
Open Access Library Journal
2019, Volume 6, e5519
ISSN Online: 2333-9721

ISSN Print: 2333-9705

DOI: 10.4236/oalib.1105519 Jun. 28, 2019 1 Open Access Library Journal

Establishment of the Docker-Based Laboratory
Environment

Fang Hu1, Shijun Che2

1Sichuan Staff University of Science and Technology, Chengdu, China
2Chengdu No. 43 Middle School, Chengdu, China

Abstract
At present, part of the experimental environment of computer science courses
and the software development environment of the school are built based on
virtual machines. As the number of students rapidly increases, the demand
for virtual machines goes up correspondingly. Virtual machines consume a
lot of resources, and the shortage of resources becomes the bottleneck of la-
boratory construction. According to the current situation of school resources,
this paper proposes to build a docker-based laboratory environment for com-
puter course teaching as well as software development and test, so as to pro-
vide teachers and students with various lightweights and stable Linux system
services.

Subject Areas
Computer Engineering

Keywords
Docker Container, Image, Private Repositories, Cluster

1. Docker Technology Introduction

Docker is an open-source project that automates the deployment of applications
inside software containers, by providing an additional layer of abstraction and
automation of operating-system-level virtualization on Linux. Docker imple-
ments a high-level API to provide lightweight containers that run processes in
isolation, and could provide virtualization solutions [1]. Currently, PAAS and
IAAS architecture patterns are gradually changed in cloud computing platform,
instead, major cloud service providers have successively provided docker-based
container cloud services [2].

How to cite this paper: Hu, F. and Che, S.J.
(2019) Establishment of the Docker-Based
Laboratory Environment. Open Access Li-
brary Journal, 6: e5519.
https://doi.org/10.4236/oalib.1105519

Received: June 3, 2019
Accepted: June 25, 2019
Published: June 28, 2019

Copyright © 2019 by author(s) and Open
Access Library Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://doi.org/10.4236/oalib.1105519
http://www.oalib.com/journal
https://doi.org/10.4236/oalib.1105519
http://creativecommons.org/licenses/by/4.0/

F. Hu, S. J. Che

DOI: 10.4236/oalib.1105519 2 Open Access Library Journal

1.1. Docker Container and Virtual Machine

Both Docker container and virtual machine are used for resource and environ-
ment isolation [3]. Virtual machine draws upon the Hypervisor to virtualize
hardware resources, such as CPU, memory, I/O devices, etc. [4]. Its essence is to
simulate plenty of virtual servers on a physical server, and these virtual servers
can operate like a real server for a variety of application deployment. However,
the price that comes with the convenience is that each virtual machine needs
more hardware resources. Docker based on the host operating system kernel
adopts Cgroup and Namespace to implement resource isolation, which does not
need a complete operating system instance. Consequently, using Docker can
greatly reduce the resource occupancy of server CPU, memory and so on [5].
The application that runs in the Docker container directly uses the hardware re-
source of physical machines, so that the Docker has certain advantages over the
traditional virtual machine in terms of hardware utilization.

1.2. Docker Framework

Docker follows a Client-Server architecture and is divided into three main parts.
Figure 1 shows the framework diagram of Docker. Docker_Host contains con-
tainers, images, and Docker daemons. It provides a comprehensive environment
to run applications. Docker Client is the platform where the Docker Client inte-
racts with the Docker daemon. The Docker Client sends a request command to
the server, and the server performs the corresponding operations, such as build-
ing the image, running and distributing the container, and returning the result
to the client. Docker hub/registry is responsible for sharing and managing Docker
images. Users can upload or download the containing images. The official ad-
dress is https://registry.hub.docker.com/, or you can set up your own private
Docker registry. When pulling a mirror, if no warehouse address is specified, the
default will stem from the public library maintained by Docker [6]. For better
understanding Docker, some concepts are briefly introduced as follows. Docker
image is a multi-level read-only application template with a complete runtime
environment such as Linux, MySQL etc. These images are highly reusable. A

Figure 1. Docker framework.

https://doi.org/10.4236/oalib.1105519
https://registry.hub.docker.com/

F. Hu, S. J. Che

DOI: 10.4236/oalib.1105519 3 Open Access Library Journal

Mirror is used to create a container and one image can run multiple containers.
Docker images can be customized, and the corresponding content is recorded by
the Dockerfile. The advantage is that the operation and maintenance personnel
only need the Dockerfile to create the specified container, which will greatly faci-
litate the propagation and storage of Docker images, achieving the follow-up [7].
A Docker container is a running instance of a mirror that can be switched on,
started, stopped, or deleted. The container provides an isolated environment so
that there is no interface between any containers. It is featured with the secure
access to resources, which ensures that the programs in the container run in a
relatively secure environment. Containers consume low resources and can be
easily run on machines and data centers. Swarm is currently the only Docker of-
ficially specified cluster management tool. Starting from Docker 1.12, the swarm
mode is inserted. It converts a system of multiple Docker hosts into a single vir-
tual Docker host, allowing containers to form a subnet network across hosts.

2. Lab Information

All students in the Department of Information Engineering in our school are
required to take the “Network Operating System” course in the third semester.
Based on two ThinkServer QT940 servers, we have achieved virtualized cluster
of servers and built 46 virtual machines, among which 22 are installed with
Windows server2008 R2 while 26 are installed with CentOS7 using XenServer.
20 Windows-based virtual machines and 20 Linux-based virtual machines are
provided for students with their Network Operating System course experiments.
The remaining 6 are designated to software development and testing. As the
demand gradually changes recently, at least 80 Windows virtual machines and
80 Linux virtual machines are simultaneously needed to support the teaching,
and the existing virtual machine cluster resources cannot meet the demand.
When students are studying web design, website development and other courses,
they need to deploy databases, web services and other applications; also, the re-
search teams of our department have put forward the need to build a more ro-
bust integration environment.

3. Countermeasures

As we have mentioned above, Docker is featured with lightweight, fast startup,
and low resource consumption. Therefore, we use the original virtualized cluster
to build 82 virtual machines based on Windows. And we select two ThinkServer
RD 630 to build an experimental environment for the Linux platform based on
Docker. Details are shown in Table 1.

Table 1. Linux experimental environment establishment.

Server model Host OS Host Name Host IP Private Repositories Cluster Node Role

Thinkserver RD
630

CentOS7
Swarm01 192.168.3.2 Swarm01 Leader

Swarm02 192.168.3.3 Worker

https://doi.org/10.4236/oalib.1105519

F. Hu, S. J. Che

DOI: 10.4236/oalib.1105519 4 Open Access Library Journal

4. Procedure [8]

1) Install CentOS7, Docker on two servers respectively, and set the host name,
IP address, and so on. OS and Docker versions are as follows:

CentOS7 version: 3.10.0-957.10.1.el7.x86_64
Docker version:
[root@swarm01 ~] # docker version
Client:
Version: 1.13.1
API version: 1.26
Package version: docker-1.13.1-94.gitb2f74b2.el7.centos.x86_64
Go version: go1.10.3
Git commit: b2f74b2/1.13.1
Built: Tue Mar 12 10:27:24 2019
OS/Arch: Linux/amd64
Server:
Version: 1.13.1
API version: 1.26 (minimum version 1.12)
Package version: docker-1.13.1-94.gitb2f74b2.el7.centos.x86_64
Go version: go1.10.3
Git commit: b2f74b2/1.13.1
Built: Tue Mar 12 10:27:24 2019
OS/Arch: linux/amd64
Experimental: false
2) To build a local mirror repository on Swarm01. First, pull registry and run.

Then add a private image repository source by adding the following to the
/etc/docker/daemon.json file on the server Swarm01 followed by a restart of
Docker:

{
"insecure-registries": ["192.168.3.2:5000"]
}
(3) Create a CentOS7 image that supports the SSH service on Swarm01 and

push it to the local repository. Then, start the base image, create a new container
named centos7ssh, and start a Bash terminal to interact with it. The centos7ssh
image is shown in Figure 2.

[root@swarm01 /] # docker run -it --name centos7ssh centos:7 /bin/bash
Container ID is: 276490788fca.
Add the SSH service to the container centos7ssh, then submit the container

and convert it to a new image named sshd_centos7.

Figure 2. The centos7ssh image list.

https://doi.org/10.4236/oalib.1105519

F. Hu, S. J. Che

DOI: 10.4236/oalib.1105519 5 Open Access Library Journal

[root@swarm01 /] # docker commit 276490788fca sshd_centos7
sha256:1a89847f75ee631a89da101993e46ba743ab375ef8b175a874e0c4150e101

56c
Tag it and push it to the local repository.
#docker tag 192.168.3.2:5000/sshd_centos7
#dockerpush 192.168.3.2:5000/sshd_centos7.
The result is shown in Figure 3.
Figure 4 shows the procedure of how to pull 192.168.3.2:5000/sshd_centos7

from the local repository in host Swarm02.
The following steps verify remote login to the container af674da76d8d. First,

start the container that mirrors sshd_centos7 on the host Swarm01, and map the
local port 15,000 to the port 22 of the container to start the SSHD service of the
container.

docker run -d -p 15000:22 sshd_centos7 /usr/sbin/sshd –D
[root@swarm01 /] # docker run -d -p 15000:22 sshd_centos7 /usr/sbin/sshd -D
af674da76d8d1d68152b5de34e88655bd20928128ac2c87839e83883a2eb0858
The result is shown in Figure 5.
Then, open a new terminal and enter the host IP address 192.168.3.2, port:

15000.
The result is shown in Figure 6.
4) Use the swarm mode to build a cluster to manage various types of contain-

ers. The management node is Swarm01 and the worker node is Swarm02. We
should open the relevant firewall port of the host Swarm01#:

firewall-cmd --zone=public --add-port=2377/tcp --permanent
firewall-cmd --zone=public --add-port=7946/tcp --permanent
firewall-cmd --zone=public --add-port=7946/udp --permanent
firewall-cmd --zone=public --add-port=4789/udp --permanent
Initialize the cluster. The IP address of the nodes communicating with each

other is 192.168.3.2, and the default port is 2377.
The result is shown in Figure 7.
Then, add the host Swarm02 to the cluster. The list of nodes is shown in Fig-

ure 8.

Figure 3. The mirror in the local repository 192.168.3.2:5000/sshd_centos7.

Figure 4. Host swarm02 pulls mirror 192.168.3.2:5000/sshd_centos7.

https://doi.org/10.4236/oalib.1105519

F. Hu, S. J. Che

DOI: 10.4236/oalib.1105519 6 Open Access Library Journal

Figure 5. Host swarm01 container list.

Figure 6. A success login of remote connection to the container af674da76d8d.

Figure 7. Cluster initialization.

Figure 8. Cluster nodes list.

Up to now, the laboratory environment has been built and tested.
Teachers in each teaching could build a mirror image of students’ practice en-

vironment and create services according to the content of the course. Each teaching
and research section could build a continuous integration environment accord-
ing to their own needs, and optimizes program development, testing, system opera-
tion and maintenance.

5. Concluding Remarks

In summary, Docker can quickly build and deploy applications, as well as build a
highly flexible distributed system, making full use of hardware resources to reduce
corresponding costs. After two months of operation, this experimental program
solved the problem of insufficient server resources, and met the teaching needs
of relevant courses and the research needs of the teaching and research section.
Further research topic could be studying Docker’s security, resource isolation,
and exploring its deep application in the actual development environment.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

https://doi.org/10.4236/oalib.1105519

F. Hu, S. J. Che

DOI: 10.4236/oalib.1105519 7 Open Access Library Journal

References
[1] Bernstein, D. (2014) Containers and Cloud: From Lxc to Docker to Kubernetes.

IEEE Cloud Computing, 1, 81-84. https://doi.org/10.1109/MCC.2014.51

[2] Boettiger, C. (2015) An Introduction to Docker for Reproducible Research. ACM
SIGOPS Operating Systems Review, 49, 71-79.
https://doi.org/10.1145/2723872.2723882

[3] Fink, J. (2014) Docker: A Software as a Service, Operating System-Level Virtualiza-
tion Framework. Code4Lib Journal, 25, 29.

[4] Combe, T., Martin, A. and Di Pietro, R. (2016) To Docker or Not to Docker: A Se-
curity Perspective. IEEE Cloud Computing, 3, 54-62.
https://doi.org/10.1109/MCC.2016.100

[5] Mouat, A. (2015) Using Docker: Developing and Deploying Software with Contain-
ers. O’Reilly Media, Inc., Sebastopol.

[6] Matthias, K. and Kane, S.P. (2015) Docker: Up & Running: Shipping Reliable Con-
tainers in Production. O’Reilly Media, Inc., Sebastopol.

[7] Peinl, R., Holzschuher, F. and Pfitzer, F. (2016) Docker Cluster Management for the
Cloud-Survey Results and Own Solution. Journal of Grid Computing, 14, 265-282.
https://doi.org/10.1007/s10723-016-9366-y

[8] Seo, K.-T., et al. (2014) Performance Comparison Analysis of Linux Container and
Virtual machine for Building cloud. Advanced Science and Technology Letters, 66,
105-111. https://doi.org/10.14257/astl.2014.66.25

https://doi.org/10.4236/oalib.1105519
https://doi.org/10.1109/MCC.2014.51
https://doi.org/10.1145/2723872.2723882
https://doi.org/10.1109/MCC.2016.100
https://doi.org/10.1007/s10723-016-9366-y
https://doi.org/10.14257/astl.2014.66.25

	Establishment of the Docker-Based Laboratory Environment
	Abstract
	Subject Areas
	Keywords
	1. Docker Technology Introduction
	1.1. Docker Container and Virtual Machine
	1.2. Docker Framework

	2. Lab Information
	3. Countermeasures
	4. Procedure [8]
	5. Concluding Remarks
	Conflicts of Interest
	References

