n)) Jo, ol I A,
p p

J.El(a)|f| dA“ +lp|f(a)| .[A(a,r])\El(a)dA“

A, (A(a, P

"‘( (a 77)) /1p|f(a)| .[Ex(a)dA"
J.El(a)|f|pdAa’ _
Aa(Ei (a))

We can use the same measure as in [5] to prove the following two Lemmas.

|f(a)|p <

— 0

- 0

— 0

B,f(a)

Lemma 8 Let fis analytic in D, there is a constant Cy >0 in Lemma7 such
that

0 C, 21,
C =
! Iogi 0<C, <1, (3)
Co
then
Iogi+logi
Aa(E/l a)) > AP Co
-~ B,f(a '
A(a(am) log ( p)+logip+(3l
f@)f 4
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forall aeD.

Proof. Applying Lemma 7 and elementary estimates we have

log|f (a)" <logC, + log| f (2)" dA, (2)

S——
A (aan) e
=logC, +m[h(am\h(a)+ .[El(a):l |09| f (Z)|p dA, (2)

) AE@)]
_IogCOJ{l—m]Iogﬂ HE

A, (a(an) A, (& @ e 0l (124
<logC, 4{1— 2“((5(21?7))))} log A? | f (a)|p
AE@), o o AE@)
) A (e el T T (a0
<IogC0+{1—2“((AE ?7))))}09/1')“ |
AEE) oo AER)
A atan) 05 TR Tt
where the last inequality follows by Lemma 3. If we subtract Iog| f (a)|p from
both sides we get
0§IogC0+|:l— “(( {:’2))))}Iog/1p|f(a)|p+:“((AEla;)))) logB, f (a)
Aa(Ez(a)) o 1 o a)’
Aa(A(a,n))I g~ log|f (a)

<logC, +|:1_$;(,a)))} log A° + A”:\a (AE(A (76)) log Bi(f ()ap)

Then we have

—logC, —log A® <

A, (E,(a)) 1 B, f(a) 1
m{log—ﬂog +log—|.

B, f
We notice that log A’ <0, Iog[ (a)J>O and |0gC—<C . Then we get

|f (a)| 0

Iogi+ Iogi
A(E ()

A (A(an))  1oq B2 (a) 1
n Og|f(a)| og C
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Lemma 9 Suppose o >-1 and f e AP (D). Then let

A:{ae]l)):|f (a) <mh(a'”)|f|p dAa}

for £>0 and e (0,1) . There is a constant C'depending only on 77, such that
[[f]"dA, <Cef |f]° dA,
A D

forall £>0.
Proof For ac A we have

() <ef|f(2) mmam (2)dA, (2).

Integrate over a€ A and use Fubini’s Theorem on the right to obtain
(@) o,

<[l @) —))IA(a,,,)(Z)dAa(Z)dAa(a)

a,n
sc:eme<z>|"{JAmW(zmAa(a)}dmz)
<Cef |f(2)]" dA, (2)

where the second inequality above follows from Lemma 6 and the fact that

ZA(z,r)(a)=ZA(a,r)(Z)'
Lemma 10 Let ¢>0 and f e Al (D) for a>-1. Define the set

B-{acD:|f(a) <s¥"'8,1 (a)}.

Then there is a constant C'depending only on 7 and p, such that
[ [fPdA, <Ce[ |f|°dA,
B D

forall ¢>0.
Proof Let Abe as in Lemma 9. We write

jB|f|p dA, :jw|f|p dA, +jB\A|f|p dA,.

The first integral can be estimated by Lemma 9. For the second integral, we

have

IB\A|f (a)|p dA, (a) < IB\Ag”"*lBﬁ (a)dA, (a)

. 1
gz/p 1

BIA mkl

(z)" dA, (2)dA, (a) 4)

1
<ce? 11 (2)) dA, (a) |dA, (2).
Iu)| ( )| IB\AA}(El(a))ZEi ( ) ( ) a( )

We need only show the inner integral is suitably bounded. The sets E, (a)
appeared in [5], and Luecking proved in that paper that there is a constant
C >0, depending only on p, such that
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|E/1 (a)| > Ez/p

|A(a,r) Cc

©)

Thus we can obtain

@) _ (R B @) Jwll) A a(e (@)

@ ([ a@n] [, (o) oa A BED)

Combining this with inequality (5), we get
A, (E, (a)) S e??

A, (A(a,n)) - Cc
Plug this into (4) and use Xa(ar) (Z) = Xn(en) (a) . We obtain

IB\A| f (a)|p dA, (a) < ngm| f (z)|p dA, (2).

3. Proof of Main Theorem

We can now characterize a special family of reverse Carleson measures for
weighted Bergman spaces with the weighted Lebesgue measure. The main results
is as follows.

Theorem 11 Suppose p>0. Then G is a dominanting set of Al (D) if and
only if there are constant § >0 and 0<n <1 such that

A, (6NA(a7))> 5A, (A(an) ©

forallset A(a,7) andall aeD.

Proof. First, we proof the necessity of the Theorem. Take 0<7 <1 so that
1

J"Z‘<”1dAa(z)>l—z.

By a change of variables, we get

1 | |2 a+2
—la 1
J.A(a,q)[ ] dAa(Z)>1—E

- zz§|2

Then we can have

a+2
1-[a’ 1
J-]D\A(a'”)[p_—zarJ dAa (Z) <E.

Applying (1) to the function

we get

je{ﬂJ dAa(z)zéjD[ﬂ] d, (2) =

|1— z§|2 |1— z§|2
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Since GﬂA(a,n) =G —(G\A(a,n)) , o we have

a+2
1-[af
jGﬂA(a,;;)[p__ Z§|2 J dAa (Z)

a+2 a+2
ESC 1-[af
N G[|1_ 252] dAU!(Z)_J.G\A(a,r])[W dAa(Z)

(1-[af)" . (1-[af)" o

|1_Z§2(a+2) - (1_|a|)2(a+2) - (1_|a|)a+2 '

Combining this with the above inequality, we get

a+2
ga+2 (l_|a|2) .
WAQ (GNa(an))= Lm(a,,,)mdal (z)2 -

so inequality

which gives (6).
For sufficiency of the theorem,we will follow the arguments in [5] closely. For
>0 let

F=D\B={acD:[f(a) 22778, 1 (a)}.

According to Lemma 10, we have
[]5]° dA, :(jF+jB)|f|"dAa <[ |f[" dA, +Cef |f[" dA,

If we now choose ¢ small enough so that £C <1/2, we have
P P
[If]" dA, <2[ |f]"dA,. (7)

By the definition of Fwe have B, f (a)/| f (a)|p <& forall acF.
If C,>1,then C, =0.Lemma 8 can be write

Iogi+logi

A (E.(3) | G,
A(8am) " o BA @) 1
|f (a)|P lp

For the §>0 in (6), we choose a positive integer k >4/5, which implies
that
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kel 115 15 L5 (8)
2k k 2 4 4

Therefore, by choosing

AP < min{gz(z/”*l)/",cgk},

Lemma 8 gives

Iogi+log— L|0 1
Aa(E/I (a)) > AP C, > k lp
Aa (A(a,?])) |og Bl f (ap)+|ng Iog ( ) gi
| (a)) A @)
1
K1 (2/5)I09W
k

1 1
|Og 2/p+1 +(2/5)|0g 82/p+1

k12 k-l 6
k 2+ Kk 2)

So we have
A (E.(2)= {13 A (a(an)
- A, (3(an)-H{1+552 A, (alan)
- A (A@M\E, (@)« A, (5, ()~ 155 5, (8(am).
It implies that
A, (M(an)\E, (a)) S%(“Tl&j A, (A(a,n).
Note that

GNE,(a)=GN(A(an)-[A(an)\E,(a)]),

then following from (6) we have
A, (GNE, (a))
= A, (GNA(an))-A, (GN(A(an)\E, (7))
>5A, (A(a,7))- A, (A(a,n)\E, (a))

- on, (atam) {1575 A (a(an)
:[_5_% A, (A(a,ﬂ))>%Aa (a(an))

whenever aeF .

If 0<C,<1 sotaht C = |OgCi , then IOQCi >0. Lemma 8 can be write
0 0
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Iogi+logi I 1
Aa(E/I (a)) > AP Co > ogﬁ .
A(aan) IogL f (ap) +Iog/1—1p+logci IogLf (ap) +Iog/1—1p
| (a) o [T
Therefore, by choosing
2P < 2P
Lemma 8 gives
. (E; (a)) > AP 2 ¢
A, (A(a,n)) log Af(ap) ogip 246 2
RICY B

So we have

A (E.(a)2(1- A (3(am)
= A, (8(@n)-5A.(a(@n)
= A, (A(an)\E, (2)) <A, (€, (2) -2 A, (A@n)

It implies that

A (A(a,n)\Ei(a))sgAa (Aa.n)).
Note that
GNE,(a)=GN(A(an)-[A(an)\E,(a)]).

then following from (6) and (8) we have
A (GNE, (a))
—A(GﬂA a77 Aa( A(an . (a )))
>5A, (A(an))-A, (A(an)\E, (a))

> oA, (A(an) -2 A, ((an)

-2 A (a(am)> 2 A, (a(an)

whenever aeF .

Then we can get

A,(GNE,(a))= %Aa (A(an))

for all constant C, >0 in Lemma 7.

Hence we have

L p
;T@R;;ﬁkzﬂawuﬂf(ﬂ|d&(ﬁ

> e e @@ A )
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s
A (a(an))

1
225/1’)|f(a)|p

A, (GNE,(a))4|f(a)"

where a e F . Integrating both side over Fand using Fubini’s Theorem, we ob-

tain
[.]f (z)|p£me;(A(am(z)dAa (a) |da, (z)z%&lpufr’ dA,. (9)

The integral in the brackets of the left-hand side can be estimated as follows:
.[FﬂA(Z,l]) dAa (a) < C AO! (A(a,ﬂ))
A(a@n) A (B@n)

And the right hand side of (9) can be estimated from below using (7). This
yields

dA, (a)<C

1
meam(z)

1
C[ |f(2)" dA,(2) zgézw f|° dA,
which proves the sufficiency of the theorem.

4. Conclusions

We proved the dominating set by using pseudo-hyperbolic metric disk and
sub-mean inequality. The method of proof is to obtain the complete characteriza-
tion of dominating set by applying the key lemma given in Section 2 in Section 3.
Next we will study some applications of Theorem 11. Let ¢ be a bounded
measurable function on . So we want to prove that the Toeplitz operator T,
is bounded. Using dominating set and Carleson measures, we can also study

sampling measures for weighted Bergman space.
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