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Abstract 
In a linear world, averages make perfect sense. Something too big is compen-
sated by something too small. We show, however that the underlying diffe-
rential equations (e.g. unlimited growth) rather than the equations them-
selves (e.g. exponential growth) need to be linear. Especially in finance and 
economics non-linear differential equations are used although the input pa-
rameters are average quantities (e.g. average spending). It leads to the sad 
conclusion that almost all results are at least doubtful. Within one model 
(diffusion model of marketing) we show that the error is tremendous. We al-
so compare chaotic results to random ones. Though these data are hardly dis-
tinguishable, certain limits prove to be very different. Implications for finance 
can be important because e.g. stock prices vary generally, chaotically, though 
the evaluation assumes quite often randomness. 
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1. Introduction 

Almost everybody knows how to calculate an average or (arithmetic) mean, and 
its use is widespread. Its interpretation is quite often questionable and some-
times ludicrous, see e.g. [1]. Though such remarks are important, this paper fo-
cuses on a different, more mathematical point. 

Sometimes an average makes perfect sense. The average weight of an airline 
passenger times the number of passengers gives a perfect measure for the weight 
of all passengers. The average size of a screw in a warehouse does not make 
sense. Probably nobody will be fooled by this extreme example. However, there 
are more sophisticated examples in [1] like designing the cockpit of a fighter jet 
in accordance to the height of an average pilot, which turned out to be hardly 
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existent. 
Sometimes the problem is solved by using the median instead of the mean or 

average. But this is not the point here. The median size of a screw in a warehouse 
is as useless as its average size. From Chapter 2 one can see that the arithmetic 
mean is a number that minimizes the sum of the quadratic deviations from all 
data points. So the actual data points may be bigger or smaller than the average, 
but the (linear) deviations to the bigger and smaller side are the same. If being 
bigger than the average can be canceled out by being smaller, an average does 
make sense. It is the case in the example of the average weight of a passenger. A 
heavier passenger can be compensated by a lighter one. This is in contrast to 
screws in a warehouse. One that is too small is as bad as one that is too big. 

So the pivotal point is the use of the arithmetic mean. In the example of the 
average weight of an airline passenger, the use was to calculate the total passen-
ger load. The total passenger load is a positive real number. The use of the screw 
was to fit. Such function has only two values: does fit and does not fit. For “does 
not fit”, it is irrelevant whether the screw is too small or too big. Mathematically 
speaking such a use-function must be strictly linear. 

So far for a complicated explanation of a maybe trivial issue. However, most 
long-term considerations take into account non-linear equations. As an arche-
type consider exponential population growth. Obviously, it is not a linear func-
tion. Its exponent is essentially the birthrate. A larger birthrate implies higher 
population growth and vice versa, but it is highly non-linear. A ten percent 
higher birthrate in one part of the population cannot be compensated by a ten 
percent lower one in another one. However, almost everywhere an average 
birthrate is used to forecast the future population. Chapter 3 scrutinizes this 
example. Surprisingly, one may use average birthrates in the normal (unlimited) 
population growth formula. In Chapter 3 we prove generally that average para-
meters such as average birthrates can be used in linear differential equations on-
ly. 

A further application are financial markets. Mankind is far away from having 
proper differential equations determining the future profit of a company and 
with it the future stock price. However, people try to build estimates. In these 
calculations, one uses averages from mean inflation over mean spending on R & 
D to mean productivity of the employees. Everything else would make the con-
siderations impossible for practical reasons as it is not possible to consider and 
determine millions of variables. However, nobody doubts that the financial word 
is governed by non-linear differential equations. If it was not, the solutions 
would have to be plane waves in contrast to all observations. We will discuss this 
in more detail in Chapter 4. It leads to the sad conclusion that almost all quan-
titative analyses in financial markets are at least doubtful. 

In Chapter 5 we will consider the diffusion model in marketing, a mathemati-
cal tool to forecast the future market share. There, also average quantities are 
used. And due to that, one (sometimes) gets completely wrong results. Even 
chaos effects have been predicted [2] though they do not exist [3]. In Chapter 5 
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we also show how one can use a continuum limit to overcome the problem of 
knowing average parameters only. It is quite important to notice that in almost 
all financial models a continuum limit is not possible. This has been stated for 
the first time in [4]. It is due to the fact that typical financial data such as e.g. 
stock prices are, unlike the market share, not conserved. This led to the sugges-
tion of a conserved value [5] in finance. Eventually it has been proven mathe-
matically in [6]. 

We close with a look to further research in Chapter 6. Here we consider chaos 
in contrast to randomness. Though chaos appears random, it is not. However, it 
seems so random that chaotic functions are sometimes used to create “random” 
numbers. Building arithmetic means in chaotically varying quantities sometimes 
(but not always) gives identical results to random variations as one might expect. 
But sometimes it does not. This is an open question. It is of special relevance 
whenever something varies chaotically such as prices in financial markets. Is a 
statistical analysis allowed at all? Can one modify ordinary statistics in order to 
cope with it? 

2. Definition of Mean and Median 

It is assumed that arithmetic mean (here also called average) and median are 
well-known to any potential reader of this publication. Else it can be found in 
any mathematical handbook such as [7]. Here we take a route different from 
most textbooks. It is important to understand what mean and median means. 

Given is a set of real number ix  with i running from 1 to N. We define the 
average x  as a number so that 

( )2

1
minimal

N

i
i

x x
=

→−∑                     (1) 

To find this minimum, Equation (1) can be differentiated with respect to x  
and set to zero. It leads to the well-known formula for the average 

1

1 N

i
i

x x
N =

= ∑                          (2) 

The average is therefore a special least square fit. The data points are fitted by 
a constant. As with the least square fit, taking the squares in Equation (1) is by 
no means justified. It is practical for getting positive numbers and keeping an 
analytic function. However, it is arbitrary. Why not take the fourth power? Tak-
ing squares makes small numbers smaller and larger ones larger. The error of a 
least square fit is given by Equation (1). This does not make sense if the ix  
have a dimension such as €. The error thus has the dimension €2 which has no 
meaning. Taking the square root of Equation (1) does not help either. Squares 
and roots are non-linear functions which must not be interchanged with the 
sum. Therefore, the least square fit is an approximation only. A least absolute 
value fit is the correct procedure. However, dealing with it becomes horribly 
complicated, and the result can be obtained numerically only in most cases. This 
is the reason why a least square fit is so popular though strictly speaking it is 
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wrong. The difference between a (wrong) least square fit and the (correct) abso-
lute value fit is small in many cases. However, if the data points are varying over 
orders of magnitude (e.g. in exponential growth) the error becomes significant. 
This logic brings us to the definition of the median: 

Given is a set of real number ix  with i running from 1 to N. We define the 
median { }x  as a number so that 

{ }
1

minimal
N

i
i

x x
=

− →∑                     (3) 

Equation (3) is a non-analytic function of { }x . Of course, the minimum can 
be determined. One way is to use differentiation carefully: differentiating from 
the right and left, respectively, at non-analytic points. Either way the minimiza-
tion problem of Equation (3) has the solution 

{ }( )
1
sgn 0

N

i
i

x x
=

− =∑                      (4) 

where sgn denotes the signum function defined as −1 for negative arguments, +1 
for positive ones and zero else. As one sees, { }x  must be in “the middle” of the 
numbers ix  in order to fulfill Equation (4). { }x  is therefore exactly what one 
calls median. 

Mean and median are least square fits or least absolute value fit, respectively, 
where the fit function is a constant. In order to find means or medians for a con-
tinuous distribution one has to change the sum signs into integrals. 

From this definition of mean and median it becomes clear that the use of 
mean and median is not optional depending on the situation. Median is the cor-
rect way and mean is the approximation. If median and mean are similar, mean 
is a good approximation. However, sometimes mean gives something exact. 
Knowing the mean weight and the number of passengers, one knows the exact 
weight of all passengers combined. This may be practical, but it has nothing to 
do with a statistical interpretation, what mean and median are meant for. 

3. Why the Underlying Differential Equation Must Be  
Considered 

In this chapter we want to show that averages can be used even in non-linear 
functions as long as the underlying differential equation is linear. As a starting 
example consider the formula for unlimited population growth: 

( )
( )

0 e
tb

N t N
β

τ
− ⋅

= ⋅                        (5) 

( )N t  denotes the population at a time t and 0N  is the population at 0t = . 
b is the birth rate (number of children per woman) and β  is the birthrate 
when the population stays constant (typically 2.1β ≈ ). τ  is a constant de-
pending essentially on the lifespan of the population. Because ( )N t  depends 
exponentially on the birthrate b, it appears doubtful to use an average birthrate. 
Some years ago we used Equation (5) as an exercise for graduate students: Half 
of the population has a birthrate 0b =  and half of it 2b β= . On average it 
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yields b β= . Of course, the population does not stay constant, because only 
in the beginning b β=  holds. Half of the population becomes extinct and the 
other half is reproducing rapidly. In a properly weighted average we have a time 
dependent average birthrate of 

( ) ( ) e e1 tanh with tanh
e e

x x

x x

tb t xβ β
τ

−

−

  − = ⋅ + ⋅ ≡   +  
          (6) 

Of course, one must not insert ( )b t  of Equation (6) directly into Equation 
(5). Equation (5) is the solution of the differential equation 

( ) ( )
d

d
N t b N t

t
β

τ
−

= ⋅                         (7) 

So one has to insert the ( )b t  of Equation (6) for b into Equation (7). The 
solution is: 

( ) ( ) ( )0
1cosh and cosh e e
2

x xtN t N xβ
τ

− = ⋅ ≡ ⋅ + 
 

⋅          (8) 

If one took a realistic growth model with e.g. limited growth, the correspond-
ing differential equation would be non-linear. A weighted average like in Equa-
tion (6) will not be possible in that case. This is an important information for 
any person dealing with population growth or decrease. Such people use much 
more sophisticated models compared to Equation (7). Their differential equa-
tions are non-linear in almost all cases. Nevertheless they use average birth rates 
only. So their results are generally wrong—yet it is hard to tell by how much. In 
order to check, one must have the distribution of birthrates. Such distributions 
cannot be found in statistical data banks. It is left to the reader to try some ex-
amples or it would be an exercise for advanced graduate students. In what fol-
lows we will prove that the linearity of the underlying differential equation is es-
sential for using averages. 

Instead of Equation (7) we use a very general model for a function ( )f x : 

( ) ( )( )f x g f x′ =                          (9) 

In a linear model, ( )g f a f= ⋅  holds. The function g corresponds to the pa-
rameters of the differential equation. Without limitation we are just considering 
two functions 1g  and 2g . If we are able to prove that the averaging is wrong 
for all non-linear functions, we have for sure shown that it will not work out for 
more than two functions. Furthermore, our proof can be extended easily to an 
arbitrary number of functions. Therefore we consider only two functions: 

( ) ( )( ) ( ) ( )( )1 21 221 andf x g f x f x g f x′ ′= =              (10) 

Needless to say that the functions g are analytic functions. Therefore a Taylor 
expansion is possible: 

( ) 22

0

0 1 i

i

ig f a a f a f a f
∞

=

= + + + = ∑
              (11) 

Please note that the a’s in Equation (11) have upper indices rather than expo-
nents in contrast to the f’s in Equation (11). For the average f one can write by 
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using Equations (10) and (11). 
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∑ ∑
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          (12) 

On the other hand, the average coefficient ia  is given by 

1 1 2 2

1 2

i i
i a f a fa

f f
+⋅ ⋅

=
+

                     (13) 

Comparing with the average coefficient from Equation (12) we have the fol-
lowing equation to hold: 

( )

1 1 2 2 1 1 2 2
1

1 2
1 2

1
2

i i i i i i

i
i

a f a f a f a f
f f

f f
−

⋅ ⋅+ +
=

+  + 
 

               (14) 

Equation (14) is equivalent to 

( ) ( ) 11
1 1 2 2 1 1 2 2 1 22 ii i i i i i ia f a f a f a f f f −−+ = + +⋅ ⋅ ⋅ ⋅            (15) 

Because the different powers of f in Equation (15) are linearly independent, all 
corresponding powers must fulfill Equation (15) separately. This is generally 
impossible except we have only one exponent 1i = . In other words, the Taylor 
expansion of g contains only the linear term. This concludes the proof that only 
in linear differential equations averages can be used. 

In this chapter we have shown that averages can be used even in non-linear 
equations as long as the underlying differential equation is linear. It is a plausible 
result, because the differential equation governs the situation. If it is linear, av-
erages are fine to use. The solution of the differential equation is just the sum 
(integral) of the underlying microscopic interactions. If each interaction may use 
averages, so does its sum. 

4. Financial Markets 

Finance is far away from having models like population growth. At most one has 
heuristic models. The goal is to predict prices or at least probabilities for it. 
These models have grown more and more complex. The ultimate model has not 
been established, and the authors are convinced that it will never be (For more 
details see below and also [3] or [6]). However, there is no doubt that these 
models will consist of non-linear differential equations. If the governing diffe-
rential equations were linear, their solutions would be plane waves. This is in 
contrast to any observation of financial data. Furthermore, the used “tools” are 
based on non-linear differential equations in most cases. Just as an example con-
sider the Black-Scholes model [8]. It is a model for pricing options. The details 
are not important here, but it is a non-linear (partial) differential equation. 
(There are many more such models, also or especially in quantitative economics, 

https://doi.org/10.4236/am.2019.107043


M. Grabinski, G. Klinkova 
 

 

DOI: 10.4236/am.2019.107043 611 Applied Mathematics 
 

see e.g. [9]). 
In order to use these models one needs parameters such as inflation rates, in-

terest rates, investments for e.g. R & D, and so forth. For all these parameters 
one uses averages. Some are even defined as averages such as the inflation of a 
basket of goods over a year. Everything else would be virtually impossible. One 
would have to consider a huge number of variables changing every day or maybe 
every second. At first glance averaging appears reasonable because there is an 
interest in e.g. average prices. However, we have shown in Chapter 3 that one 
must not use average quantities in non-linear differential equations. 

We come to the sad conclusion that almost all work in finance and quantita-
tive economics suffers from these shortcomings. That such (wrong) calculations 
lead to at least sometimes correct results is of course far from being a justifica-
tion: Ex falso quodlibet!1 Especially in finance there maybe also some herd effect 
if sufficiently many people believe in a certain model. Then it is nothing but a 
self-fulfilling prophecy, e.g. cf. [10]. 

However, there are many more shortcomings besides using averages in 
non-linear differential equations. There exist plenty of additional variables than 
usually considered and these variables appear to be important. It leads to the 
almost ludicrous result that the weather on Wall Street is an essential influencer 
on stock prices [11]. This comes as no surprise as it has been proven that prices 
of most financial products vary chaotically [12]. Within chaos tiny changes in 
seemingly unimportant parameters have big effects in the end. Therefore, finan-
cial markets work similarly to gambling. However, it is not considered gambling. 
Else there would be regulations to give the same odds to anybody. 

To overcome these difficulties one has to: 
 Use individual data instead of averages. 
 Use many more presently unknown variables. 
 Know any parameter/variable up to an extremely high accuracy due to chaos. 

That is the reason why the authors are convinced that there will never be a 
proper model for financial markets. Please be aware that “extremely high accu-
racy” is quite often much more than 101000 digits. From this, another problem 
arises. A computer has to perform these highly accurate calculations. In a very 
simple chaotic situation as mentioned in Chapter 6, we estimate calculation 
times of 10276 times the age of the universe on a 3.5 GHz processor. Even quan-
tum computing would not help because it is currently only 100 million times 
faster than an ordinary computer. Our very simple chaotic calculation would 
still take 10268 times the age of the universe. 

Calculating next week’s lottery numbers is comparably simple to the above. 
That is the main reason why considering conserved values has been suggested in 
[5] and proven in [6]. By using it, all problems disappear. However, gaining 

 

 

1It is not possible to show the exact margin of error due to averaging without considering a particular 
model. Even then we do not know the correct result in order to calculate an error. As the mathemat-
ical expression ex falso quodlibet indicates, making a wrong assumption can “prove” anything. 1 = 2 
implies not only 2 = 3 but also 1030 = 0. 
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money due to trading financial products will also disappear. This comes as no 
surprise as such trading is nothing but a special form of gambling [12]. 

Furthermore, it is important to note that prices of financial products vary 
chaotically. As we will explain in Chapter 6, it will make use of statistics (e.g. av-
erages) not without flaws. 

5. Diffusion Model in Market Forecast 

In this chapter we will comment on the use of the diffusion model of marketing. 
It is a tool for forecasting the future market share. Using averages in this model 
may lead to completely wrong results under certain circumstances [2]. However, 
here we can present a way out by using a continuum limit, which is the reason 
why we comment on this particular model. Unfortunately, the continuum limit 
cannot be applied to the world of finance because stock prices and the like are 
not conserved quantities. 

The use of the diffusion model in marketing started in the 1960 and it is used 
ever since. There are several versions. We will consider the so-called logistic dif-
fusion model. It is an iterating formula calculating the market share tN  at time 
t from the market share 1tN −  at time 1t − . The main idea behind it is that the 
product diffuses into the market, like the smell of sold waffles in a shopping mall 
attracts more customers. The formula of the logistic diffusion model takes the 
form 

( )1 1t t tN b N M N− −= −⋅ ⋅  

b is a diffusion constant. A large b means that one will gain market share ra-
pidly, and a small b implies slow growth or even shrinking. The constant M in 
the term 1tM N −−  is the natural limitation. Else the market share will grow to 
infinity, which is unrealistic. It is similar to a growth limitation in a realistic 
growth model. From a mathematical point of view, one may always set 1M = . 
In doing so, one will get the following formula for the logistic diffusion model, 
which has also been used in [2]:  

( )1 11t t tN b N N− −= −⋅ ⋅                     (16) 

If b approaches a certain value (≈3.5699) something strange happens. N is 
changing very rapidly and seemingly randomly between 0 and 1. This comes as 
no surprise since Equation (16) is nothing but the logistic map, cf. Equation (19) 
of Chapter 6. This has been described as the end of the diffusion model in [2]. 
But how can it be? Why is the market share “jumping” if it is growing sufficient-
ly fast? How can a market share change chaotically though it is a conserved 
quantity?2 Why is the market share varying between −∞ and +∞ for 4b > ? 

As already mentioned in [2], the constant b of Equation (16) is generally 
speaking a different one for each customer buying or not buying something. So 
one would probably have millions of different constants b. With such a huge 
number of fit parameters reality is described perfectly. On the sad side, it would 

 

 

2Admittedly conserved quantities in this sense were first mentioned in 2011 in [5], many years after 
1993 when [2] has been published.  
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make forecasts impossible by using Equation (16). Nobody can estimate so many 
parameters. Therefore, one uses an average b in Equation (16). However, with 
the same proof as in Chapter 2 (but much simpler) one can show that one must 
not use averages in Equation (16). Using numbers one will find, however, that 
for small values of b there is only a minor error. If b is approaching 4, the error 
becomes huge. As a conclusion, using an average b in Equation (16) produced 
the in reality not existing chaos effects. This is a good example to show that us-
ing averages may produce tremendous errors. The huge error has to do with the 
fact that Equation (16) shows chaos in a mathematical sense. Though we cannot 
calculate the corresponding error in the financial world (as argued in Footnote 
1), it is assumed to be very large due to the fact that chaos is also present in e.g. 
stock prices [12]. 

Unlike the models of finance of the last chapter, in this example one can easily 
overcome the problem of using averages. The approach is the same as in diffu-
sion in the physical world. The analog to Equation (16) is called the ballistic re-
gime. There single molecules are considered. They scatter on each other or with 
other molecules. Depending on the details of each scattering the exchange of 
energy and momentum within each scattering is different. It makes thorough 
considerations next to impossible in the same way one cannot use Equation (16) 
with many different b. Because the number of molecules, the exchanged energy 
and momentum are conserved quantities, one may take averages over long time 
spans and long distances. The time spans and distances have to be so large, that 
within them many scatterings will take place, so that one can consider the aver-
age exchange of momentum and energy. Taking also into account symmetry 
considerations, this will lead to what is called hydrodynamics in physics. 

Unfortunately, a similar approach is not possible in finance if one considers 
stock prices and the like. These are non-conserved quantities. The problem was 
first addressed in [4] and let to further research and eventually to the definition 
of a conserved value in finance and economics ([5], [6]). 

The market share is a perfectly conserved quantity. If the market share of one 
person or company goes up, it must go down somewhere else accordingly. 
Building upon this, it is now easy to perform a continuum limit in Equation 
(16). Details can be found in [3], though it can be considered common sense. 
Equation (16) transforms into a differential equation: 

( ) ( ) ( ) ( )2d
1

d
N t

b N t b N t
t

= − ⋅ − ⋅                    (17) 

Unlike Equation (16) one can easily solve Equation (17) in a closed form: 

( ) ( ) ( )
( )( )( ) ( )

0 1 e

1 0 1 e 0 e

bt

t bt

N b
N t

b N b N
⋅ −

=
⋅ − − + ⋅ ⋅

               (18) 

For small values of b the iterative solution of Equation (16) gives almost an 
identical result compared to Equation (18). Of course, Equation (18) is reasona-
ble for any (positive) value of b. Similar formulas for other diffusion models and 

https://doi.org/10.4236/am.2019.107043


M. Grabinski, G. Klinkova 
 

 

DOI: 10.4236/am.2019.107043 614 Applied Mathematics 
 

also for 1M ≠  are easily obtained in the same way or can be found in [3]. 
Though there is no chaos within a properly used diffusion model, chaos effects 
may be present in market forecast. As it is impossible that the market share itself 
varies chaotically, the time to reach that market share can vary chaotically, be-
cause time is no conserved quantity.3 The diffusion model of marketing has an 
artificial time variable because each time step has the length one. However, there 
are other market forecast procedures such the one suggested in [13]. There one 
explicitly determines the market share and the time to reach it. Depending on 
the detailed numbers, one may or may not find chaos effects. In the example in 
[3] they are explicitly proven. 

So we can conclude that the never is chaos within the diffusion model. The 
wrong usage of averages seemingly produced chaos effects. Though one cannot 
show that the wrong use of averages produces a similar tremendous effect in 
finance, it is at least highly plausible. 

6. Further Research 

The purpose of this last chapter is to give some general remarks about the often 
mentioned word chaos. It is especially puzzling that chaotic variations appear so 
randomly that one can use them to produce random numbers. However, there 
are differences which we will point out. Hausdorff dimension or the Lyapunov 
exponent (see e.g. [7] or [14]) are the correct tools to evaluate chaos besides its 
random look. They clarify and quantify the difference between chaos and ran-
domness. Unfortunately, they can only be used if the chaotically varying variable 
is given by a mathematical formulation (equation). It is impossible to use them 
by considering a finite number of data points. Though we know at least from 
[12] that stock prices are varying chaotically in many cases, we cannot see chaos 
in the stock prices quoted at the stock exchange. Evaluating them statistically is 
therefore far from being flawless with no solution at hand. Therefore we leave it 
to further research. Here we are just explaining the problem. 

Chaos effects are known to mathematicians for more than a century. In the 
1960 Edward Lorenz found that long term weather forecast is impossible due to 
chaos (butterfly effect). In the 1980 it has become common in physics. Starting 
from the 1990 it has been scrutinized in business and economics. Just as an ex-
ample consider [15] or [16]. Furthermore, chaos has also be used to explain less 
quantitative but nevertheless important things like the origin of war. In this 
context the phrase “drop of honey effect” has been framed in [17].  

In this chapter we will introduce the maybe simplest mathematical model 
which shows chaos. It is the logistic map: 

( ) ( ) ( )( ), , 1 1 , 1a a af x n a f x n f x n= ⋅ − ⋅ − −                (19) 

Equation (19) is mathematically identical to the logistic diffusion model of 

 

 

3The chaos effects in the weather forecast show the same behavior. As the amount of rain is a con-
served quantity, it is well predictable. The exact time when (and where) the rain starts is by no means 
conserved. And indeed this time is practically unpredictable over a sufficiently long time period. 
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Equation (16). We have [ ]0,1x∈  and n∈  as an iteration index. Starting 
with ( )4 0.6,0 0.6f =  we will have ( )4 0.6,1 0.96f = , ( )4 0.6, 2 0.1536f = ,  , 

( )4 0.6,999 0.81141f ≈ , and ( )4 0.6,1000 0.61209f ≈ . The first iterations are 
obtained easily. The last ones are already much more complicated. Typically one 
has to take into account 10300 digits in order to get the correct results. These 
1,000 numbers look like random numbers between 0 and 1. Indeed one finds 

( )
1000

4
1

1 0.6, 0.5055
1000 n

f n
=

⋅ ≈∑
 

and also a nearly perfect equal distribution. One can also plot e.g. ( )4 ,1000f x  
as a function of x. It looks identical to plotting a random number. 

The strange (chaotic) behavior will start at 3.5699a ≈  and is fully developed 
at 4a = . 4a >  leads to a divergence. For 4a =  one can show by e.g. com-
plete induction that 

( ) ( )( )( )4
1, 1 cos 2 arccos 1 2
2

nf x n x= ⋅ − −⋅ ⋅             (20) 

Equation (20) makes it possible to calculate the 1,000 values of ( )4 0.6,f n  
within a quite short computing time. Using Equation (19) directly, which is ne-
cessary if e.g. 3.9a =  is chosen, one needs 10276 times the age of the universe as 
mentioned in Chapter 4. Please note that for any finite n Equations (19, 20) are 
strictly speaking non-chaotic, though they look very chaotic for e.g. 1000n = . 
Only for n →∞  real chaos is present in a mathematical sense. One can also 
calculate the average of ( )4 ,f x n  in the limit n →∞ . As expected one will get 

( )4
0

1 1lim d ,
2

y

n
x f x n

y →∞
⋅ =∫                     (21) 

It proves that there really is an equal distribution of the functional values be-
tween 0 and 1. 

In order to see the difference between randomness and chaos we will intro-
duce two common methods to detect chaos mathematically. The first is the 
Lyapunov exponent, which one will find in most textbooks about chaos such as 
[14]. The Lyapunov exponent ( )xλ  is defined as 

( ) ( )d ,1lim ln
dn

f x n
x

n x
λ

→∞
=                    (22) 

Equation (22) holds for every function f not just the logistic map. However, f 
must be an iterative function. 0λ >  means chaos. By inserting 4f  from Equa-
tion (20) into Equation (22) the Lyapunov exponent for the logistic map ( 4a = ) 
is easily calculated to ( )ln 2 0.693λ = ≈ . It is (almost) independent of x. For 
certain values of x the logistic map will give 0 after a finite number of iterations. 
The values are: 

1 π1 cos
2 2mx m λ  = − ∈ ⇒ → −∞  

  
              (23) 

As 4f  becomes a constant function after a finite number of operations, the 
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differentiation in Equation (22) gives zero and the logarithm minus infinity. 
Because an iterative function is a function of a function of a function …, and 

so forth, one may apply the chain rule for the differentiation in Equation (22) 
yielding a product. The logarithm transforms the product into a sum. After 
some rearrangement one finally gets 

( )
( )( )
( )1

d , ,11lim ln
d ,

n

n i

f f x n i
x

n f x n i
λ

→∞ =

−
=

−∑               (24) 

Inserting for f the logistic map of Equation (19) yields 

( ) ( )log map
1

1ln lim ln 1 2 ,
n

n i
x a f x n i

n
λ

→∞ =

= + − ⋅ −∑           (25) 

Equation (25) is the only reasonable way to calculate the Lyapunov exponent 
of the logistic map for 4a ≠ . Please note that a numerical calculation of the 
Lyapunov exponent for 4a ≠  via Equation (25) is numerically still very chal-
lenging. For 4a =  we know from above that Equation (25) will yield ( )ln 2 . 

The ( ),f x n i−  in Equation (25) look like random numbers between zero and 
one as stated above. So one might come up with the idea to calculate the Lyapu-
nov exponent of random numbers via Equation (25). Naively trying it, one will 
get a result around 0.4. More careful considerations show that the limit in Equa-
tion (25) does not exist for random numbers. This has to do with the fact that 
random numbers come arbitrarily close to 0.5. Avoiding the values for x given in 
Equation (23), the values of the logistic map may come close to 0.5 but not arbi-
trarily close. 

So we have shown that the limit of Equation (25) does exist for a chaotically 
varying f. It is ( )ln 2  for 4a = . Using the seemingly identical varying random 
numbers yields a non-existing limit in Equation (25). Here the explanation for it 
is easy as stated in the last paragraph. However, having numerical data like e.g. 
stock prices one has to decide: Is it a random variation or a chaotic one? For sure 
any limits one will build may be completely different.4 If one decides for a chao-
tic variation, one has to know how this chaos works. As stated, Lyapunov expo-
nents are positive when chaos is present, but they may take any value. 

Scrutinizing some measured data not being created by a known (or assumed) 
mathematical procedure is therefore highly risky. Ordinary statistics is at least 
doubtful. Therefore we called this last chapter further research, though it ap-
pears to be far from straight forward. 

As mentioned above there is a second method to quantify chaos. The results 
there do not have the same dire consequences for finance as we got from consi-
dering the Lyapunov exponent. It may be however important for engineering 
and related sciences. The next method is the Hausdorff dimension. Its detailed 
definition can be found in any advanced textbook such as [7] or [14]. Though 
the Hausdorff dimension is defined in any spatial dimension, we here just con-
sider two dimensions. In a two-dimensional plane one may have objects of di-
mension 0 (dots), dimension 1 (lines or curves), or dimension 2 (e.g. a filled tri-
angle). The Hausdorff dimension is a generalization of this approach which al-

 

 

4Please note that a differentiation, integration, or Fourier transformation also implies building limits. 
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lows non-integer dimensions. Its definition goes as follows. One has to cover the 
objects in a plane with N circles of diameter l. When l goes to zero, N will go to 
infinity—at least in most cases. In that limit one may write 

( ) 10
D

N l A
l

 → = ⋅ 
 

                    (26) 

The exponent D determines how fast the number of circles goes to infinity. It 
is called the Hausdorff dimension. If one has M dots in a plane, one needs M 
circles to cover the dots. So with A M=  and 0D =  Equation (26) is fulfilled. 
The Hausdorff Dimension is in this case identical to the ordinary dimension. 
Considering a square with side length c, Equation (26) is fulfilled for 2A c=  
and 2D =  as it should because a square is a two-dimensional object. 

In order to get non-integer Hausdorff dimensions, consider ( )4 ,f x n  from 
Equation (20). For any finite n it is a curve oscillating 2n  times up and down 
between 0 and 1. This line has a Hausdorff dimension of 1. Taking the limit 
n →∞  is slightly tricky but a rigorous calculation yields 4 3D =  [18]. So in 
the limit n →∞  ( )4 ,f x n  from Equation (20) becomes truly chaotic showing 
a fractal dimension. A fractal dimension is a rigorous proof of chaos like a posi-
tive Lyapunov exponent. Please note that a positive Lyapunov exponent and a 
fractal Hausdorff dimension both prove chaos, but there is no algebraic connec-
tion between them, because the Hausdorff dimension is a global measure while 
the Lyapunov exponent depends on the variable (here x). 

Instead of considering ( )4 ,f x n →∞  from Equation (20) one may consider a 
function mapping the interval ( )0,1  to a random number between 0 and 1 (and 
1 and 0 to 0). As stated, this function looks identical to ( )4 ,f x n →∞ . However, 
it is a filled square having a Hausdorff dimension of 2. So we have a second dif-
ference between randomness and chaos. In this case we have 2D =  or 

4 3D = , respectively. 
As a result, chaotically varying quantities look random. Some limits and aver-

ages are identical whether random numbers or chaotically varying ones are con-
sidered. Others are completely different such as e.g. Lyapunov exponent or 
Hausdorff dimension. A statistical analysis of experimental data such as stock 
prices is therefore generally impossible, because one does not know whether they 
are random or chaotic. Even if one has proven or at least has assumed chaos, it is 
impossible to decide the mathematical form of this chaos such as its Lyapunov 
exponent or Hausdorff dimension. 
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