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Abstract 
In this article, we are interested in solving a combinatorial optimization 
problem, the shortest path problem in a multi-attribute graph, by the out-
ranking methods. A multi-attribute graph has simultaneously qualitative and 
quantitative criteria. This situation gives rise to incomparable paths thus 
forming the Pareto front. Outranking methods in Multi-criteria Decision 
Making (MCDM) are the only methods that can take into account this situa-
tion (incomparability of actions). After presenting the categories of Mul-
ti-criteria Decision Making (MCDM) and the difficulties related to the prob-
lems of the shortest paths, we propose an evolutionary algorithm based on the 
outranking methods to solve the problem of finding “best” paths in a mul-
ti-attribute graph with non-additive criteria. Our approach is based on the 
exploration of induced subgraphs of the outranking graph. Properties have 
been established to serve as algorithmic basis. Numerical experiments have 
been carried out and the results presented in this article. 
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1. Introduction 

The concept of relations was born out of difficulties encountered with diverse 
concrete outranking problems [1]. They can handle simultaneously qualitative 
and quantitative criteria. Criteria scores can be left in their own units, which is 
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important when they are related to diverse domains (e.g. economics, ecology and 
sociology). This method makes it possible to take into account the incompara-
bility of actions. Outranking methods are the only methods that can take into 
account this situation [2] [3]. Unfortunately, outranking methods are not able to 
compare a lot of alternatives ([3] [4] [5]). For that, [6] [7] [8] argue that the out-
ranking methods seem inappropriate for land suitability assessment. 

Although this method is simple and allows a very thorough analysis of the 
robustness, this limitation makes several researchers prefer to use the MAUT 
(multiple attribute utility theory) method. This other approach tries to define a 
complete pre-order on the set of alternatives. Most often, the formal rules con-
sist in mathematical formulas that lead to an explicit definition of a unique crite-
rion synthesizing the m criteria. The weaknesses that result from this method are 
the reduction of the multicriteria problem into a unique criterion problem. The 
consequence of this reduction is that all the actions are comparable, a property 
that is not always desirable to have because one observes that for a human deci-
sion-maker, there are situations involving incomparable alternatives [9]. More-
over, it is often difficult to gather all the criteria of the decision-maker in a single 
criterion, and sometimes impossible to model such a function in a relevant way. 

In view of the above, we thought it would be useful to find a way to overcome 
the weakness of limiting alternatives using the outranking method. In our work, 
we want to show that it is possible to remove this limitation. Instead of searching 
for the “best” solutions directly in the outranking graph, which is impossible if 
there are a very large number of alternatives, we show how to iteratively explore 
its induced subgraphs. To test our approach, we applied it to the shortest paths 
problem in a multi-attribute graph. 

In the first part, we present the basic concepts related to Multi-criteria Deci-
sion Making, multi-attribute graphs, difficulties in finding the shortest multicri-
teria path and the SPARTE (Solution au PARadoxe de voTE—Solution to the 
voting paradox) outranking method which is very close to the ELECTRE (ELi-
mination Et Choix Traduisant la REalité—elimination and choice expressing re-
ality) outranking method. In the second part, we introduce our method by de-
scribing some properties that we will use as algorithmic basis. Finally, we present 
in the third part our numerical experiments and the results obtained. 

2. Background Concepts 
2.1. Notations 

( ) ( )( ),G V G E G= : graph G defined by the set of vertex V(G) and the set of 
edge E(G); 

Gc: condensed graph of the graph G; 
P(s, t): set of all elementary (s, t)-paths; 
Kr[G] or Kr: Reduced Kernel of a graph G; 
K[G] or K: Kernel set of a graph G; 

( )pλ : Performance of path p in a strongly connected component; 
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kδ : weight of criterion k; 
wk (u, v): Evaluation of edge (u, v) according to criterion k; 
Wk(p): Evaluation of the path p on the criterion k; 

( ) ( ) ( ) ( )( )1 2, , , mW p W p W p W p=  : Evaluation of the path p on m criteria. 

2.2. Multi-Attribute Decision Making 

Multi-criteria Decision Making (MCDM) is classified into two general catego-
ries: multi-objective decision making (MODM) and multi-attribute decision 
making (MADM) [10] [11], based on the different purposes and different data 
types. In the MADM problems, the decision-maker must choose from among a 
finite number of explicitly identified alternatives, characterized by multiple 
attributes, where these attributes define the decision criteria. The methods for 
dealing with MADM problems can be mainly divided into multiple attribute 
utility theory (MAUT) and outranking methods (especially refer to ELECTRE 
[12] [13] and PROMETHEE (Preference Ranking Organisation METHod for 
Enrichment Evaluations) methods [14]). 

2.3. Graph 

1) Definitions and notation 
A graph G is a pair of sets (V, E), where V is the set of vertices and E is the set 

of edges, formed by pairs of vertices. In order to avoid any possible confusion, 
the vertex set of a graph G is denoted by V(G) and its edge set by E(G). A di-
rected graph (or just digraph) G consists of the directed edges. A digraph H is a 
subdigraph of a digraph G if ( ) ( )V H V G⊆ , ( ) ( )E H E G⊆  and every edge 
in E(H) has both end-vertices in V(H). If every edge of E(G) with both 
end-vertices in V(H) is in E(H), we say that H is induced by V(H) and H is called 
an induced subdigraph of G. A strongly connected component H of the digraph G 
is a directed subgraph of G (not a null graph) such that H is strongly connected, 
but if we add any vertex or edge to it, then it is not strongly connected anymore. 
The condensed graph Gc of the digraph G is obtained by contracting all the 
edges in every strongly connected component. A subset [ ] ( )K G V G⊆  is a 
kernel if it is independent and absorbing/dominating. K[G] is dominating if 

[ ] ( ) ( ), / ,u K G v v u E G∀ ∈ ∃ ∈ . It is independent if [ ] ( ) ( ), , ,u v K G v u E G∀ ∈ ∉ . 
A kernel represents a set of winning positions in a graph [15]. 

2) Multi-Attribute graph 
Let G = (V, E) be a directed and connected graph. Without loss of generality, 

we only considered the graph in which there exists at most one edge between a 
pair of ordered nodes. For a given graph, each edge connecting two nodes u and 
v is specified by a weight vector ( ) ( ) ( ) ( )( )1 2, , , , , , ,mu v u v u v u vω ω ω ω=   
where ( ), , 1, 2, ,k u v k mω =   is the evaluation of the edge ( ),e u v E= ∈  ac-
cording to the criterion (or point of view) k. m represent the number of criteria. 
Each criterion is associated with a value kδ  representing its weight. 

A criterion k can be quantitative or qualitative. If it is a qualitative criterion, 

https://doi.org/10.4236/ajor.2019.93007
https://context.reverso.net/traduction/anglais-francais/possible+confusion


F. G. Gazawa et al. 
 

 

DOI: 10.4236/ajor.2019.93007 117 American Journal of Operations Research 
 

( ),k u vω  can be expressed in words (for example, “very bad”, ..., “average”, ..., 
“very good”) or letters with which numbers are associated to insist on the order 
that exists between these words/letters. In this case, they are ordinal numbers. 
They do not have an algebraic structure, which prohibits the use of arithmetic 
operations (for example addition “+”, multiplication “×”) on such numbers. 

2.4. Shortest Paths Problem in Multi-Attribute Graph 

Given a directed graph G = (V, E), an origin s V∈  and a destination t V∈ , 
the shortest-path problem (SPP) aims to find the minimum distance path in G 
from s to t. The Multi-Attribute Shortest Paths Problem is an extension of the 
traditional shortest path problem and is concerned with finding a set of efficient 
paths with respect to two or more criteria that are usually in conflict and in-
commensurable. In MODM, the problem is known to be NP-hard [16] [17]. The 
objectives are usually conflicting and there exists no best solution to the prob-
lem, but a set of Pareto optimal solutions representing the best compromise 
among the objectives [18] [19]. 

Let ( ),P s t  denote the set of all s-t paths in G. If a path ( )1 2, , , Lp e e e= 

( ),P s t∈ . Its evaluation is the vector ( ) ( ) ( ) ( )( )1 2, , , mW p W p W p W p=   
where ( )kW p  is the path evaluation according to the criterion k. If k is a quan-
titative criterion, ( ) ( )k k

e p
W p eω

∈

= ∑ , 1,2, ,k m=   (additive criterion). When 
k is a qualitative criterion, ( ) ( ) ( ) ( )( )1 2, , ,k k k k LW p opt e e eω ω ω=   (Non-additive 
criterion) where “opt” may be one of the following operator min, max, median, 
mean, etc. 

In general a multi-criteria shortest path is a kind of vector optimization prob-
lem, which can be described as follows: 

 
( )

( ) ( ) ( ) ( )( )1 2,
Minimize , , , mp P s t

W p W p W p W p
∈

= “ ” . To solve this problem, we have 

two large groups of approach. 
The first one is called traditional approach. It can be characterized by assign-

ing a well-defined degree to the m performances ( ) ( ) ( )( )1 2, , , mW p W p W p

 values. Most often a numerical value ( ) ( ) ( ) ( )( )1 2, , , mv p W p W p W p= Ψ   is 
assigned to each ( ),p P s t∈  on an appropriate scale. The way the aggregation 
problem is addressed in this approach leads to define a complete pre-order on 
the set ( ),P s t . Most often, the formal rules consist in mathematical formulas 
that lead to an explicit definition of a unique criterion synthesizing the m crite-
ria. This is the case with MAVT, MAUT, SMART, TOPSIS, MACBETH, AHP, 
etc. The complete preorder on the set ( ),P s t  can be established. We usually 
find a better solution than all the others. In anyway, this approach does not allow 
any incomparability [20]. However, in a real traffic situation, the decision maker 
is not content with one solution but with a set of more effective solutions to 
make his own choice. 

The second approach is based on pairwise comparison of actions (paths). The 
approach can be reduced to a single binary relation. This second operational ap-
proach has led to various methods, most of which are covered by the label of 
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outranking methods (mainly PROMETHEE and ELECTRE methods). For the 
choice problematic ( .Pα ) solving the problem consists of two parts: construc-
tion of an outranking graph, and exploitation of the graph corresponding to this 
relation. The subset searched is the kernel of the graph [20]. 

2.5. Outranking Method SPARTE 

The SPARTE outranking method [21] is based on the general approach of the 
ELECTRE outranking methods. Let p and q be two paths belonging to the set 

( ),P s t . It is possible to build the following sets of indices: 
• ( ) ( ) ( ){ }, / j jJ p q j W p W q+ = > , the set of criteria for which the path p is 

preferred to the path q. 
• ( ) ( ) ( ){ }, / j jJ p q j W p W q− = < , the set of criteria for which the path q is 

preferred to the path p. 
• ( ) ( ) ( ){ }, / j jJ p q j W p W q= = = , the set of criteria for which the path q is 

equal to the path p. 
The preference index is similar to the global concordance index of the 

ELECTRE methods. It is calculated as follows: ( ) ( )

1

,
k

k J J

m

i
i

C p q

δ

δ

+ =∈ ∪

=

=

∑

∑
. 

There is a difference only in the formulation of the discordance matrix. The 
idea is based on the assumption that outranking can be accepted even if the mi-
nority shows strong opposition [21]. It is enough for the majority to impose the 
option with a determination at least as important as that expressed by the mi-
nority to reject it. To formulate this idea, we define an adhesion indicator, de-
noted ( ),m p q , at any point symmetrical to the opposition indicator given by 
[21]: 
• ( ) ( ) ( )( ) ( ){ }, , where ,j jm p q median W q W p j j J p qδ += − ∈ ;  

• ( ) ( ) ( )( ) ( ){ }, , where ,j jm p q median W q W p j j J p qδ −′ = − ∈ ;  

• ( ) ( ) ( )1 if , ,
, .

0 otherwise
m p q m p q

D p q
′ ≥= 


 

The outranking relations S of which meaning is at least as good as is defined 
as follow: 

( ) ( ) ( )*1 if , and , 1
,

0 otherwise
C p q c D p q

S p q
 ≥ == 


 where [ ]* 0.5,1c ∈  is the con-

cordance threshold. 

3. Our Contribution: Kernel Search in Combinatorial Set 

The search for the kernel of a graph is an NP-complete problem [22]. If the 
graph is cyclic, the kernel set is not unique and may not exit [23]. However, 
when a graph is directed and acyclic, there is always a single kernel [24] and can 
be computed in polynomial time [25]. 
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3.1. Definitions and Properties 

A subset Kr[G], denoted simply Kr when there is no possibility of confusion, of 
the kernel in a digraph ( ),G V E=  is a reduced kernel of G if it is independent, 
absorbing/dominating and not dominated. Kr is not dominated if  

( ) ( ), \ / ,u Kr v V Kr v u E∀ ∈ ¬∃ ∈ ∈ . This means that there is not a dominated 
solution that outranked u. 

Let ϕ  be a function which at a digraph G matches its condensed graph 
( ) ( )( ),Gc V Gc E Gc= . Where ( )V Gc  is the set of strongly connected compo-

nents of G and ( ) ( ) ( ) ( ) ( ) ( ){ }, / , ,E Gc X Y V Gc V Gc x y X Y x y E= ∈ × ∃ ∈ × ∧ ∈ . 
This transformation can be carried out in polynomial time by the Kosaraju algorithm 
[26] and the Tarjan algorithm [27]. The condensed graph ( ) ( )( ),Gc V Gc E Gc=  is 
an acyclic digraph [28]. 

Property 1: If the digraph G is acyclic then Gc G= . The condensed graph 
Gc and G are the same. 

Proof: Let ( )V Gc  the set of strongly connected components of an acyclic 
graph ( ),G V E= . Let ( )U cV G∈ . Suppose that ( )1 ,U u u U′> ⇒ ∃ ∈  there 
is a way from u to u′  and another way from u′  to u. Thus, the way from u to 
u′  connected to the way from u′  to u gives a cycle. Absurd because Gc is an 
acyclic digraph. So ( ) ( ), 1U V Gc U V Gc V∀ ∈ = ⇒ = .

 
Then ( )V Gc V= . 

Similarly ( )E Gc E= . By definition 

( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ){ }

, / , ,

, / ,

E Gc X Y V Gc V Gc x y X Y x y E

x y V x y E

= ∈ × ∃ ∈ × ∧ ∈

= ∈ ∈  

Theorem 1: In an acyclic digraph, there exist at least one source (a vertex of 
which in-degree is zero) and at least one sink (a vertex of which out-degree is 
zero) [28]. 

In this method, we reduce the search for “best solutions” in search of the sub-
set Kr K⊆  which is actually the set of source vertices in the outranking graph. 
Let ( ) ( )( ),Gc V Gc E Gc=  be the condensed graph of an outranking graph. Let 
Kr[Gc] denote its reduced kernel. We have: 

Property 2: Let ( ),i i iG V E=  be an induced subgraph of ( ) ( )( ),Gc V Gc E Gc=  
then: 

a) [ ]iKr G φ≠ . 
b) If a vertex [ ] ip Kr Gc V∈ ∩  then [ ]ip Kr G∈ . 
Proof: 
a) The subgraph of an acyclic graph is acyclic and therefore admits at least one 

source. So [ ]iKr G ϕ≠ . 
b) If [ ]p Kr Gc∈  then iq V¬∃ ∈  that ( ), iq p E∈  then [ ]ip Kr G∈ .if ip V∈ . 

Property 3: Let ( ),i i iG V E=  and ( ),j j jG V E=  be two graphs induced of 
Gc, respectively having Kr[Gi] and Kr[Gj] as a reduced kernel. If we construct a 
third induced subgraph [ ]( )( ),k i j kG Kr G V E= ∪  then: 

a) [ ] [ ]k i jKr G Kr G Kr G ⊆ ∪   . 

b) If ( )i jV V V Gc∪ =  then [ ] [ ]kKr G Kr Gc⊇ . 
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Proof: 
a) Let [ ]kp Kr G∈  ⇒  [ ]ip Kr G∈  by definition. Let’s show that jp Kr G∈    . 

Let’s assume that [ ]ip Kr G∉  ⇒  [ ]( )i jKr Gq V∀ ∈ ∪ , ( ), jq p E∉
 

because 

[ ]kp Kr G∈ . So jp Kr G∈    . Conlusion [ ] [ ]k i jKr G Kr G Kr G ⊆ ∪   . 

b) Let [ ]p Kr Gc∈  ⇒  ( ) ( ) ( ), ,q V q pG Ec Gc∀ ∈ ∉ . We have  
( )i j GV V cV∪ =  ⇒  ( )iE E Gc⊆  and ( )jE E Gc⊆  then ( ), iq p E∉  and 

( ), jq p E∉  for all i jq V V∈ ∪ . Then [ ]i jq Kr V V∀ ∈ ∪ , ( ), kq p E∉ . Hence 
∈p [ ]kKr G . 
Theorem 2: Let ( ),G V E=  be an acyclic graph, and be the subsets 
, 1, 2, ,iV i n=   of vertices V such that 

1

n

i
i

V V
=

=


 then the reduced kernel Kr of 
G(V, E) can be obtained recursively from its n subsets by the following recursion 
relation: 

Step 1: Let ( )1 11 ,G V E=  the induced subgraph with its reduced kernel Kr1. 
Step 2: Construct the induced subgraph ( )( )2 1 22 ,G V Kr E= ∪  and extract its 

reduced kernel Kr2. 
... 
Step n: Construct the induced subgraph ( )( )( )1 ,n nnGn V Kr E−= ∪  and extract 

its reduced kernel Krn. 
So [ ]

1

n

n i
i

Kr Kr kr G
=

′⊆ ⊆


. Where ( )( ),ii iG GV E′ ′=  are induced subgraphs 
formed only of Vi vertices. 

Proof: Follows from property 3: 
− We have nKr Kr⊆  from proprety 3b. 
− We have [ ]

1

n

n i
i

Kr kr G
=

′⊆


 from proprety 3a. 

3.2. Performance of Actions in a Strongly Connected Component 

When a fictional alternative is a strongly connected component and belongs to a 
reduced kernel, we evaluate the performance of each real alternative that com-
poses it in order to keep only the alternatives that are really significant in the 
component. We proceed as follows for evaluation. 

In a first time we determine for each alternative p all of its successors 
( ) ( ){ }/  and notN p p pSp p Sp+ ′ ′ ′= , all of its predecessors  
( ) ( ){ }/  and notN p p p Sp pSp− ′ ′ ′= , the set of alternatives that are indifferent to 

it ( ) { }/  and I p p p Sp pSp+ ′ ′ ′=  and the set of actions that are incomparable to 
it ( ) ( ) ( ){ }/ not  and notI p p p Sp pSp− ′ ′ ′= . 

In a second time we calculate the performance ( )pλ  of each alternative in 
the strongly connected component as follow: 

( ) ( ) ( )
( ) ( )( )

( )

( )
( )q I p

N q N q
I p

p N p N p
nI p

λ
+

+ −
−

∈+ −
+

−

= − + −
∑

 where n is 

the size of the strongly connected component. 
In Figure 1 we have an example of strong components of a graph with two 

subsets of vertices forming the reduced kernel { }{ }9 4 5 6 7, , , ,rK x x x x x= . The  
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Figure 1. Example of a reduced kernel of a strongly connected component. 

 
Table 1. Evaluating the performance of each real alternative of a strongly connected 
component {x4, x5, x6, x7}. 

 ( )N x+  ( )N x−  ( )I x+  ( )I x−  ( ) ( )N x N x+ −−  ( )xλ  

x4 {x8} {x6} {x5, x7} { } 0 2 

x5 {x2, x6, x7} { } {x4} { } 3 3 

x6 {x4} {x5} { } {x7} 0 −0.75 

x7 {x2, x8} {x5} {x4} {x6} 1 0.75 

 
subset { }4 5 6 7, , ,x x x x  is not a singleton whose performance (see Table 1) of 
each alternative in the strongly connected component must be calculated. De-
pending on the problem, one can either retain the best performer or retain only 
those who have a positive performance. 

3.3. Using the Evolutionary Algorithm for the Problem 

An evolutionary algorithm operates on a set of candidate solutions that is sub-
sequently modified by two basic operators: selection and variation. Selection is 
used to model the reproduction mechanism among living beings, while variation 
mimics the natural capability of creating new living things by means of recom-
bination and mutation [29]. In our proposed evolution algorithm, the selection 
consists in looking for the paths forming the reduced kernel of the outranking 
graph. This operation subdivides the current population into two subsets: the set 
of paths forming the reduced kernel of the outranking graph and the set of paths 
that do not belongs to the first subset. The crossing operator consists of selecting 
a path among those forming the kernel of the outranking graph and crossing it 
with another path. With a probability pr, this other path is chosen from the same 
subset and chosen in another subset with the probability 1 − pr. The mutation 
operation will consist in deleting or inserting an edge from a randomly selected 
kernel path. The algorithm is as follows: 

1) Generate random initial population Pop with size N; 
2) Perform crossover and mutation to members of the mating pool; 
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3) Form a new population PopNew made up of Pop and the offspring result-
ing from crossing and mutation; 

4) Calculate the matrix performance of PopNew be MatPop; 
5) Find the outranking graph; 
6) Find the condensed outranking graph from the main outranking graph and 

look for its reduced kernel; 
7) Form two subsets: KernelPop population from the kernel of condensed 

outranking graph and NotKernelPop population not belonging to KernelPop; 
8) Assign Pop the population members of KernelPop or remove in Pop all 

population members of NotKernelPop; 
9) Return Pop and stop if maximum number of generations is reached. Else 

consider go to Step 3. 

3.4. Convergence of the Algorithm 

We used two performance indices [30] to measure the convergence of our mul-
ti-attribute optimization method. The Error Ratio (ER) checks the proportion of 
non true Pareto points in the approximation front over the population size and 
the Generational Distance (GD) measures how far the evolved solution set is from 
the true Pareto front. We can observe the evolution of these two metrics in Figure 
2. The algorithm is applied on a graph of 50 vertices having 734,455 paths. 

4. Experiments and Results 
4.1. Test Environment and Implementation 

The programming environment used for implementation of the approach is  
 

 
Figure 2. Evolution of the error ratio and generational distance curves during generation. 
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MATLAB (Matrix Laboratry). All experiments were performed on a computer 
with a 2.3 GHz Intel(R) Core(TM) i3-2348M CPU and 4.00 GB of RAM. Three 
different outranking methods are implemented. Five parameters: CPU time 
(second), Size of “best” paths, Error Ratio (ER), Generational Distance (GD), 
Percentage of paths found (%) and Generation) were chosen to study the con-
vergence of our method. 

4.2. Tables of Results and Discussion 

Example 1: Multi-attribute graph with nine vertices. 
In Figure 3, we present a graph with two criteria to be minimized simulta-

neously. The first is an additive criterion and the second is a non-additive, but a 
bottleneck criterion. In Figure 4, we can see the points representing the 24 paths 
of the graph, with the two criteria to be minimized. Among these paths, five 
form the reduced kernel of the outranking graph. These five paths are located on 
the Pareto front. The paths forming the reduced kernel are: 

Path 1 (10; 30): S→C→G→T; Path 2 (15; 25): S → B → C → T; Path 3 (13; 
27): S → B → C → G → T. 

Path 4 (40; 10): S → A → E → T; Path 5 (20; 15): S → A → D → C → T. 
Example 2: Multi-attribute graph with 50 vertices. 
An acyclic graph with 50 vertices of 10% density and two attributes was ran-

domly generated for simulation. The first criterion is additive, the second is a 
bottleneck criterion. At first, we generated all the paths in the graph. The ex-
haustive search time was 9 h 20 m 10 s. The number of paths found is 734,455. 
The second step was the generation of Pareto-efficient paths. Table 2 shows the 
CPU time and size of Pareto-efficient paths. The symbol “−” (resp. “+”) means 
that the criterion must be minimized (resp. maximized). Thus for example (+, −) 
means that the first criterion is maximized while the second is minimized. Third, 
we ran our method and compared the “best solutions” obtained with the Pareto 
front. For each sense of optimizing criteria, we ran our method ten times. Tables 
3-5 present the results obtained by applying our method respectively to PROMETHEE,  

 

 
Figure 3. Example of multi-attribute graph. 
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Figure 4. Different paths: the paths forming the reduced kernel located on pareto front. 

 
Table 2. The set of Pareto solutions for exhaustive search. 

Sense of optimizing criteria (−, −) (−, +) (+, −) (+, +) 

CPU time (m:s) 6 m 27 s 2 m 39 s 13 m 47 s 18 m 35 s 

Size of Pareto front 4 35 35 8 

 
ELECTRE SPARTE methods. 

In Table 3 to Table 5, we have on the first row the execution time of our al-
gorithm; on the second row the number of the best solutions found; on the third 
and fourth rows the Error Ratio and Generational Distance performance me-
trics. On the fifth row the percentage of distinct solutions found during the 
search for best solutions. And finally, the number of generations reached itera-
tively by the genetic algorithm. On the columns, for the ten executions, we dis-
play the minimum (min), the average (avg) and the maximum (max) value of 
each parameter. 

In Figure 5, we observe all the solutions forming the reduced kernel and the 
set of combinatorial alternatives. This is the case where the first criterion is 
maximized while the second criterion is minimized. 

By observing these results, the PROMETHEE method has better Error Ratio 
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(ER) and GD. However the number of solutions provided is not significant 
compared to the other two methods. The SPARTE and ELECTRE methods 
yielded similar results. In these two methods, the five observation parameters are 
very satisfactory. On the four senses of optimizing criteria, the SPARTE method 
is better in execution time. The time does not exceed 4 minutes and the error ra-
tio is always very close to 0. The distance of the set of “best” solutions found in 
relation to the Pareto front is equal to 0 for the best execution cases. The per-
centage of paths found never exceeded 2%. This shows that our method does not 
need to explore a very large number of alternatives to converge to the Pareto 
front. 

 
Table 3. PROMETHEE method coupled with an evolutionary algorithm. 

Sense of optimizing criteria (−, −) (−, +) (+, −) (+, +) 

Statistical parameters Min Avg Max Min Avg Max Min Avg Max Min Avg Max 

CPU time (second) 51.7 53.1 55.5 88.5 89.5 91.2 95.3 97.4 98.9 137 144 153 

Size of “best” paths 1 1 1 1 1 2 1 1 1 1 1 1 

Error Ratio (ER) 0 0 0 0 0 0 0 0 0 0 0.4 1 

Generational Distance (GD) 0 0 0 0 0 0 0 0 0 0 28.3 71.6 

Percentage of paths found (%) 1.53 1.54 1.56 1 1.04 1.07 1.02 1.19 1.49 1.64 1.81 2.11 

Generation 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 

 
Table 4. Statistic ELECTRE1 method coupled with an evolutionary algorithm. 

Sense of optimizing criteria (−, −) (−, +) (+, −) (+, +) 

Statistical parameters Min Avg Max Min Avg Max Min Avg Max Min Avg Max 

CPU time (second) 0.56 5.15 14.6 13.5 113 152 140 146 151 2.26 55.3 138 

Size of “best” paths 4 4 4 32 34 35 28 33 35 7 8 8 

Error Ratio (ER) 0 0 0 0 0.01 0.03 0 0.37 0.62 0 0.03 0.14 

Generational Distance (GD) 0 0 0 0 7.4 37 0 138 210 0 14.3 71.6 

Percentage of paths found (%) 0.03 0.08 0.13 0.43 1.21 1.57 1.33 1.45 1.68 0.11 0.75 1.31 

Generation 16 65 137 243 1547 2000 2000 2000 2000 45 883 2000 

 
Table 5. Statistic SPARTE method coupled with an evolutionary algorithm. 

Sense of optimizing criteria (−, −) (−, +) (+, −) (+, +) 

Statistical parameters Min Avg Max Min Avg Max Min Avg Max Min Avg Max 

CPU time (second) 0.26 1.21 5.69 46.3 151 185 153 165 175 5.23 113 157 

Size of “best” paths 4 4 4 32 33 35 26 32 36 7 8 8 

Error Ratio (ER) 0 0 0 0 0.02 0.09 0 0.15 0.61 0 0 0 

Generational Distance (GD) 0 0 0 0 24.9 106 0 75.1 211 0 0 0 

Percentage of paths found (%) 0.02 0.05 0.15 0.79 1.31 1.48 1.35 1.5 1.62 0.18 1.01 1.35 

Generation 5 30 149 586 1792 2000 1792 1979 2000 85 1505 2000 
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Figure 5. Different paths: the paths forming the reduced kernel located on Pareto front. 

5. Conclusions and Perspectives 

In this paper, we have shown that it is possible to use the outranking methods 
for solving a multi-attribute combinatorial problem. This approach is based on 
searching for the reduced kernel of the outranking graph. Theorem 2, which we 
have established on the reduced kernel of induced subgraphs, has served us as an 
algorithmic basis. Thus, by iteratively searching for the reduced kernel of the 
induced subgraphs, it is possible to extract the solutions from a combinatorial 
optimization problem. Three outranking methods: PROMETHEE, SPARTE and 
ELECTRE were each coupled to an evolutionary algorithm. The resulting solu-
tions were compared to the Pareto front. The results were very satisfactory for 
the SPARTE and ELECTRE methods compared to the PROMETHEE method. 

As perspectives we intend to use this method with other metaheuristic such as 
simulated annealing and Taboo search, and apply it to other combinatorial op-
timization problems like Minimum Spanning Tree Problem multi-attributes that 
have real applications in the network coverage domain. 
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