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Abstract 

We present a study of the anti-centrifugal potential based on the incorpora-
tion of the quantum geometric potential of a surface [1] into the generalised 
anti-centrifugal potential [2]. As a basic variable we will use the unit normal 
to the surface. Then the total quantum effective potential appears to be the 
nonlinear sigma model plus positive terms. A 2d bilayer geometry smoothly 
connected by a neck is used to show that the anti-centrifugal potential creates 
topologically stable states. 
 
Keywords 

Anti Centrifugal Potential, Topology, Quantum States 

 

1. Introduction 

Recently a peculiar quantum behaviour of a free particle on a plane (R2) was 
discussed [3], where free particles with 0 angular momentum ( 0m = ) appear to 
be attracted to the origin of the plane (the origin of the coordinate system on the 
plane). The authors [3] have considered a Dirac δ-function potential at the ori-
gin, which breaks the translational invariance of the plane and introduces a 
length scale in the problem. It turns out that a Hamiltonian with a Dirac 
δ-function potential on the plane is equivalent to a free Hamiltonian on a plane 
with one point (at the origin) taken out [4]. Then the plane becomes non simply 
connected and the consequences for quantum mechanics are studied in [4]: 
namely the self adjointness of operators. In the present paper we will discuss a 
non simply connected surface and will study the consequences of this topologi-
cal property of the surface for the stability of the anti centrifugal states. We will 
follow our previous work [2] on the generalised anti centrifugal potential. In this 
paper [2] we have analysed the Laplace-Beltrami (LBO) operator on a surface 
where we have introduced half-geodesic coordinates [5]. The radial coordinate 
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ξ  represents the geodesic and the other η  closes around the hole at the origin. 
The line element in these coordinates is given by: ( )2 2 2d d ds hξ ξ η= + . The 
LBO separates in two parts: kinetic and potential part V for the radial coordinate 
ξ  given by 
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                       (1) 

Here 1 2K h hξ
−= − ∂  represents the Gaussian curvature of the surface and 

1
gk h hξ

−= − ∂  is the geodesic curvature. For angular momentum 0m =  (note 
that the anti centrifugal potential appears only for 0m = ) the above potential 
takes the form: 
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In addition for a general surface there is a quantum geometric potential 
(QGP). Usually it is shown that this potential is induced on a surface, using the 
method of a very high sandwich potential around the surface. This potential has 
the form [1]  
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                 (3) 

Here iκ ’s are the principal curvatures of the surface,   is the Planck’s con-
stant and 0m  is the effective mass. M is the Mean curvature and K is the Gauss 
curvature of a two-dimensional surface embedded in three-dimensional space. 

The combined potential totV  reads:  
2
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                   (4) 

2. The Normal n of a Surface as a Main Variable 

The investigations until now ware concentrated on different geometries and the 
corresponding QGP. So far the link between the QGP and the topology of the 
underlying geometry has not been discussed. 

In this paper we will use the normal to the surface n  as the basic variable 
describing the surface. Indeed the link between the normal n  of a surface and 
its Gaussian and Mean curvatures is given by the following expressions [6]:  

,M = −∇ ⋅n                            (5) 

( )222 .K = ⋅∇ + ∇ ⋅n n n                       (6) 

Now we are ready to express totV  in terms of the normal n  only. 
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 n n               (7) 

Here we have used the following identity:  

( )22 21= ⇒ ⋅∇ = − ∇n n n n                     (8) 
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Now we will consider here a surface that represents a double layer connected 
by a smooth neck. The normals n  to this surface at the infinity on the upper 
layer are directed upwards and on the lower layer are directed downwards. Let 
us note that the catenoid posses the same topology as the above described double 
layer. Usually the anti centrifugal potential is considered in cylindrical coordi-
nates because there its presence becomes immediately evident. In this case:  

( )
2

2
02eff

mV V r
m r

= +  where r is the radial coordinate—in our case this is ξ . 

3. The Number of States 

Now we would like to estimate the number of radial states (for the effective one 
dimensional Schrödinger equation in the ξ  direction). The momenta pξ  in 
the potential totV Vξ =  vary between 0 and pξ  where 

( ) ( ) ( )2 2 22
02 3 3 .

2 2gp m V n n k nξ ξ= − = ∇ ⋅ + ∇ + ≥ ∇
            (9) 

In the inequality we have used the fact that 2
gk  and ( )2n∇⋅

  are always pos-
itive. When ξ → ∞  0→ n n  = constant vector field, therefore 0Vξ →  (note 
that 0gk →  for ξ → ∞  and that the potential ( )V ξ  represents a smooth 
function of ξ  because we assume that the surface is smooth surface and as a 
consequence 

n  is a smooth function of ξ ) and 0pξ =  for ξ = ∞ , so 
ξ = ∞  represents a turning point for the quasi-classical approximation in the 
framework of which we are estimating the number of localised states. Now we 
are ready to evaluate the density of states along the ξ  axis. The density of states 
is given by the following expression [7]: 

d d 3 3d d d .
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               (10) 

where ( )θ ξ  is the azymutal angle in the ξ  direction. The unit vector that 
represents the normal to the surface is given by ( ) ( )( )cos ,sinn θ ξ θ ξ=



. Note 
that usually in the context of different spin models ( )2 dn ξ∇

  represents the 
energy density and is the one dimensional non linear sigma model. Then the to-
tal number of states is: 

3 3d d 0.
4 2

N θ= = = >
π∫ ∫ 

                    (11) 

The integration path represents the equivalence of two disconnected half cir-
cles to the left of the origin and to the right of the origin of the coordinate sys-
tem. The total gives 2π  ( d 2θ = π∫ ). 

4. Conclusion 

It is clear that using topological arguments we cannot determine the exact number 
of states. But on the other hand the localised states cannot be destroyed by any 
smooth deformation of the considered surface i.e. they are topologically stable. 
These topological considerations give the localised anti-centrifugal states addi-
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tional legitimacy. 

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this pa-
per. 

References 

[1] da Costa, R.C.T. (1981) Physical Review A, 23, 1982.  
https://doi.org/10.1103/PhysRevA.23.1982 

[2] Dandoloff, R., Jensen, B. and Saxena, A. (2014) Physics Letters A, 378, 510.  
https://doi.org/10.1016/j.physleta.2013.12.016 

[3] Cirone, M.A., Rzazewski, K., Schleich, W.P., Straub, F. and Wheeler, J.A. (2001) 
Physical Review A, 65, Article ID: 022101.  
https://doi.org/10.1103/PhysRevA.65.022101 

[4] Kowalski, K., Podlaski, K. and Rembielinski, J. (2002) Physical Review A, 66, Article 
ID: 032118. https://doi.org/10.1103/PhysRevA.66.032118 

[5] Forsyth, A.R. (2012) Lectures on the Differential Geometry of Curves and Surfaces. 
Forgotten Books, London. 

[6] Weatherburn, C.E. (1961) Differential Geometry of Three Dimensions. Vol. 1, 
Cambridge University Press, Cambridge. 

[7] Landau, L.D. and Lifshitz, E.M. (2004) Quantum Mechanics. Butterworth-Heinemann, 
Oxford. 

 
 

https://doi.org/10.4236/jmp.2019.108066
https://doi.org/10.1103/PhysRevA.23.1982
https://doi.org/10.1016/j.physleta.2013.12.016
https://doi.org/10.1103/PhysRevA.65.022101
https://doi.org/10.1103/PhysRevA.66.032118

	Topologically Stable States of the Anti-Centrifugal Potential
	Abstract
	Keywords
	1. Introduction
	2. The Normal n of a Surface as a Main Variable
	3. The Number of States
	4. Conclusion
	Conflicts of Interest
	References

