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Abstract 
The purpose of this paper is to add some complements to the general theory 
of higher-order types of asymptotic variation developed in two previous pa-
pers so as to complete our elementary (but not too much!) theory in view of 
applications to the theory of finite asymptotic expansions in the real domain, 
the asymptotic study of ordinary differential equations and the like. The 
main results concern: 1) a detailed study of the types of asymptotic varia-
tion of an infinite series so extending the results known for the sole power 
series; 2) the type of asymptotic variation of a Wronskian completing the 
many already-published results on the asymptotic behaviors of Wronskians; 
3) a comparison between the two main standard approaches to the concept of 
“type of asymptotic variation”: via an asymptotic differential equation or an 
asymptotic functional equation; 4) a discussion about the simple concept of 
logarithmic variation making explicit and completing the results which, in the 
literature, are hidden in a quite-complicated general theory. 
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1. Introduction 

This paper is a direct continuation of [1] [2] and contains some complements to 
the theory developed therein with the purpose of completing the general theory. 
This first section, besides a list of notations, contains a summary of the various 
involved classes of functions and their main characterizations. 
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 §2 contains a detailed study of the possible types of asymptotic variation of a 
convergent infinite series ( )1 n nn c xφ∞

=∑  where ( ){ }n n
xφ  is an asymptotic 

sequence at +∞  and each ( ){ }n xφ  has a definite index of variation. Two 
quite different situations occur depending on whether  

( ) ( )1 1( ) , , or ( ) , .n nx x x x x xφ φ φ φ→ +∞ → +∞     

The first case is elementary whereas, in treating the second case, we give 
non-trivial extensions of one known result for power series. 
 §3 contains results concerning the type of asymptotic variation of a Wrons-

kian whose arguments are functions with a definite index of asymptotic vari-
ation at +∞  so completing the extensive study of the asymptotic behaviors 
of Wronskians developed in two previous papers. The obtained results are 
quite natural and are based on the asymptotic study of a Vandermonde de-
terminant with a gap in the exponents, a study which parallels the analogous 
investigation for standard Vandermondians in the previous papers. 

 §4 contains a comparison between the two main standard approaches to the 
concept of “type of asymptotic variation”: via an asymptotic differential equ-
ation or an asymptotic functional equation. The theory developed in [1] [2] is 
necessarily based on asymptotic differential equations in order to define 
higher-order types of variation for differentiable functions, whereas the more 
general Karamata theory is based on asymptotic functional equations. We 
show that for a function with a monotonic derivative the two approaches 
coincide for each one of the studied classes of functions, a result already 
known for regular variation. 

 §5 contains a discussion about the concept of logarithmic variation starting 
from suitable asymptotic functional equations and showing, as in the pre-
vious section, the equivalence with corresponding asymptotic differential 
equations. Some of the results may be found in the literature but hidden in a 
quite-complicated general theory. The studied concept (namely, three related 
concepts) completes the list of the fundamental types of asymptotic variation 
in the way that we wished to systematize this theory. 

 §6 gives results on the inverse of a function with a definite type of exponen-
tial variation. The results require some calculations and are clarified by the 
concepts of logarithmic variation. 

 §7 contains some minor complements to the theory. 
 §8 contains the conclusions about the whole theory developed in three pa-

pers. 
 §9 contains a few bibliographical notes and a list of corrections for [1] [2]. 

Here is a list of general notations used in [1] [2]. 
 { }: 1, 2,=  ; { }: 0, 1, 2,= ± ±  ; 
 real n:  li e= ; { }extended real line :≡ = ±∞ ; 
 ( ) ( )0f AC I AC I f∈ ≡ ⇔  is absolutely continuous on each compact sub-

interval of the interval I; 
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 ( ) ( ) ( )kkf AC I f AC I∈ ⇔ ∈ ; 
 For ( )kf AC I∈  we write “ ( ) ( )

0

1lim k
x x f x+
→ ” meaning that x runs through 

the points wherein ( )1kf +  exists as a finite number; ( ) ( ): limxf f x→+∞+∞ = . 
 The differentiation operators: ( ) ( ) ( ) ( )( ): ; :k kDf x f x D f x f x′= = . 
 The logarithmic derivative: :D f f f′=



. 
 Hardy’s notations: 

“ ( ) ( ) 0,f x g x x x→ ” or, equivalently “ ( ) ( ) 0,g x f x x x→ ” stands for 
( ) ( )( ) 0,f x o g x x x= → ; 
“ ( ) ( ) 0,f x g x x x→ ” or, equivalently “ ( ) ( ) 0,g x f x x x→ ” stands for 
( ) ( )( ) 0,f x O g x x x= → . 

 The relation of “asymptotic similarity”, “ ( ) ( ) 0,f x g x x x→ ” means that  

( ) ( ) ( )1 2c g x f x c g x≤ ≤  x∀                          

in a deleted neighborhood of 0x  ( constant 0ic = > ).         (1.1) 

 The relation of “asymptotic equivalence”: 

( ) ( ) 0,f x g x x x→  stands for ( ) ( ) ( ) 01 1 ,f x g x o x x= + →   . 

 The relation:  

( ) ( )( ) ( )
( ) ( ) ( )

( )
0

0def
0

,

near ,
, lim ;

x x x

f x h x g x x x
f x g x x x x h x

→ ∈

= ∀= +∞ → ∈ ⇔ = +∞ 

 (1.2) 

and a similar definition for notation ( ) ( )( ) ( )0,f x g x x x x= −∞ → ∈  . In par-
ticular:  

( ) ( ) ( ) ( )
0

def
0 ,

1 , lim .
x x x

f x x x x f x
→ ∈

= ±∞ → ∈ ⇔ = ±∞


         (1.3) 

 Factorial powers:  

( ) ( )0 1: 1; : ; : 1 1 ; , ;k k kα α α α α α α α= = = − − + ∈ ∈       (1.4) 

where kα  is termed the “k-th falling ( ≡ decreasing) factorial power of α ”. 
Notice that we have defined 00 : 1= . 
 Everywhere the symbol “ log x ” stands for “ ( )elog x ” := “the natural loga-

rithm” of x. 
 Notation for the iterated natural logarithm:  

( ) ((( ) )) ( ) ( )

( )( ) ( )

0

11

0

: log log log , 1, defined for large enough ; : ;

d , 1.
d

k

k

k

k i
i

x x k x x x

x x k
x

−−

=

 = ≥ =




  = ≥   
∏



   

 

(1.5) 

For the reader’s convenience we give a list of the special classes of functions 
characterized in [1] [2] mentioning only the main facts to be used in the present 
paper.  

Classes of functions and their main characterizations. 
(I) (Index of asymptotic variation). If [ ),f AC T∈ +∞ , f  ultimately > 0, its 

index of asymptotic variation at +∞  is defined as the value of the following 
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limit (assumed to exist):  

( ) ( )
( )

{ } ( )
( )

0 slow variation at ,
lim \ 0 regular variation at ,

rapid variation at .
x

xf x f x α
→+∞

+∞
′ = ∈ +∞
±∞ +∞

       (1.6) 

(II) (Higher-order regular variation). A function [ )1 , , 1nf AC T n−∈ +∞ ≥  is 
termed “regularly varying at +∞  (in the strong sense) of order n” if each of the 
functions ( )1, , , nf f f −′

  never vanishes on a neighborhood of +∞  and is 
regularly varying at +∞  with its own index of variation. If this is the case we 
use notation  

( ){ }of order , : the index of .f n fα α∈ +∞ = ∈ “ ”        (1.7) 

If ( ){ }of order , 1f n nα∈ +∞ ≥ , then relations  
( ) ( ) ( ) ( ) ( ) ( )

( )
1 1

, , 1 ,

k k k

k k k

f x f x k x o x

x o x x k n

α α α

α

− −

− −

= − − + +

≡ + → +∞ ≤ ≤



        (1.8) 

hold true whichever α ∈  may be. The indexes of the derivatives are subject 
to the restrictions specified in ([1]; Prop. 2.6, p. 796); in particular:  

( ){ }
( ) ( )( )
( ) ( ) ( )

1

0 1
1 1

of order , 2
1 1 with 1;

f x o x f x
f n n

f x x f x oα α

−

−

 ′ =∈ +∞ ≥ ⇒ 
′′ ′= + ≤ −   

 (1.9) 

where 1α  is the index of f ′  and the index of ( )kf  is “ 1 1kα − + ” for 2k ≥ . 
Notice that the last derivative involved in (1.8), i.e. ( )nf , may have an arbitrary 
sign if 0nα = . 

(III) (Smooth variation). Relations in (1.8) characterize higher-order regular 
variation only for { }0,1, , 2nα ∈ −/  ; as these relations are basic in the applica-
tions their validity defines the following concept. 

A function [ )1 , , 1nf AC T n−∈ +∞ ≥ , ( ) 0f x ≠  x∀  large enough, is termed 
“smoothly varying at +∞  of order n and index α ” if the relations in (1.8), re-
ferred to f , are satisfied. We denote this class by: { ( )S α +∞  of order n}. The 
following inclusions obtain:  

( ){ } ( ){ } { }
( ){ } ( ){ }

of order of order if 1 or 2, 0,1, , 2 ;

of order of order otherwise;

n S n n n n

n S n
α α

α α

α +∞ = +∞ = ≥ ≠ −


+∞ +∞





 

 
(1.10) 

the reason of the last strict inclusion being that some derivatives of a smooth-
ly-varying function may vanish or change sign infinitely often. The following 
sets of asymptotic relations, for a fixed α ∈ , are equivalent to each other:  

( ) ( ) ( ) ( ) ( ) ( )1 1 1 , , 1 ;kkx f x f x k o x k nα α α= − − + + → +∞ ≤ ≤    (1.11) 

( ) ( ) ( )

( ) ( )( )( ) ( )
1 , ;

, , 1 .
k k

xf x f x o x

xf x f x o x x k n

α
−

′ = + → +∞


′ = → +∞ ≤ ≤
            (1.12) 

(IV) (Rapid variation of first order). A function [ )1 ,f AC T∈ +∞  is called 
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“rapidly varying at +∞  of order 1 (in the strong restricted sense)” if:   

( ) ( )
( ) ( ) ( )

( ) ( )( ) ( )

, 0 large enough;
, ;

1 , ;

f x f x x
f x f x o x x

f x f x o x

 ′ ≠ ∀
 ′ = → +∞
 ′′ = → +∞

             (1.13a) 

or, equivalently, if:  
( ) ( )
( ) ( ) ( ) ( )

, 0 large enough;
, ;

f x f x x
f x f x f x f x x

′ ≠ ∀
 ′′ ′ ′ → +∞ 

         (1.13b) 

which imply ( ) 0f x′′ ≠  for almost all x large enough. 
(Rapid variation of higher order). A function [ ),nf AC T∈ +∞  is called “ra-

pidly varying at +∞  of order 2n ≥  (in the strong restricted sense)” if all the 
functions ( )1, , , nf f f −′

  are rapidly varying at +∞  in the above-specified 
sense and this amounts to say that the following conditions hold true as 
x → +∞ :  

( ) ( ) 0 large enough and 0 ;kf x x k n≠ ∀ ≤ ≤             (1.14) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1; ; ; ;n nf x f x o x f x f x o x f x f x o x−′ ′ ′′= = = (1.15) 

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( )11 ; 1 ; ; 1 .n nf x f x o f x f x o f x f x o− ′′ ′′ ′ ′′= = = (1.16) 

If f  is rapidly varying at +∞  of order 2n ≥  in the previous sense then all 
the functions ( )1, , , nf f f −′

  belong to the same class, either ( )−∞ +∞  or 
( )+∞ +∞ , hence we shall use notation ( ){ }of orderf n±∞∈ +∞  to denote 

that f  enjoys the properties in (1.14)-(1.15)-(1.16) plus the corresponding 
value ±∞  of the limit in (1.6). For an [ ),nf AC T∈ +∞  satisfying (1.14) we 
have the characterizations that conditions in (1.16) hold true, i.e.  

( ){ } ( ){ }of order of order ,f n n+∞ −∞∈ +∞ +∞   

if and only if the following equivalent sets of conditions are satisfied:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( )( )

1 1 ,

i.e. , , 1 ;

n n n n

k

f x f x f x f x f x f x f x f x

D f x D f x x k n

− + ′ ′′ ′


→ +∞ ≤ ≤  

   



(1.17) 

( ) ( ) ( ) ( )( ) ( ) ( )
22 1 , , 0 1;k k kf x f x f x x k n+ + → +∞ ≤ ≤ −

      (1.18) 

It follows that even ( ) ( )1 0nf x+ ≠  for almost all x large enough.  
(V) (Types of exponential variation). If [ )1 ,nf AC T−∈ +∞  then:  

( ){ }
( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

0

1

of order

0 large enough and 0 1,

, ;

k

n n

f n

f x x k n

f x f x f x f x x−

∈ +∞

 ≠ ∀ ≤ ≤ −⇔ 
′ → +∞   



      (1.19) 

( ){ } { }
( )
( ) ( ) ( )

of order , \ 0

0 large enough,

, , 1 ;

c

k k

f n c

f x x

f x c f x x k n

∈ +∞ ∈

 ≠ ∀⇔ 
→ +∞ ≤ ≤





              (1.20) 
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( ){ }
( )
( ) ( ) ( ) ( ) ( ) ( )1

of order

0 large enough,

, ,n n

f n

f x x

f x f x f x f x x

±∞

−

∈ +∞

 ≠ ∀⇔ 
′ → +∞   



      (1.21) 

wherein the correct index “ +∞ ” or “ −∞ ” is determined by the single limit 
“ ( ) ( )limx f x f x→+∞ ′ ”. 

For 0c =  there is no sign-restriction on the highest-order derivative ( )nf , 
whereas for 0c ≠  also ( )nf  turns out to be ultimately of one strict sign. More 
precisely, if ( ) 0f x >  and ( ){ }of ordercf n∈ +∞  then:  

( ) ( ) ( )
( ) ( )

0 lim 1 , 0 ;

0 lim , 0 .

k k

x

k

x

c f x k n

c f x k n
→+∞

→+∞

−∞ ≤ < ⇒ − = +∞ ≤ ≤


< ≤ +∞⇒ = +∞ ≤ ≤

          (1.22) 

Notice that in our definition of higher-order variation f  is allowed to be ei-
ther >0 or <0, the essential point being that it ultimately assumes only one strict 
sign. 

The reader must remember that this is a semiexpository paper like [1] [2] and, 
as such, some elementary or known facts are explicitly reported or proved to 
have an exposition self-contained and easily-read. 

2. Types of Asymptotic Variation of Infinite Series  

In [1] and [2] there are some results about the index of variation of a linear 
combination of functions belonging to one of the previously-studied classes; in 
this section we give some results about the type of asymptotic variation of an in-
finite series of such functions. We know from ([1]; formula (2.27), p. 784) that  

( ){ } ( )max
1

, , 0, 1 ,
i i

n

i i i i i
i

c i n cα αφ α φ
=

∈ +∞ ∈ > ≤ ≤ ⇒ ∈ +∞∑      (2.1) 

and similar results, with some restrictions, hold true when rapid variation is in-
volved as stated in ([1]; Prop. 2.3-(I), pp.788-789). Hence, when investigating the 
possible types of asymptotic variation of an infinite linear combination  

( )1 , 0i i ii c x cφ∞

=
>∑ , there must be an essential difference between the two cir-

cumstances  

( ) ( )1 , ,nx x xφ φ → +∞                    (2.2) 

( ) ( )1 , .nx x xφ φ → +∞                    (2.3) 

The simplest case is (2.2) and here are two elementary results extending 
Proposition 2.3-(II) in ([1]; p. 789), with no restriction on the signs of the coeffi-
cients ic . The C 1-regularity assumption simplifies the exposition.  

Proposition 2.1. Let the functions [ )1 , ,n C T nφ ∈ +∞ ∈ , form the asymp-
totic scale (2.2), let ( )1 0x xφ ≠ ∀  and let { }n n

c  be a given sequence of arbi-
trary real numbers with 1 0c ≠ . 

(I) Assume the following further conditions:  

( ) ( ) ( )1
1

2; ;n n n n
n

x A x q x x T n c Aφ φ
∞

=

≤ ∀ ≥ ∀ ≥ < +∞∑       (2.4) 
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( ) ( ) ( )1
1

2; ;n n n n
n

x B x r x x T n c Bφ φ
∞

=

′ ′≤ ∀ ≥ ∀ ≥ < +∞∑       (2.5) 

where both ,q r  are suitable nonnegative functions such that  

[ ) ( ), bounded on , and 1 , .q r T o x+∞ = → +∞             (2.6) 

Then the two series  

( )
1 1

( ),n n n n
n n

c x c xφ φ
∞ ∞

= =

′∑ ∑                         (2.7) 

are absolutely and uniformly convergent on each bounded interval of [ ),T +∞ . If 
( )f x  is the sum of the first series then [ )1 ,f C T∈ +∞ , ( ) ( )1 n nnf x c xφ∞

=
′ ′= ∑  

and  

( ) ( ) ( ) ( )1 1 , .f x f x x x xφ φ′ ′ → +∞                  (2.8) 

(II) Assume all the conditions in part (I) with the exception that (2.5) is now 
replaced by  

( ) ( ) ( ) ( )1 1 2,n nx x C x x x T nφ φ φ φ′ ′≤ ∀ ≥ ∀ ≥            (2.9) 

or, more generally, by  

( ) ( ) ( ) ( )1 1
1

2, .n n n n n n
n

x x C x x x T n c A Cφ φ φ φ
∞

=

′ ′≤ ∀ ≥ ∀ ≥ < +∞∑  (2.10) 

Then all the conclusions in part (I) still hold true. In the special case  

( ) ( )1 1, , even ,
nn nαφ α α α∈ +∞ > > > = +∞           (2.11) 

relations in (2.2) are automatically satisfied ([1]; Prop. 2.3-(III), p. 789), and the 
sequence ( ){ }n n

xφ′  is an asymptotic scale as well provided that “ 0n nα ≠ ∀ ” 
because of relations “ ( ) ( )1

n n nx x xφ α φ−′
 ”.  

Remarks. Conditions in (2.4), (2.5), (2.10) are a kind of uniformity respec-
tively for the infinite families of asymptotic relations: ( ) ( )( )1n nc x o xφ φ= , 

( ) ( )( )1n nc x o xφ φ′ ′= , ( ) ( ) ( ) ( )( )1 1n n nc x x O x xφ φ φ φ′ ′= , 2n ≥ . 
These conditions cannot be dispensed with and even in a simple case such as   

( ) { }1 2; ; \ 0 ,
nn n nαφ α α α α∈ +∞ > ≥ ≥ ≥ ∈          (2.12a) 

the asymptotic relations  

( ) ( ) ( ) ( ) ( )( )1 1 1 , ,n n nx x x x xφ φ α α φ φ′ ′ → +∞          (2.12b) 

do not in themselves grant (2.10) as shown by the counterexample of  

 ( ) ( ) ( ) ( ) ( ) ( )( )1
1 1

1: log , 1; .
log

nn
n n n

nx x x x x x x x
n x

φ φ φ φ φ
 ′ ′= ≥ = + 
 

 (2.13) 

Proof. For part (I) the estimates  

( ) ( ) ( ) ( )( )1 1 , 2;n n n n
n k n k

c x c A x q x o x kφ φ φ
∞ ∞

= =

 ≤ = ≥ 
 

∑ ∑        (2.14) 

( ) ( ) ( ) ( )( )1 1 , 2;n n n n
n k n k

c x c B x r x o x kφ φ φ
∞ ∞

= =

 ′ ′ ′≤ = ≥ 
 

∑ ∑        (2.15) 
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imply the assertions concerning the convergence of the two series due to the lo-
cal boundedness of 1 1, , ,q rφ φ′ , and moreover:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 1 1
2 2

; .n n n n
n n

f x c x c x c x f x c x c x c xφ φ φ φ φ φ
∞ ∞

= =

′ ′ ′= + ∼ = + ∼∑ ∑ (2.16) 

For part (II) instead of (2.15) we now have:  

( ) ( ) ( )
( )

( )
( ) ( )

( ) ( )

1

1

1 ;

n
n n n n n n n

n k n k n kn

n n n
n k

x x
c x c x C c x

x x

c A C x q x

φ φ
φ φ φ

φ φ

φ

∞ ∞ ∞

= = =

∞

=

′ ′
′ = ≤

  ′≤  
 

∑ ∑ ∑

∑
      (2.17) 

for 2k ≥  and the subsequent conclusions are still valid.                   
An elementary example. For any function φ  such that:  

[ ) ( ) ( ) ( )1 , ; 1 , ; 0 ;C T x o x x M x Tφ φ φ∈ +∞ = → +∞ < ≤ ∀ ≥   (2.18) 

we have the estimates:  

( ) ( )( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )

1 1: , 1;

, 2.

n n n
n

n n

x x x x M x n

x x n x x n

φ φ φ φ φ

φ φ φ φ

− −= = ≤ ≥

′ ′= ≥
      (2.19) 

Whatever 0M >  and k ∈ :  

( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

2 1

1 1

1 1 1 1: exp 1 ~ , ;
! 2! 1 ! !
1 1~ , .

1 ! 1 !

n k k
k

n k

n k
k

n k

f x x x x x x x x
n k k

f x x x x x x
n k

φ φ φ φ φ φ

φ φ φ φ

−

≥

− −

≥

 = = − − − − − → +∞ −

 ′ ′ ′= → +∞
 − −

∑

∑



(2.20) 

And if 0 1M< <  and k ∈ :  

( ) ( )( ) ( ) ( ) ( )( ) ( )( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( )

2 1

1 1

1: 1 ~ , ;
1

~ , .

n k k
k

n k

n k
k

n k

g x x x x x x x
x

g x n x x k x x x

φ φ φ φ φ
φ

φ φ φ φ

−

≥

− −

≥

 = = − − − − − → +∞ −

 ′ ′ ′= → +∞


∑

∑



(2.21) 

In both cases “ ( ) ( ) ( ) ( )~k k k kf x f x k x xφ φ′ ′ ” and  
“ ( ) ( ) ( ) ( )~k k k kg x g x k x xφ φ′ ′ ”, hence:  

 ( ) ( ) ( ), 0 , , ,k k kf g kα αφ α∈ +∞ −∞ ≤ ≤ ⇒ ∈ +∞ ∈        (2.22) 

the circumstance “ 0α > ” being inconsistent with condition “ ( )1oφ = ”. 
A less elementary example. Consider the sequence of “modified iterated loga-

rithms”:  

( ) ( ) ( )( ) [ )

( ) ( )( ) ( )( ) ( )( )
1 1

1

1 2 1

: log , : log 1 , 2; 1, ;

d 1 1 1 , 2;
d

n n n

n n n

x x x x n C

x x x x x n
x

∞
−

−

− −

 = = + ≥ ∈ +∞



 = + + + ≥  

   

    

  (2.23) 

which satisfy “ ( ) ( )d, 0
dn nx x
x

>   for 1x > ” and:  

( ) ( ) ( )

( ) ( ) ( )

1 2

1 2

;
d d d , .
d d d

n

n

x x x

x x x x
x x x

→ +∞

     

     

        (2.24) 
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To get useful estimates for our aim we must take 0 1x x≥ > ; for instance, using 
the elementary inequality “ ( )log 1 x x+ <  for 0x > ” we get the following esti-
mates for x e≥ :  

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1
2 2 2

1
3 2 2

1
2 2

log 1 log log , ;

log , ;

log 1, , 2;n

x x x x x x e

x x x x x e

x x x x x e n

− −

−

−

 ≡ + + < + ≥

 ≤ < + ≥




< + ≤ + ≥ ≥

  

  



  

     (2.25) 

whence:  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )( ) ( )( )
( )( ) ( ) ( )

1
1 2

1

1 1 2 1

1
1

0 1 log , 1 , , 2;

d d0 1 1 1
d d

1 , 1 , , 2.

n n

n n n

n

x x x x q x A x e n

x x x x x
x x

x r x B x e n

−

−

− −

−

 < ≤ + ≡ ≡ ≥ ≥  
  < = + + +  

 ≤ + ≡ ≡ ≥ ≥

  

     



 (2.26) 

It follows that for any sequence { }n n
c  such that 1 nn c

≥
< +∞∑ , both series  

( ) ( ) ( ) ( )
1 1

d: , :
dn n n n

n n
f x c x f x c x

x

∞ ∞

= =

′= =∑ ∑              (2.27) 

are absolutely convergent on [ ),e +∞  and uniformly convergent on each bounded 

interval and ( ) ( ) ( ) ( )1 1
d ,
d

f x f x x x x
x

′ → +∞  , i.e. f  is slowly varying.  

Let us now examine the case (2.3), the classical case being that of a power se-
ries with an infinite radius of convergence; here coefficients of nonconstant signs 
may generate entire functions with no definite type of asymptotic variation at 
+∞  such as the trigonometric functions, hence in this case we must restrict our 
study to positive coefficients. A problem solved in American Mathematical 
Monthly, [3], states that if the function ( ) 0: n

nnf x c x∞

=
= ∑ , with 0nc ≥ , is de-

fined for all x and k ∈  and is not a polynomial then ( )f +∞∈ +∞ , a result 
that can be extended to infinite series of regularly-varying functions.  

Proposition 2.2. Assumptions:  

[ ) ( ) { }1 , and , \ 0 , ;
nn n nC T nαφ φ α∈ +∞ ∈ +∞ ∈ ∀ ∈        (2.28) 

( ) ( ) [ )0, 0, 0 , ;n n nx x c x T nφ φ′> ≠ > ∀ ∈ +∞ ∀ ∈         (2.29) 

( ) ( ) ( ) ( )
1 1

: and uniformly convergent

on each compact interval;

n n n n
n n

f x c x f x c xφ φ
∞ ∞

= =

′ ′= =∑ ∑     (2.30) 

( ) ( ) ( ) ( ) ( ) ( )1 ,
1 with , ;

0
n

n n n n
n

A x A x o x
x x x A x nφ α φ

α

 ≤ = → +∞′ = + ∀ ∈    ≠
 (2.31) 

( )
1

convergent on each compact interval.n n n
n

c xα φ
∞

=
∑           (2.32) 

We also assume (2.3) which we express by saying that ( ){ }n n
xφ  forms an 

“inverted asymptotic scale at +∞ ”; this implies “{ }n n
α  nondecreasing” and we 

put : limn nα α= ; hence n nα α≤ ∀ . We separate the cases: “ 0α−∞ < < ; 
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0α = ; 0 α< ≤ +∞ ”. In the first two cases monotonicity and restriction 0nα ≠  
imply “ 0n nα < ∀ ”; whereas in the third case we may suppose, without loss of 
generality, that “ 0n nα > ∀ ” due to the fact that for the sum of a finite number 
of terms we have ( ) ( )1

p
n pn xφ

=
∈ +∞∑   and we then split the given series 

“ 1 1
p

n n n p
∞

= = >
= +∑ ∑ ∑ ” and apply the results below. These agreements on the 

signs of nα  imply that:  

( ) ( ) ( ) ( )
1 1 1 1

; .n n n n n n n n n n
n n n n

c x x c x x c x c xφ φ α φ α φ
∞ ∞ ∞ ∞

= = = =

′ ′= =∑ ∑ ∑ ∑    (2.33) 

Thesis:  

( ) ( ) ( ) ( ) ( )
1

1 , with ;n n n
n

xf x c x r x r x A xα φ
∞

=

 ′ = ⋅ + ≤     
∑      (2.34) 

( ) whichever the value of : .f α α α∈ +∞ −∞ < ≤ +∞       (2.35) 

Remark. Of course, instead of (2.30) it is enough to assume that ( )n nc xφ′∑  
is uniformly convergent on each compact interval and that ( )n nc xφ∑  con-
verges for at least one value of x; but in the present context it may sometimes be 
more convenient to use the convergence of ( )n nc xφ∑  in order to prove the 
convergence of ( )n nc xφ′∑  thanks to relations in (2.31).  

Proof. From (2.31)-(2.32) we get (2.34) as:  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 1

1 1 1

1 ;

.

n n n n n n n n n n n n n
n n n n

n n n n n n n n n n
n n n

c x x c x A x c x c A x

c A x A x c x o c x

φ α φ α φ α φ

α φ α φ α φ

∞ ∞ ∞ ∞

= = = =

∞ ∞ ∞

= = =

 ′ = + = +  


  ≤ =    

∑ ∑ ∑ ∑

∑ ∑ ∑
(2.36) 

Case “ 0 <α ≤ +∞ ”, which implies “ ( ) 0n x x nφ′ > ∀ ∀ ”. First step:  

( )
( )

( )

( )

( )

( ) ( )

( ) ( )( )
( )

( ) ( )
( )

( )

1 1

1 1

1

1

lim lim lim
1

as 0 1 1 for large enough

lim as 0
1

1 1lim if .
1

n n n n
n n

x x x
n n n n n n

n n

n

n n
n

nx
n n n

n

x

c x c xf x
xf x c x x c x A x

A x A x x

c x

A x c x

A x

φ φ

φ α φ

φ
α α

α φ

α
αα

≥ ≥

→+∞ →+∞ →+∞

≥ ≥

≥

→+∞

≥

→+∞

= = ≥
′ ′ +  

< + ≤ +

≥ ≥ < ≤
+  

≥ = < +∞
+  

∑ ∑
∑ ∑

∑

∑



  



  (2.37) 

Second step. Using a different device we get for each fixed k:  

( )
( )

( )

( )

( )

( )

( )
( )

( )

( )

( )

1

1

1 1
1

1

lim lim lim

by the positivity of lim lim .

k

n n n n
n n k

x x x

n n n n
n n

k

n n n n
n n k

n x x
k k

n n
n k

c x c xf x
xf x c x x c x x

c x c x

c x x c x x

φ φ

φ φ

φ φ
φ

φ φ

− ∞

= =
∞ ∞→+∞ →+∞ →+∞

= =

− ∞

= =
∞→+∞ →+∞

=

≤ + ≤
′ ′ ′

′ ≤ +
′ ′

∑ ∑

∑ ∑

∑ ∑

∑





    (2.38) 
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For the last two ratios we have:  

( )

( )

1

1

k

n n
n

k k

c x

c x x

φ

φ

−

= =
′

∑
  by (2.3) and (2.31) 

( )( )
( ) ( )1 , ;k

k k

o x
o x

c x x
φ
φ

= = → +∞
′

  (2.39) 

( )
( )

( )

( )

( )
( ) ( )1: 1 1 1 1 , ,

n n n n
n k n k

k
n n n n n

n k n k

c x c x
R x o o x

c x x c x

φ φ

αφ α φ

∞ ∞

= =
∞ ∞

= =

= = ⋅ + ≤ ⋅ + → +∞      
′

∑ ∑

∑ ∑
(2.40) 

whence  

( ) 1lim
x

k

R x
α→+∞

≤  for each fixed k;               (2.41) 

and (2.38) yields:  

( )
( )

1lim
x

k

f x
xf x α→+∞

≤
′

 for each fixed k.              (2.42) 

Taking the limit as k →∞ :  

( )
( )

1 if 0 < < ,
lim

0 if = ,x

f x
xf x

α α
α→+∞

+∞
≤ ′ +∞

               (2.43) 

whence:   

( )
( )

lim 1 if 0
x

f x
xf x

α α
→+∞

= < < +∞
′

, by the inequality in (2.37); (2.44a) 

( )
( )

lim 0
x

f x
xf x→+∞

=
′

 if α = +∞ , as the ratio ( ) ( )f x xf x′  is ultimately >0; (2.44b) 

and this last limit implies the limit “ +∞ ” for the inverted ratio.  
Case “ 0α−∞ < ≤ ”, which, by (2.29) and (2.31), implies “ ( ) 0n x x nφ′ < ∀ ∀ ”. 

Recall: 0nα <  and nondecreasing. First step:  

( )
( )

( ) ( )

( )
( )(2.34) 1

1

1
1 ,

n n n
n

n n
n

r x c xxf x
r x

f x c x

α φ
α

φ

∞

=
∞

=

+ ⋅  ′
= ≤ ⋅ +  

∑

∑
       (2.45) 

for x so large that “ ( )1 0r x+ > ”; whence  

( )
( )

lim .
x

xf x
f x

α
→+∞

′
≤                          (2.46) 

Second step. For each fixed k:  

( )
( )

( ) ( )

( )

( ) ( )

( )

( ) ( )

( )

1

1
1

1

1 1

1
lim lim

1 1
lim lim .

n n n
n

x x
n n

n
k

n n n n n n
n n k

x x
n n n n

n n

r x c xxf x
f x c x

r x c x r x c x

c x c x

α φ

φ

α φ α φ

φ φ

∞

=
∞

→+∞ →+∞

=

− ∞

= =
∞ ∞

→+∞ →+∞

= =

+ ⋅  ′
=

+ ⋅ + ⋅      
≥ +

∑

∑

∑ ∑

∑ ∑

   (2.47) 
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For the first ratio on the right we have “ 1n n nα α −≤ ∀ ” and:   

( )

( )

( )

( )

( )

( ) ( )

1 1 1

1 1
(2.3)1 1 1

1 1

1 , ;

k k k

n n n n n n n
n n n

k k
n n n n

n n

c x c x c x
o x

c xc x c x

α φ α φ α φ

φφ φ

− − −

= = =
∞ ∞

= =

≤ ≤ = → +∞
∑ ∑ ∑

∑ ∑
 (2.48a) 

whereas for the second ratio, as it stands without the absolute value, we have: 

( ) ( )

( )

( ) ( )

( )
1 1

1 1n n n n n n
n k n k

k

n n n n
n n

r x c x r x c x

c x c x

α φ α φ
α

φ φ

∞ ∞

= =
∞ ∞

= =

+ ⋅ + ⋅      
≥ ≥

∑ ∑

∑ ∑
 for x large enough. (2.48b) 

From (2.47) we get:  

( )
( )

lim k
x

xf x
f x

α
→+∞

′
≥  for each fixed k;              (2.49) 

and taking the limit as k →∞ :  

( )
( )

lim ,
x

xf x
f x

α
→+∞

′
≥                        (2.50) 

which, together with (2.46) yields “ ( ) ( )limx xf x f x α→+∞ ′ = ”.              
Examples. Let { }n n

α  be a strictly increasing sequence of real numbers and 
0nc n> ∀ . 

1) For ( ) : , 1n
n x x xαφ = ≥ , condition in (2.31) is trivially satisfied with 

( ) 0nA x ≡ . 
First case. If limn nα α= ∈  then:  

( )1 1

1 1 1 1
, 1; sup , 1;n n

n n n n n n
n n n n

c x x c x c x x c xα αα αα α− −

≥ ≥ ≥ ≥

≤ ≥ ≤ ≥∑ ∑ ∑ ∑   (2.51) 

and conditions in (2.30), (2.32) reduce to “ 1 nn c
≥

< +∞∑ ” which implies (2.35). 
The identities “ ( ) ( ) ( ) ( ) ( )1 0k k

n n nx x k x kφ α φ+ ≡ − ∀ ≥ ” and similar estimates for 
the formally differentiated series of higher order yield:  

( )
[ )

( ) ( ) { }
1

1

, 1, ,

: 0 .n

n
n

k
n k

n

c f C

f x c x f kα
α

∞
≥

−
≥

< +∞  ∈ +∞ ⇒ 
= ∈ +∞ ∀ ∈ 

∑

∑ 
      (2.52) 

Consistently with the statement of Proposition 2.2 the circumstance “ 0n kα − = ” 
for some value of k and at most one value of n, say n p= , is treated by splitting 
the series  

( ) ( ) ( ) ( ) ( ) ( )
1

.k k
n n n n

n n p n p
k x k xα φ α φ

≥ ≤ >

 
− = + − 

 
∑ ∑ ∑  

Second case. If limn nα = +∞  then:  

( )
[ )

( ) ( )1

, ,
: 0

.
n

n k
n

f C T
f x c x x T

f k
α

∞

≥ +∞

 ∈ +∞= < +∞ ∀ ≥ > ⇒ 
∈ +∞ ∀ ∈

∑


  (2.53) 

In fact, assuming 0n nα > ∀  and with “ [ ]nα  = integer part of nα ”, we have 
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“ [ ] [ ] 1n n nα α α≤ < + ” and:  

[ ]( ) [ ]1 1 ;nn n
n n n n n nc x xc x xc x αα αα α α−= ≤ +  

so that:  

[ ] [ ] [ ]12

1 1 1
,n nn

n n n n n
n n n

c x x c x x c xα ααα α −

≥ ≥ ≥

≤ +∑ ∑ ∑          (2.54) 

where the second series on the right is a power series majorized by the conver-
gent series 1

n
nn c xα

≥∑  and the first series on the right is the formal derivative 
of a convergent power series, hence itself convergent uniformly on each compact 
subinterval of ]0, )+∞ . Analogous situations for the higher-order derivatives 
and (2.53) follows. 

2) For ( ) ( ): log , 1nn
n x x x x Tβαφ = ≥ > , we have  

( ) ( ) ( ) 11 log ,n
n n n

n

x x x x
β

φ α φ
α

− 
′ = + 

 
              (2.55) 

being 0nα ≠  ultimately. Hence condition in (2.31) is satisfied if  
( ) ,n nO nβ α= →∞  without any additional condition on nβ . 

The cases “ constantnα = ∈ ” deserve a separate brief discussion as they can 
be treated quite simply. The following results do not require any growth-order 
chain between the nφ ’s.  

Proposition 2.3. (The case constantnα = ∈ ). Assume that:  

[ ) ( )1
0, ; 0 ;n nL C T c n∈ +∞ +∞ > ∀ ∈               (2.56) 

( )
1

n n
n

c L x
∞

=
∑  uniformly and absolutely                   

convergent on each compact interval;             (2.57) 

( ) ( ) ( ) ( ) ( ) ( )
,

with
1 , .n n n n

A x T
xL x r x L x r x r x

o x n
≤ ∀ ≥′ = ≤ = → +∞ ∀ ∈ 

   (2.58) 

Then the function ( ) ( ): ,nf x x L xα α= ∈ , satisfies “ [ ) ( )1 ,f C T α∈ +∞ +∞ ”. 
Without either the restriction on the signs of nc  or the conditions in (2.58) no 
definite conclusion on the type of variation of f  can be drawn.  

Proof. Notice that (2.56) implies ( ) 0nL x >  for x large enough and that we 
may always assume 0T > . For 0α =  we have:  

( ) ( ) ( )
( )

( )( )
1 1

1 1 1

, ;

, ;

n n
nn n n n

n n

A c L x x T
Tc L x x r x c L x
o x f x x

− ≥

≥ ≥ −

≤ ⋅ ≥′ ≤ ⋅ 
= → +∞

∑
∑ ∑      (2.59) 

whence it follows that  

( )
1

n n
n

c L x
∞

=

′∑  is uniformly and absolutely  

convergent on each compact interval of [ ),T +∞ . 

Hence ( ) ( )1 n nn c L x f x x T∞

=
′ ′= ∀ ≥∑  and ( ) ( )( )1f x o x f x−′ = . For 0α ≠  just 

apply the previous result to “ ( )x f xα− ” so obtaining “ ( )( ) ( )( )1x f x o x f xα α− − −′ = ”, 
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whence “ ( ) ( )1f x x f xα −′
 “ follows.                                   

Example. Let { }n n
a  be any strictly decreasing sequence convergent to 0a ≥  

and define  

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1
1: log , ; log log .na

n n n n nx x x e x x a x x a x xφ φ φ φ− − −′= ≥ = ≤ (2.60) 

If 1 nn c
≥∑  is any convergent series of constant positive terms then the function 

( ) ( )1: n nnf x c xφ
≥

= ∑  belongs to the class: [ ) ( )1
0,f C e∈ +∞ +∞ .  

Counterexamples. Let L be any function such that:  

[ ) ( ) ( )1
0, ; ;L C T L∈ +∞ +∞ +∞ = +∞             (2.61) 

define ( ) ( )( ):
n

n x L xφ =  and let ( ) 0: , 0n
n nnx c x c

≥
Φ = ≥∑  be an entire 

non-polynomial function. Here condition in (2.58) cannot be satisfied as 
( ) ( ) ( ) ( )( )nx x x n xL x L xφ φ′ ′= , except in case ( ) 0L x′ ≡ , and the function 

( ) ( )( ) ( )( )0: ,
n

nnf x c L x L x x T
≥

= = Φ ≥∑ , may have an arbitrarily large 
growth-order at +∞  or may be slowly varying. To visualize, just consider the 
exponential power series and various elementary choices for L:  

 

( )( ) ( ) ( ) [ )

( )( ) ( )( ) ( ) [ )

( ) ( ) ( ) [ )

( )( ) ( )( ) ( ) [ )

( ) ( )

2 0
0

0
0

0

0

0

! log , 0; , ;

log ! exp log , 0 1, 0; 1, ;

log ! exp log , 0; 1, ;

log ! exp log , 1; 1, ;

exp log ! exp exp log

n c

n
n

n
n c

c
n

n

n
n

n

c x n x c x e

c x n c x c x

c x n c x x c x

x n x x

x n x

δ δ

δ δ

δ δ

δ

δ

≥

≥

≥

±∞
≥

≥

= ∈ +∞ ≠ ∈ +∞

= ∈ +∞ < < ≠ ∈ +∞

= ≡ ∈ +∞ ≠ ∈ +∞

± = ± ∈ +∞ > ∈ +∞

   ± = ± ∈   

∑

∑

∑

∑

∑

 







( ) [ ), 0 1; 1, .xδ±∞












 +∞ < < ∈ +∞




(2.62) 

Proposition 2.4. (The case nα = ±∞ ). Assumptions: (2.28) with n nα = +∞ ∀  
or n nα = −∞ ∀ , and 0nc n> ∀ ; the uniform convergence of both series 

( ) ( )1 1,n n n nn nc x c xφ φ∞ ∞

= =
′∑ ∑  on each compact interval. If nα = +∞  and  

0 MM T∀ > ∃ , independent of n,                       
such that ( ) ( )n n Mx x M x x T nφ φ′ > ∀ > ∀                (2.63) 

then ( )f +∞∈ +∞ . If nα = −∞  and  
0 MM T∀ < ∃ , independent of n,                      

such that ( ) ( )n n Mx x M x x T nφ φ′ < ∀ > ∀               (2.64) 

then ( )f −∞∈ +∞ .  
Proof. Both proofs are trivial using the stated assumptions of “uniformity with 

respect to n” of the relations “ ( ) ( )limx n nx x xφ φ→+∞ ′ = ±∞ ”. For nα = +∞ :  

( ) ( )
1 1

0 ,n n n n M
n n

M c x x c x M x Tφ φ
∞ ∞

= =

′> ⇒ ≥ ∀ ≥∑ ∑  

and analogously for nα = −∞ .                                        
For series, with positive coefficients, of functions having hypo-exponential, or 

exponential, or hyper-exponential variation at +∞  corresponding results hold 
true suppressing the factor x on the left of the asymptotic relation in (2.31). All 
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the proofs are exactly the same and, in particular, we have the result:  

( )
( ) ( ) ( ) ( ) ( ) ( )

( )

, < ,

, 1 , ,

,

,

nn n

n n n n n

n

x x A x A x A x o x

f

α

α

φ α

φ φ α

α α

∈ +∞ −∞ ≤ +∞
 ′ = + ≤ = → +∞   


⇒ ∈ +∞







  (2.65) 

provided that the remaining assumptions in Proposition 2.2 are satisfied.  
Three more examples. The following examples are not included in the pre-

vious results but elucidate techniques based on the type of asymptotic variation. 
1) Consider the sequence:  

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) [ )

( ) ( ) ( ) ( ) ( )

1 1
0

1 1

11

: exp log , , 2; ;

e; , , 2;

lim uniformly on each compact subset of , ;
1 log 0, .

n
n n

n n n n

n n

n
n n n n

x x x e n

x x x x x x n

x x e
nx x x x r x x x e

n

φ φ

φ φ φ φ

φ

φ φ φ

−

− −

−−

  = ≥ ≥ ∈ +∞ 
 ≤ ∀ ≥ → +∞ ∀ ≥
 = +∞
 −′ = ≡ > ≥






  (2.66) 

This is a sequence of slowly varying functions which is locally uniformly con-
vergent to a regularly-varying function of index 1. The factor ( )nr x  satisfies:  

( ) 10 nr x x−< ≤ , hence ( ) ( )1
nr x O x−=  uniformly with respect to n; (2.67) 

but, though “ ( ) ( )1 ,nr x o x x−= → +∞ ” for each fixed n, this last relation is not 
uniform with respect to n. Suppose now that for a sequence of positive numbers 

nc  the series ( )2 n nn c xφ
≥∑  is locally uniformly convergent; then  

( ) ( )
2 2

0 ;n n n n
n n

c x c xφ φ
≥ ≥

′< ≤∑ ∑  

hence the series of the derivatives is locally uniformly convergent as well and, by 
(2.65), ( )of ∈ +∞ . But direct calculations yield more precise information:  

 ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1 1

2 2

1 1 11 1 1

2

1

2

1 log ,

1 1 1log log log ,
2 2

n n n n
n n

n n n n

n

n n

nx c x x x c x x f x
nf x

nx x c x x x c x x x f x
n

φ φ

φ φ

−− − −

≥ ≥

− − −− − −

≥ ≥

−= ⋅ ≤ =′  −≥ ≥ =


∑ ∑

∑ ∑
(2.68) 

valid for ex ≥ ; whence, integrating the ratio f f′ :   

( ) ( )( )
( )

( )2

log
log , ,1

2

x e
f x f e x e

x

≤
 ≥
≥



                (2.69a) 

( )
( )( ) ( )

( )
2

1 2

2 2

1

, .
log

n n n
n n

n
n

f e e x c e x c x
e

f x x e
e c x

φ
≥ ≥

≥

    ≤ = =    
     ≥

 ≥    

∑ ∑

∑
      (2.69b) 

The relations in the first line of (2.68) imply the two limits  

( ) ( ) ( ) ( )lim 0, lim 1;xx xf x f x xf x f x→+∞→+∞ ′ ′≥ ≤  
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hence, if f  happens to be regularly varying of some index α , then 0 1α≤ ≤ .  
2) Consider the sequence:  

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
1 1

11

: exp log , , 2; ;

; , , 2;

log , .

n
n n

n n n n

n
n n

x x x e n

x x x e x x x n

x nx x x x e

φ φ

φ φ φ φ

φ φ

+∞

− −

−−

  = ≥ ≥ ∈ +∞ 
 ≤ ∀ ≥ → +∞ ∀ ≥

′ = ≥





  (2.70) 

If the two conditions in (2.30) hold true then:  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

11 1

2 2
1

log log

log ; 0 ;

n
n n n n

n n

n

f x x nc x x x x c x

x x f x c

φ φ−− −

≥ ≥

−

′ = ≥ ⋅ ⋅

= ⋅ ⋅ >

∑ ∑
 

whence: ( ) ( )xf x f x′ → +∞  i.e. ( )f +∞∈ +∞ . The inequality  
“ ( ) ( ) 1 log ,f x f x x x x e−′ ≥ ≥ ” yields the global estimates:  

( ) ( )( ) ( )

( ) ( ) ( ) ( )1 2 1 2

21

2 2

1 1log log d log , ;
2 2

exp log 2 exp log 2 , ;

x

e
f x f e t t t x x e

f x f e e x e x x e

−

−

 ≥ = − ≥

    ≥ = ≥   

∫
 (2.71) 

and obviously:  

( ) ( )
( ) ( )( )

, and

exp log , , for each fixed 2.

k k

k

f x c x x k

f x x x k

φ≥ ∀

= +∞ → +∞ ≥
     (2.72) 

3) For a bounded sequence of real numbers of arbitrary signs, nc M≤ , con-
sider the following two series:  

( )
( )

( )
( )( )

1
2

1 1
: , : , 1,

1 1

n n

n n

c c n
f x f x x

nx nx

α
α

α α
α α−

≥ ≥

′= = − >
+ +

∑ ∑     (2.73) 

which are absolutely and uniformly convergent on the whole interval [ )1,+∞  
because:  

( ) ( )( )

( )( ) ( )( )

1 1 1

2 2
2 2

21 1 1

;
1 1

.
1 1

n n n

n n n

n n n

n n n

c c c
x x

nnx n nx

c n c c
x x

nnx n nx

α α
α ααα

α
α α

αα αα

− −
−

≥ ≥ ≥

− −

−≥ ≥ ≥

 = ≤ + +

 = ≤
 + +

∑ ∑ ∑

∑ ∑ ∑
      (2.74) 

We also have the estimates:  

( )

( )

1 1

1 1 1
2 2

1 1 1

1 , 1;
2

, 1;
4

n n

n n

n n n

n n n

c c
x f x x x

n n
c c c

x f x x x x
n n n

α α
α α

α α α
α α α

α α α

− −

≥ ≥

− − − − − −

≥ ≥ ≥

 ≤ ≤ ≥

 ′≤ ≤ ≤ ≥


∑ ∑

∑ ∑ ∑
   (2.75) 

hence f  is positive, strictly decreasing and:  

( ) ( )2 4,xf x f xα α′− ≤ ≤ −                    (2.76) 

which implies:  
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( )
( )

2 4 fixed 1,
f x
f x

α αλ
λ λ λ− −≤ ≤ ∀ >                (2.77) 

a weaker concept of regular variation thoroughly studied in ([4]; Ch. 2). 

3. Type of Asymptotic Variation of a Wronskian 

In two papers [5] [6] the author described a number of techniques to obtain 
the asymptotic behaviors of Wronskians whose entries are regularly- or rapid-
ly-varying functions of higher order; here we point out some cases wherein 
one can specify the type of asymptotic variation of the involved Wronskians 
under the natural additional assumption on the nth derivatives. Proofs are based 
on the evaluation of a type of Vandermonde determinants with a gap in the ex-
ponents, determinants which are still a part of the classical theory of determi-
nants.  

Lemma 3.1. (I) If ( )1, , nc c  is an ordered n-tuple of complex numbers with 
2n ≥ , its Vandermondian with a one-unit gap in the highest exponent is de-

fined as the number:  

( ) ( ) ( ) ( )2 2
1 2 2 1 1 2 1 22 2

1 2

1 1
, : = , ;V c c c c V c c c c

c c
= = − ⋅ +             (3.1) 

( ) ( ) ( )

1 2
2 2 2
1 2

1 1 1

2 2 2
1 2

1 2

1 1 1

, , : , , , 3,

n

n
n n n

n n n
n

n n n
n

c c c
c c c

V c c V c c c c n

c c c
c c c

− − −

= = ⋅ + + ≥









  

  





 (3.2) 

where ( )1, , nV c c  denotes the standard Vandermondian. 
(II) The following formula holds true:  

( ) ( )

( ) ( )
( ) ( )

( ) ( )( )

1
22

1
1 1

22
1

1

1 1

, , 1 2 , 2.

n

n
n n

nn
n

nn
n

c c

c c
V c c c c n n n

c c

c c

−−

= ⋅ + + − − ≥







 

  





 (3.3) 

Proof. Part I is mentioned as an exercise by Mirsky ([7]; Problem 30 on 
Chapter I, p. 38): it can be proved by polynomial algebra adapting the argument 
in ([7]; p. 18). Part II is checked at once for 2n =  and can be proved for 3n ≥  
by repeating, as a first step, the elementary procedure used in reducing the  

determinant ( ) ( )2

1
det 1, , , ,

nn
i i i

i
c c c

=
 
   to the Vandermondian: this is sketched  

in ([5]; Lemma 4 part 5, p. 10) and then used twice, in ([5]; proof of Th. 9, p. 19) 
and ([6]; proof of Th. 3, p.19). In the present case the procedure, when iterated 
until the exponent 2n − , yields:  

https://doi.org/10.4236/apm.2019.95022


A. Granata 
 

 

DOI: 10.4236/apm.2019.95022 451 Advances in Pure Mathematics 
 

( )

( )
( ) ( )

2 2

22

1, ,1, ,

1 1

,

i i

i i

nn
ii

nn
i i ni i n

c c
c c

cc
cc

−−

==

=





 

                     (3.4) 

where, as easily checked, the polynomial in ( ), n
i ic c , has an expression of the 

form  

( ) ( ) 1 2
2 1 1

1
,

2
n n n n

i i i n i

n n
c c c a c a c− −

−

−
≡ − + + +  

with coefficients ka  independent of the index i so that, by subtracting the ap-
propriate linear combination of the preceding rows, we get that the determinant 
on the right in (3.4) equals  

( )

( )

( ) ( ) ( )

2
2 2

2
2 2

11
1, , 1, ,

1, ,

1 1

1
1 1

1
2

1
2

1
, , , , ,

2

i
i i

i
i i

n
n ni
i i

n nn n
i ii n i ni i

i n

n n

c
c c

c
c cn n

c
c c

n n c cc c

n n
V c c V c c

−
− −

−−
= =

=

−
= −

−
−

−
= −

 





 



 

    (3.5) 

and (3.3) follows.                                                   
The following is a complement to Theorem 9 in ([5]; p. 18).  
Theorem 3.2. (Wronskians of smoothly-varying functions). Let  

[ ) ( ), , 0n
i iC T xφ φ∈ +∞ ≠  for x large enough, 1 , 2i n n≤ ≤ ≥ , and  

( ) ( ) ( ) ( ) ( ) { }1 , , , 0,1, , ; ;kk k
i i i i jx x x a o x i k n a a i jφ φ −  = + → +∞ ∀ ∈ ≠ ∀ ≠   (3.6) 

which means that each iφ  is smoothly varying of order n and index ia  ac-
cording to Definition 3.2 in ([1]; p. 803). Then:  

( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2
1 1

1

1
1

: , , ~ , , ,
,

1 2 1 ,

n
n n

n n i
i

n

W x W x x V a a x x
x

W x W x x a a n n o

φ φ φ − −

=

−

  = ⋅ ⋅  
→ +∞ 

 ′ = + + − − +  

∏ 



(3.7) 

i.e. W is regularly varying of order n and index “ ( )1 1 2na a n n+ + − − ” in the 
strong sense of Definition 2.1 in ([1]; p. 781). In particular W is slowly varying 
whenever ( )1 1 2na a n n+ + = −  such as the elementary Wronskian  

“ ( ) ( )1
1, , , , constantnaa

nW x x V a a= =  ”: ([5]; formula (68), p. 10).  

Proof. The first relation in (3.7) is proved in ([5]; Theorem 9, p. 18) whereas 
for the behavior of W ′  we have:  
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( )

( )
( )

( ) ( )
( ) ( )

( )

( )

( ) ( )

( ) ( )

( ) ( )

( )
( )

( )

( ) ( )

( ) ( )

( ) ( )

1

22

12
22

1, ,

1, ,

2
1

1
2

1
2

1, ,

1
1

1

1

1

1
1

1
.

1

1

ii

i in

i
in

ni n
in

i i n nn
i

i n

i

n n in

i
i

n
i

n
i

i n

x a ox
x x a o

W x x
x

x a o
x

x a o

a o

a o
x x

a o

a o

φ
φ

φ
φ

φ

φ

−

−

=−
−−

=
−

=

−
− −

=
−

=

+  
′  +  ′ ≡ = ⋅ 

 
 + 
 + 

+  
 +  = ⋅ ⋅ 

 
 + 
 + 

∏

∏













    (3.8) 

Applying the procedure in (3.4)-(3.5) it is seen that the last determinant equals 
“ ( ) ( )1, , 1nV c c o+

 ”, and by Lemma 3.1 we get:  

( ) ( )
( )

( ) ( )( ) ( )
1

1 1

1 1
2

, , 1 2 1 , ;

n

i
i

n n

n n

W x x x

V a a a a n n o x

φ
=

−
− − ′ = ⋅ 

 
 ⋅ ⋅ + + − − + → +∞ 

∏

 

  (3.9) 

whence the second relation in (3.7) follows.                              
To obtain a result in the case of rapid variation we need a correct statement of 

the analogue of Theorem 6 in ([5]; pp. 11-12) for the determinant V . Rereading 
the proof of this theorem we get the following claims. 

Lemma 3.3. Let 1, , ng g  and 1, , nf f  be functions defined on a deleted 
neighborhood of 0x ∈  and such that:  

( ) ( ) ( )( ) 0, , 1 , 2.i i ig x f x o f x x x i n n= + → ≤ ≤ ≥           (3.10) 

The following relations hold true. (I) The general estimate  

( ) ( )( )
( ) ( )( ) ( ) ( )( )( )

( ) ( )( )
( )

( )
1

1

1 1

1 0
, , 1

, ,

, ,

, , , ,i

n

n

n n

n p
n i

p p i

V g x g x

V f x o f x f x o f x

V f x f x o f x x x
′∈ =

≡ + +

 
= + →  

 
∑ ∏
















    (3.11) 

where ′  denotes the set of all permutations of the n-tuple ( )0,1, , 2,n n− . 
Formula (3.11) must be read with the agreement that “ ( ) 0

1if x ≡ ” regardless of 
the possible zeros of ( )if x . For 2n =  it reduces to:  

( ) ( )( ) ( ) ( )( )( )
( ) ( )( ) ( ) ( )( )

1 1 2 2

2 2
1 2 1 2 0

,

, , .

V f x o f x f x o f x

V f x f x o f x f x x x

+ +

= + + →





        (3.12) 
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(II) If we assume the following relationships between the if ’s:   

( ) ( ) ( )1 2 0, , ,nf x f x f x x x i→ ∀                (3.13a) 

[where “ f g ” means “ ( )g O f= ”], in practice:  

either ( ) ( )1i if x f x+  or ( ) ( )1 0, , ,i if x f x x x i+ → ∀      (3.13b) 

then relation (3.11) takes the simpler form:  

( ) ( )( ) ( ) ( )( )( )
( ) ( )( ) ( ) ( )

1 1

1

1 1 0
1

, ,

, , , ,

n n

n n i
n i

i

V f x o f x f x o f x

V f x f x o f x f x x x
− −

=

+ +

 = + ⋅ → 
 

∏









     (3.14) 

noticing, in the right-hand side, the lack of nf  which is one of the functions if  
with the lowest growth-order. The two most meaningful cases are highlighted in 
the following statements. 

(III) If ( )1, , nf f  is an asymptotic scale, i.e. ( ) ( )1 0,nf x f x x x→ , 
then (3.14) becomes  

( ) ( )( ) ( ) ( )( )( )
( ) ( ) ( ) ( )( ) ( ) ( )

1 1

1 1
1 2

1 1 0
1 1

, ,

1 , .

n n

n n n in in n
i i

i i

V f x o f x f x o f x

f x f x o f x f x x x
− − −−−

= =

+ +

   = − ⋅ + ⋅ →   
   

∏ ∏





 (3.15) 

(IV) If all the if ’s have the same growth-order in the sense that  

( ) ( ) ( )( ) 0, , 1 ,i if x c f x o f x x x i n= + → ≤ ≤             (3.16) 

for a fixed f  and arbitrary pairwise-distinct constants ic , then:  

( ) ( )( ) ( ) ( )( )( )

( ) ( ) ( )( )
( )

( )
( )

1

11
11

22
1 1 0

, ,

, , , .

n

n nn n

n n

V c f x o f x c f x o f x

V c c c c f x o f x x x
−−

++

+ +

 
= ⋅ + + ⋅ + →  

 





 

 (3.17) 

In the special case ( ) 1f x ≡  we get:  

( ) ( )( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( )

1
2 2
1

1

2 2
1

1 1
1

1 1 0

1 1
1 1
1 1

1 , , 1

1 1
1 1

, , 1 , ,

n

n
n

n n
n

n n
n

n n

c o c o
c o c o

V c o c o

c o c o
c o c o

V c c c c o x x

− −

− −

+ +
+ +

+ + ≡

+ +
+ +

= ⋅ + + + →











 





 

       (3.18) 

a relation already used in the proof of Theorem 3.2.  
Hints for the proof. When rereading Theorem 6 in ([5]; pp. 11-14) the reader 

will notice that the agreement “ ( ) 0
1if x ≡ ” is not explicitly stated in the state-

ment but it is clearly specified in the proof ([5]; p. 13, line 8 from below). At this 
point of the proof in [5] the estimate in (3.11) is proved; to proceed, the reader 
will replace the quantity in formula (95) in ([5]; p. 13) with:  

( ) ( ) ( ) ( )2 1 0
1 2 1 ,

n n
n nf x f x f x f x

−

−⋅ ⋅                (3.19) 

which stands for one of the terms with maximal growth-order appearing in the 
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sum inside the “o”-term in (3.11), an assertion justified by noticing that an in-
terchange of exponents in two factors in (3.19), leaving unchanged the other 
factors, does not increase the growth-order:  

( )
( ) ( ) ( )

for the product , replaced by , 2 , we have :

1 , ;

n j n in i n j
i j i j

n j n i i j n i i jn i n j j i n j j i
i j i j i j i j i i

n i n j
i j

f f f f i j

f f f f f f f f f O f

f f O i j

− −− −

− − − − −− − − − −

− −

 ⋅ ⋅ ≤ <
  ⋅ = ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅  
= ⋅ ⋅ <


(3.20) 

( ) ( )
1 1

1 1 1 1

for the product , replaced by , 1, we have :

1 , 1 .

n j nn n j
j j

n n jn j n j nn j j
j j j j

f f f f j

f f f f f f f f O j

− −

−− −−

 ⋅ ⋅ >

 ⋅ = ⋅ ⋅ ⋅ = ⋅ ⋅ >

 (3.21) 

This argument is valid under condition (3.13a) and is independent of the 
possible zeros of the if ’s unlike the original device used in ([5]; formula (96), p. 
13) as pointed out in ([6]; §2, Comments on Theorem 6, part (C), p. 39). The 
subsequent reasonings in the proof of Theorem 6 in [5] remain unchanged with 
the only obvious change of the expression of ( ) ( )( )1 , , nV f x f x  with that of 

( ) ( )( )1 , , nV f x f x

  in formulas (97)-(98) in ([5]; p. 14).                
The following is a complement to Theorem 10 in ([5]; pp. 19-20).  
Theorem 3.4. (Wronskians of rapidly-varying functions). Consider n functions 

[ ), , 1, ,n
i C T i nφ ∈ +∞ =   with both ( )i xφ  and ( ) 0i xφ′ ≠  for x large enough, 

1 , 2i n n≤ ≤ ≥ ; and let them satisfy the following relations:  
( ) ( ) ( ) ( ) ( )( ) , ; 1 , ,

kk
i i i ix x x x x i k nφ φ φ φ′ → +∞ ≤ ≤       (3.22) 

which, in particular, are satisfied by functions which are rapidly varying at +∞  
of order 1n −  in the strong restricted sense of ([5]; Def. 4.1, p. 807, and Prop. 
4.1, p. 808). 

(I) If  

( ) ( ) ( ) ( )1 1 , ,n nx x x x xφ φ φ φ′ ′ → +∞            (3.23) 

then, as x → +∞ :  

( ) ( ) ( )( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )

1
1 2

1
1 1

1 1

: , , 1 ,

,

n i
n n

n n i
n i

i i i

x
W x W x x x

x

W x W x x x

φ
φ φ φ

φ

φ φ

−
−

− −

= =

  ′    = − ⋅ ⋅           
′ ′

∏ ∏ 



(3.24) 

which means that W has the same type of asymptotic variation as 1φ  according 
to the concept first formulated by Hardy [8] and, in particular, W has the same 
type of exponential variation as 1φ  according to ([2]; Def. 8.1, p. 832). 

(II) If  

( ) ( ) ( ) ( )( )1 1 , , 1, , ,ix x c x o x x i nφ φ φ φ′ = + → +∞ =          (3.25) 

for some fixed function φ  and pairwise-distinct constants ic  then, as x → +∞ :  

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )( )

1 2
1 1

1

1

: , , , , ,

.

n n n
n n i

i

n

W x W x x V c c x x

W x W x c c x o x

φ φ φ φ

φ φ

−

=

  = ⋅ ⋅  
 

 ′ = + + +

∏ 





(3.26) 
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If, moreover, all the ic ’s and their sum ( )1 nc c+ +  are non-zero then: 
1) if “ ( )limx xφ→+∞  = either 0 or ±∞ ”, W has the same type of hy-

po-exponential or hyper-exponential variation as all the iφ ’s; 
2) if “ ( ) { }lim \ 0x xφ→+∞ ∈ ”, relations in (3.25) may be written (possibly 

changing the constants) as:  

( ) ( ) ( ) ( )1 , , 1, , , . . ,
ii i i i cx x c o x i n i eφ φ φ′ = + → +∞ = ∈ +∞      (3.27) 

and ( )
1 nc cW + +∈ +∞


 . If the ic ’s are pairwise-distinct non-zero numbers and 

1 0nc c+ + =  then W is hypoexponentially varying such as the Wronskian 
“ ( ) ( )1

1, , , co tant, nsna xa x
nW e e V a a= =  ”: ([5]; formula (68), p. 10, case 

( ) xg x e≡ ).  
Proof. The asymptotic relations for W are given in ([5]; pp. 19-20); those for 

W ′  and 3n ≥ —the case 2n =  being trivial—follow from Lemma 3.3 and the 
simple calculations in ([5]; proof of Th. 10, p. 21) in the two cases. In fact, under 
conditions in (3.23):  

( )

( )
( )

( ) ( )
( ) ( )

( )

( ) ( )
( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( ) ( ) ( )
( )

( )
( )

2

12
2

1, ,

1, ,

1(3.15) 1 2 1

1 1 1

1

1 1

1 1

1 1

1 , ;

i i i

i
n i i

i
in

ni
i in

i i n n
i i i n

n i
n n

n n i
i

i i i

x x x
x x x o

W x x
x

x x o
x

x x o

x x
x x

x x

φ φ φ
φ φ φ

φ
φ

φ φ
φ

φ φ

φ φ
φ

φ φ

=−
−

=

=

−
−

− −

= =

′
′ ′ +   ′ ≡ = ⋅ 

 
′ +  

′ +  

 ′ ′    − ⋅ ⋅ ⋅ → +∞         

∏

∏ ∏











 (3.28) 

and under conditions in (3.25):  

( ) ( ) ( ) ( )( )
( )

1 1

1 1
, , , .2n n

n n
W x V c c c c x xφ

−
+′ ⋅ + + ⋅ → +∞      (3.29) 

                                                              
  

4. Asymptotic Differential Equations versus Asymptotic  
Functional Equations   

The theory developed in [1] [2] concerns functions differentiable a certain 
number of times and it starts from various types of asymptotic relations; for in-
stance, the relation   

( ) ( ) ( )1 , ,xf x f x o xα′ = + → +∞                  (4.1a) 

defines the basic concept of regular variation of index α  in the strong sense, a 
concept (but not the locution) dating back to Hardy [8]. The above relation may 
be termed an “asymptotic differential equation”. But, as mentioned in ([1]; p. 
782), a larger class of functions with substantially the same fundamental proper-
ties was first introduced by Karamata, and then extensively studied by other 
mathematicians, starting from the “asymptotic functional equation”  
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( ) ( ) ,f x f x xαλ λ → +∞ , for each fixed 0λ > ,               
with f  measurable and positive.                 (4.1b) 

It is known that for a function f  with a monotonic derivative conditions 
(4.1a) and (4.1b) are equivalent and we show in this section that the same is true 
for the pair of equations (differential and functional) pertinent to each of the 
other types of variation: rapid, hypo-exponential, exponential or hyper-exponential. 
The first result of this type has been proved by Lamperti ([9]; pp. 382-383) for 
everywhere-differentiable functions using the Lagrange mean-value formula: 
( ) ( ) ( )( )f x f y f c x y′− = − . The integral version of the mean-value formula 

provides proofs for absolutely continuous functions when suitably reading the 
asymptotic relations for the derivative. For the sake of completeness, we make 
explicit some elementary remarks about condition “ f ′  monotonic” in three 
possible interpretations. 
 If “ f ′  exists everywhere on an interval I and is monotonic thereon” then an 

elementary argument shows that f  is absolutely continuous on each com-
pact subinterval of I ([10]; Problem A, p. 13), and obviously is either concave 
or convex on I. 

 If “ f ′  exists on I save possibly a countable set N and is monotonic on I \N” 
then the above conclusion about absolute continuity follows as a corollary of 
a non-trivial result in the Lebesgue theory ([11]; p. 299); and the concavi-
ty-convexity character follows from the classical characterization ([10]; Ch. 12, 
Th. A, pp. 9-10) or ([11]; Ch. V (18.43), p. 300), via an integral representation:  

( ) ( ) ( )d ; , , with monotonic on ,
x

c
f x f c t t x c I Iφ φ= + ∈∫



    (4.2) 

and where the role of φ  may be played indifferently by the left or the right de-
rivative of f , both existing everywhere and coinciding except possibly on a 
countable set: φ  non-decreasing for convexity and non-increasing for concavity. 
 If “ f ′  exists on I save possibly a set N  of Lebesgue measure zero and is 

monotonic on \I N  and if the absolute continuity of f  is explicitly assumed” 
then for any three numbers in I, x z y< < , and, say, f ′  non-decreasing we 
have the inequalities:  
( ) ( )

[ ] [ ]

( ) ( )
, \, \

1 1sup inf ,
z y

x zx y Nx z N

f z f x f y f z
f f f f

z x z x y z y z
− −

′ ′ ′ ′= ≤ ≤ ≤ =
− − − −∫ ∫





(4.3) 

whence, by standard calculations, we get the inequality:  
( ) ( ) ( ) ( )

, .
f z f x f y f x

x z y
z x y x
− −

≤ < <
− −

               (4.4) 

In fact:  
( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )( )

0

0
writing

0

0,

f z f x f y f x
z x y x
y x f z f x z x f y f x

y x y z z x
y z f z f x z x f z f x f y f x

y z f z f x z x f z f y

− −
− ≤

− −
⇔ − − − − − ≤

− = − + −
⇔ − − + − − − + ≤

⇔ − − + − − ≤
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which is true by (4.3). This shows that the difference quotient with a fixed end-
point is non-decreasing, hence the left and right derivatives exists as finite num-
bers at each interior point of I and are non-decreasing. Analogously for f ′  
non-increasing. These remarks show that: 

In the setting of absolute continuity, condition “ f ′  monotonic” even in its 
weakest meaning unambiguously refers to a function whose left and right deriv-
atives exist as finite numbers at each interior point, coincide except possibly on a 
countable set and are monotonic with the appropriate type of monotonicity.  

Moreover, an asymptotic relation involving f ′  such as, for instance (4.1a) 
may be read in any of the following three ways:  

( ) ( ) ( ) [ )
( ) ( ) ( ) [ )
( ) ( ) ( ) [ ) { }

1 , , , ;

1 , , , ;

1 , , , \ a suitable countable set ;

xf x f x o x x T

xf x f x o x x T

xf x f x o x x T

α

α

α

+

−

′ = + → +∞ ∈ +∞


′ = + → +∞ ∈ +∞
 ′ = + → +∞ ∈ +∞

(4.5) 

whereas, strictly speaking, the shortened notation in (4.1a) refers to the case of 
an everywhere-differentiable function. The following two theorems show that 
the differential and the functional approaches to the theory of asymptotic varia-
tion coincide for functions which are ultimately either concave or convex which 
is certainly the case of functions whose first derivatives are regularly varying of 
index 0≠  or rapidly varying. In the proofs use is made of the integral repre-
sentation in (4.2). 

Theorem 4.1. (Regular and rapid variation). For a positive function f  ei-
ther concave or convex on an interval [ ),T +∞  the following equivalences hold 
true:  

( ) ( ){ }
( ) ( ) ( )

, , for each fixed 0 and a constant

1 , ;

f x f x x

xf x f x o x

αλ λ λ α

α

→ +∞ > ∈

′⇔ = + → +∞



 (4.6) 

( )
( )( )
( )( )

( ) ( ) ( )
if 0 1,

1 , ;
if 1,

o f x
f x xf x f x x

f x

λ
λ

λ

 < < ′= ⇔ = +∞ → +∞
+∞ >

  (4.7) 

( )
( )( )

( )( )
( ) ( ) ( )

if 0 1,
1 , .

if 1,

f x
f x xf x f x x

o f x

λ
λ

λ

+∞ < < ′= ⇔ = −∞ → +∞
>

  (4.8) 

Theorem 4.2. (Types of exponential variation). For a positive function f  
either concave or convex on an interval [ ),T +∞  the following equivalences 
hold true:  

( ) ( ){ }
( ) ( )( )

, , for each fixed

, ;

f x f x x

f x o f x x

λ λ+ → +∞ ∈

′⇔ = → +∞



          (4.9) 

( ) ( ){ }
( ) ( ) ( )

, , for each fixed and 0

1 , ;

cf x e f x x c

f x f x c o x

λλ λ+ → +∞ ∈ ≠

′⇔ = ⋅ + → +∞  



   (4.10) 

( )
( )( )
( )( )

( ) ( ) ( )
if 0,

1 , ;
if 0,

o f x
f x f x f x x

f x

λ
λ

λ

 < ′+ = ⇔ = +∞ → +∞
+∞ >

 (4.11) 
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( )
( )( )

( )( )
( ) ( ) ( )

if 0,
1 , .

if 0,

f x
f x f x f x x

o f x

λ
λ

λ

+∞ < ′+ = ⇔ = −∞ → +∞
>

 (4.12) 

Proof of Theorem 4.1. All the inferences from the right to the left in both 
theorems elementarily follow from the integral representations and are to be 
found in ([1]; §5) and in ([2]; §8). Here we have to prove the converses. All the 
proofs are based on estimating the integral ( ) ( )y

x
f f y f x′ ≡ −∫  in terms of f ′  

where f ′  indifferently stands for the right or left derivative of f  which both 
exist everywhere. Proof of (4.6); for f ′  non-decreasing we have:  

( ) ( )
( ) ( )
( ) ( )1 , 1,

1 1
x

x

f x f x
f x f f x

x x
λ λ

λ λ
λ λ

−
′ ′ ′≤ ≡ ≤ ∀ >

− −∫       (4.13) 

whence:  

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

11 1 , 1;
1

xf x f x f x f x f x
x x

f x f x f x f x f x
λ λ λ λ

λ λ λ
λ λ

−′ ′ ′ 
≤ − ≤ ≡ ⋅ ∀ >  −  

(4.14) 

and letting x → +∞ :  

( )
( )

( )
( )

11lim lim , 1;
1

x x
xf x xf x
f x f x

α
αλ λ λ

λ
−

→+∞ →+∞

′ ′−
≤ ≤ ∀ >

−
       (4.15) 

and we get our claim letting 1λ +→ . For f ′  non-increasing use the same ar-
gument reversing the inequalities in (4.13). For the proof of (4.7) we have:  

( ) ( ) ( )
( )

( )
( )

( )
( )

( )
( )

as

non-decreasing , 1,
1

1 , 1,
1

lim , 1;
1

x

y

f x f x
f f x

x

xf x f x
f x f x

yf y
f y

λ
λ λ

λ

λ λ λ λ
λ λ λ

λ λ
λ

→+∞

→+∞

−
′ ′⇒ ≥ ∀ >

−

′  
⇒ ≥ − ∀ >  −  

′
⇒ ≥ ∀ >

−

       (4.16) 

and then let 1λ +→ . If f ′  would be non-increasing (see however Remark 2 
about growth-estimates after the proof of Theorem 4.2) then we might more 
simply write:  

( ) ( ) ( ) ( ) ( )
( )

( )
( ) ( )

2 2 2
2 whence 1 1 .

2 2 2
f x f x x f x f x

f x
x f x f x

′  −
′ ≥ ≥ − = +∞  

 
(4.17) 

The result in (4.8) is brought back to (4.7) putting ( ) ( ): 1g x f x= .          
Proof of Theorem 4.2. Notice that both the functional equations and the diffe-

rential equations listed in Theorem 4.2 may be brought back to the corresponding 
ones in Theorem 4.1 by a change of variable; in fact, putting ( ) ( ): xg x f e= , 
where ( ) 0f x ≠  for x large enough, we have:    

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

log ; log log , 0;

lim lim log log log

lim log , 0;

hence : lim , ;

x x

y

y

f x g x f x g x

f x f x g x g x

g y g y

g y g y eλ

λ λ λ

λ λ

λ φ λ λ

λ φ λ

→+∞ →+∞

→+∞

→+∞

= = + >


= +       
 = + ≡ >  


+ = ∈   


  (4.18a) 
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and the following are easily checked:  

( )
( )

( )
( )

1 for 0, 1 for ,
for 0, for ,

lim lim
0 for 0 1, 0 for 0,

for 1, for 0;

x x

f x g x e
f x g x

α αλ

λ λ
λ λλ λ λ

λ λ
λ λ

→+∞ →+∞

> ∈ 
 +> ∈ = ⇔ = < < < 
 +∞ > +∞ > 





(4.18b) 

( )
( )

( )
( )

lim lim .
x x

xf x g x
f x g x→+∞ →+∞

′ ′
= ∈ ⇔ =                 (4.18c) 

But a correspondence between the monotonicity of f ′  and g ′  is not 
granted; hence it is better to give direct proofs of Theorem 4.2 following the 
same patterns as above. We write them down only for “ f ′  non-decreasing”. 
For the proof of (4.9) notice that the claim does not depend on the sign of f ; 
hence we may suppose “ 0f ′ ≥ ” changing, if necessary, the sign of f . For “ f ′  
non-decreasing” we have:  

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )0 1 .f x f x f x f x o f x f x o f x′≤ ≤ + − = + − =    (4.19) 

For the proof of (4.10) and “ f ′  non-decreasing” we have:  

( ) ( ) ( ) ( ) , 0;
f x f x

f x f x
λ

λ λ
λ

+ −
′ ′≤ ≤ + >             (4.20) 

whence:  

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

1 1 , 0;
f x f x f x f x f x
f x f x f x f x f x

λ λ λ λ
λ

λ λ
′ ′ ′ + + + +

≤ − ≤ ≡ >   + 
 (4.21) 

and as x → +∞ :  

( ) ( ) ( ) ( ) ( )

( ) ( )

1lim 1 lim

lim , 0;

c c

x x
c

x

f x f x e e f x f x

e f x f x

λ λ

λ

λ λ
λ

λ

→+∞ →+∞

→+∞

′ ′≤ − ≤ + +

′= >
    (4.22) 

and for 0λ +→ :  

( ) ( ) ( ) ( )lim lim .
x x

f x f x c f x f x
→+∞ →+∞

′ ′≤ ≤              (4.23) 

And for the proof of (4.11) we write:  

( ) ( ) ( ) ( )
( )

( )
( )

1, hence 1 , 0,
f x f x f x f x

f x
f x f x

λ λ
λ λ

λ λ λ λ
′  + − +

′ + ≥ ≥ − ∀ >  + + 
(4.24) 

and the assertion follows by taking first the “lim inf” as x → +∞  and then the 
limit as 0λ +→ .                                                    

Remarks about growth-estimates. 1) One of the basic properties of the func-
tions in the studied classes is the estimates, though rough, of their growth-orders. 
For the subclasses defined via asymptotic differential equations the estimates are 
elementarily inferred from the pertinent integral representations whereas for the 
general classes it is true that they are inferred from suitable integral representa-
tions as well, but such representations are not elementary facts but consequences 
of the nontrivial core of the theory, namely the “uniform convergence theorems”. 
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For slow (hence for regular) variation the estimates are explicitly mentioned in 
([4]; Prop.1.3.6, p.16):  

“ f  satisfying the functional equation in (4.1b)”                

( ) , , 0.x f x x xα α− +⇒ → +∞ ∀ > 

                  (4.25) 

For rapid variation a “representation theorem” ([4]; Prop. 2.4.4, p. 85, and Th. 
2.4.5, p. 86), can be obtained only for a certain subclass; in particular, if f  is 
monotonic on an interval [ ),T +∞  the two functional equations in (4.7) imply 
that f  is non-decreasing and admits of the integral representation:  

( ) ( ) ( ) ( ){ }1exp d , ,
x

T
f x z x x t t t x Tη ξ−= + + ≥∫            (4.26) 

where the measurable functions , ,z η ξ  are such that: z is non-decreasing, 
( ) 0xη →  and ( )xξ → +∞  as x → +∞  (This is the case of Theorem 4.1 

wherein the monotonicity of f ′  implies the ultimate monotonicity of f ). 
From (4.26) the following estimate is trivially inferred:   

( ) ( )( ) ( )1exp d , constant 0 ,
x

T
x f x A t t t Aα ξ α− −≥ − = >  ∫      (4.27a) 

whence  

( ) , , 0.f x x xα α→ +∞ ∀ >                   (4.27b) 

By putting ( ) ( ): xg x f e=  one gets the corresponding growth-estimates for 
exponential variations listed in ([2]; §8). 

2) In the case of (4.7) the contingency “ f ′  non-increasing” is excluded oth-
erwise we would have:  

 ( ) ( )lim lim ,
x x

a
f x x f x

→+∞ →+∞

∈′= = −∞


               (4.28) 

contradicting either the growth-estimate in (4.27b) or the positivity of f . 
3) In passing we point out that the above-mentioned “uniform convergence 

theorems” imply that a function satisfying one of the asymptotic functional equ-
ation mentioned in Theorems 4.1-4.2 satisfies a quite stronger functional equation. 
A list appears in ([1]; §5) inferred from the simple integral representations valid 
when the corresponding asymptotic differential equations hold true: the pertinent 
calculations are elementary, though not trivial, implicitly using the uniform con-
vergence with respect to the parameter. In the more general context we have:  

 
( ) ( )

( )( ) ( )

, for each 0,
measurable, without any monotonicity restriction,

, , ;

f x f x
f

f x o x f x x

α

α

λ λ λ

λ λ α

 >


⇒ + → +∞ ∈





       (4.29) 

a result inferred from the factorization ( ) ( )f x x xα=  , with   slowly varying, 
and from ([4]; Th. 1.2.1, p. 6). And we also have:  

( )
( )( )
( )( )

if 0 1,

if 1,

measurable, without any monotonicity restriction,

o f x
f x

f x

f

λ
λ

λ

  < < = 
+∞ > 
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( )( )
( )( )
( )( )

if 0 1,
, ;

if 1,

o f x
f x o x x

f x

λ
λ

λ

 < <⇒ + = → +∞
+∞ >

      (4.30) 

inferred from ([4]; Cor. 2.4.2, p.85). 
The reader may write down the corresponding versions of Theorems 4.1-4.2 

for the functional equations listed in ([1]; Prop. 5.2, pp. 814-815) under the mo-
notonicity of f ′ . 

5. Concepts Related to Logarithmic Variation 

The concept of regular variation of order 0α ≠  generalizes the asymptotic beha-
vior of a power whereas the three concepts of exponential variation generalize the 
asymptotic behaviors of the exponential of a power. These generalizations are quite 
natural whereas the concept of slow variation is not the appropriate generalization 
of the behavior of the logarithm: it shares some asymptotic properties of the loga-
rithm but it encompasses functions with orders of growth either greater than the 
order of each positive power of the logarithm or less than the order of each neg-
ative power of the logarithm such as the functions: ( )exp log ,0 1x δ δ ± < <  . 
Looking at the asymptotic functional equation of a slowly-varying function  ,   

( ) ( ) , ,x x xλ → +∞                       (5.1a) 

we see no link with the parameter λ , whereas the arithmetic functional equa-
tion characterizing the logarithm,  

( ) ( ) ( ) , 0,x x xλ λ λ= + ∀ >                   (5.1b) 

if interpreted asympotically, gives an expression for the remainder. One of the 
possible asymptotic counterparts of (5.1b), as x → +∞ , is the asymptotic func-
tional equation:  

( ) ( ) ( ) ( )1 , , fixed 0.f x f x o xλ φ λ λ= + + → +∞ ∀ >        (5.2) 

It is known, ([4]; Lemma 3.2.1-case ( ) 1g x ≡ , p. 140) that if (5.2) is satisfied 
by a measurable function f  defined on a neighborhood of +∞  then  
“ ( ) log 0cφ λ λ λ= ∀ > ” for some real constant c. Together with (5.2) we shall 
describe two other classes of functions highlighting a possible concept of sublo-
garithmic variation which fits, e.g., to iterated logarithms.  

Definition 5.1. Let f  be a measurable function defined on a neighborhood 
of +∞ . 

(I) We say that f  is quasi-logarithmically varying at +∞  if:  

( ) ( ) ( )1 , , fixed 0.f x f x O xλ λ= + → +∞ ∀ >              (5.3) 

(II) We say that f  is logarithmically varying at +∞  if:  

( ) ( ) ( )
{ }

log 1 , , fixed 0

and some constant \ 0 .

f x f x c o x

c

λ λ λ= + + → +∞ ∀ >

∈
         (5.4) 

(III) We say that f  is hypo [ ≡  sub]-logarithmically varying at +∞  if:  

( ) ( ) ( )1 , , fixed 0.f x f x o xλ λ= + → +∞ ∀ >             (5.5) 
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Equations (5.3) and (5.4) have trivial solutions, namely all bounded functions 
and all functions convergent as x → +∞  respectively satisfy (5.3) and (5.4); and 
obviously the behaviors of such functions have nothing to partake of the intuitive 
meanings associated with “logarithmic variation”. For this reason someone might 
prefer to use the locutions of “logarithmically varying” and “hypo-logarithmically 
varying” exclusively for functions which, besides satisfying the appropriate 
above-specified equation, enjoy additional properties such as: strict positivity, or 
monotonicity, or divergence to +∞  as x → +∞ , or the last two properties. But 
this is a matter of agreement. Now we collect the essential properties of the three 
classes using the shortened locution “ f  differentiable” to mean that: 

either “ f is everywhere differentiable on some interval [ ),T +∞ ” 

or “ f  is absolutely continuous on [ ),T +∞ ”,  

with the agreement that an asymptotic relation involving f ′ , say 
“ ( ) ( ) ,f x x xφ′ → +∞ ” for an absolutely continuous f  is to be meant as 
“ [ ), , \x x T N→ +∞ ∈ +∞ ” where N is a suitable set of measure zero. 

Three admissible meanings of the locution “ f ′  monotonic” have been hig-
hlighted at the outset of the preceding section and the proofs involving this 
property may be done using the integral mean-value theorem which applies to 
each of the three cases.  

Theorem 5.1. (I) If f  is a measurable function defined on a neighborhood 
of +∞  satisfying Equation (5.3) then the following two properties hold true: 

1) The asympyotic relation (5.3) holds true uniformly with respect to the pa-
rameter λ  on each compact subset of ]0, )+∞  and this implies that f  satis-
fies the more general asymptotic functional equation:  

( )( ) ( ) ( ) ( )1 21 , , function such that 0 ;f xI x f x O x I c I x c= + → +∞ ∀ < ≤ ≤ < +∞ (5.6) 

and in particular:  

( )( ) ( ) ( )1 , ,

uniformly for varying on a compact subset of ]0, ).

f x o x f x O xλ

λ

 + = + → +∞


+∞
        (5.7) 

2) f  satisfies the estimate:  

( ) ( )log , .f x O x x= → +∞                      (5.8) 

(II) If f  is a differentiable function then condition ( ) ( )1 ,f x O x x−′ = → +∞  
implies that f  satisfies Equation (5.3). 

(III) If f ′  is monotonic then (5.3) is satisfied iff  

( ) ( )1 , .f x O x x−′ = → +∞                      (5.9) 

Theorem 5.2. (I) If f  is a measurable function defined on a neighborhood 
of +∞  satisfying Equation (5.4) then it obviously satisfies (5.3), hence (5.7); 
moreover:  

( )( ) ( ) ( )log 1 , ,

uniformly for varying on a compact subset of ]0, );

f x o x f x c o xλ λ

λ

 + = + + → +∞


+∞
   (5.10) 
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and the growth-order of f  is:  

( ) log , .f x c x x → +∞                     (5.11) 

(II) If f is a differentiable function then condition ( ) 1,f x cx x−′ → +∞  
implies that f  satisfies Equation (5.4). 

(III) If f ′  is monotonic then (5.4) is satisfied if and only if 

( ) 1, .f x cx x−′ → +∞                      (5.12) 

Theorem 5.3. If f is a measurable function defined on a neighborhood of 
+∞  satisfying Equation (5.5) then a word-for-word restatement of Theorem 5.1 
holds true with the symbol “O” replaced everywhere by “o”.  

Proof of the theorems. The fundamental results about the uniformity of equa-
tions (5.3)-(5.4)-(5.5) with respect to λ  may be found in the monograph ([4]; 
Corollaries 3.1.8a and 3.1.8c, case 1g ≡ , p. 133) for equations (5.3) and (5.5); 
whereas (5.4) is a special case of (5.3). From such results the following useful re-
presentations are derived ([4]; Theorem 3.6.1, p. 152):  

( ) ( ) ( )
0

1
0 0d , ,

x

T
f x C T x t t t x Tη ξ −= + + + ≥∫            (5.13) 

where 0,C T  are suitable constants and the measurable functions ,η ξ  are 
such that:  

( ) ( ) ( ) ( )
( ) ( )

1 if satisfies 5.3 ,
,

1 if satisfies 5.5 ;
O f

x x
o f

η ξ
= 


            (5.14) 

( ) ( )
( ) ( )

1 ,

1 ,

x O

x c o

η

ξ

=


= +
 if f  satisfies (5.4).            (5.15) 

The estimates in (5.14) are explicitly stated in ([4]; Th. 3.6.1, p. 152) whereas 
those in (5.15) are checked at once by inspecting a formula in ([4]; formula 
(3.6.2), p. 152). From (5.13) the relations in (5.8) and (5.11) and the corres-
ponding one in Theorem 5.3 are easily inferred. So the statements in part (I) of 
each theorem are proved, and the statements in parts (II) trivially follow from 
the integral representation:  

( ) ( ) ( )d .
x

x
f x f x f t t

λ
λ ′− = ∫                     (5.16) 

For parts (III) in the theorems we must prove the “only if” inferences noticing 
that, changing f  in - f  if necessary, we may always suppose 0f ′ ≥ . Relation 
(5.9) follows from:  

 
( ) ( ) ( )

( ) ( ) ( )

2

2

non-decreasing 2 ;

non-increasing 2 .
2

x

x

x

x

f f x f x f xf x

xf f x f x f f x

 ′ ′ ′⇒ − = ≥  


′ ′ ′ ⇒ − = ≥  

∫

∫
   (5.17) 

The very same calculations also give the estimate with “o” for Theorem 5.3. Re-
lation in (5.12) requires less immediate calculations. For f ′  non-decreasing 
and each 1λ >  we have:  

 ( ) ( )
( ) ( )
( ) ( )1 ,

1 1
x

x

f x f x
f x f f x

x x
λ λ

λ
λ λ

−
′ ′ ′≤ ≡ ≤

− −∫        (5.18) 
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whence:  

( ) ( ) ( ) ( )1log 1
;

1
c o

xf x x f x
λ

λ λ λ
λ

−+
′ ′≤ ≤

−
             (5.19) 

and letting x → +∞ :  

( ) ( ) ( ) ( )1 1loglim lim lim , 1.
1

x x x
cxf x x f x xf xλ λ λ λ λ λ
λ

− −
→+∞ →+∞ →+∞′ ′ ′≤ ≤ = ∀ >

−
 (5.20) 

As 1λ +→  we get relation (5.12). For f ′  non-increasing and 1λ >  the in-
equalities in (5.19) are reversed and an analogous reasoning may be done. We 
also get the estimate with “o” for Theorem 5.3.                            

And now what can be said about the concept of higher-order logarithmic var-
iation? Higher-order regular variation is defined by imposing on each derivative 
of order not less than 2 an asymptotic behavior consistent with that of the first 
derivative according to a preliminary result: ([1]; Prop. 2.6, p. 796, and Def. 3.1, 
p. 798); the foregoing Theorems 5.1-5.3 justify the following:  

Definition 5.2. If f  is n-times differentiable on an interval [ ), , 1T n+∞ ≥ , 
in the sense that ( )1nf −  is either absolutely continuous or everywhere differen-
tiable, then one may use the following locutions:  

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )

( ) ( )

0

is quasi-logarithmically varying at of order

, , 1 ;

is logarithmically varying at of order

log , ; 0, 0 ; : ;

is hypo-logarithmically varying at of order

= ( ), , 1

k k

k k

k k

f n

f x O x x k n

f n

f x c D x x c k n D h x h x

f n

f x o x x

−

−

+ ∞

⇔ = → +∞ ≤ ≤

+∞

⇔ ⋅ → +∞ ≠ ≤ ≤ =

+∞

⇔ → +∞ ≤



.k n










 ≤

(5.21) 

Remarks. 1) Some people would like to add to the above definition a condition 
such as “strict positivity or monotonicity or divergence” for the sole function f  
(and not for its derivatives!) to adhere more consistently to the intuitive notion 
of logarithmic variation; but this is a matter of agreement as noticed above. 

2) The asymptotic estimate (5.9) obviously implies (5.8) but the converse fails 
regardless of any monotonicity restriction; in fact for, say, a 1C  function we 
have:   

( ) ( )
( ) ( )
( ) ( ) ( ) ( )
( ) ( )( )

1 1

1

log

1

log

log .

f x x g x

g x O

f x x g x x g x O x

g x O x x

− −

−

≡ ⋅


=
′ ′⇒ ≡ + ⋅ =

′⇔ =

            (5.22a) 

And in the case “ ( ) ( )1 ,g x c o c= + ∈ , the characteristic condition for f ′  
to satisfy the corresponding asymptotic relation “ ( ) ( )1 1f x cx o x− −′ = + ” is 
“ ( ) ( )( )1logg x o x x −′ = ”. These remarks show that for the validity of the infe-
rence “(5.8) ⇒  (5.9)” the right additional condition (beside differentiability) is 
the following restriction on the order of growth of the derivative:  
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( )( ) ( )( )1log log .f x x O x x −′ =                 (5.22b) 

From (5.22a) and Theorem 5.1 it follows that the solutions of (5.3) which are 
ultimately concave or convex satisfy the three estimates: of  

( ) ( ) ( ) ( ) ( )( ) ( )( )11log ; ; log log , .f x O x f x O x f x x O x x x−− ′′= = = → +∞ (5.23) 

Some examples. 1) The standard ones. The following functions are hy-
po-logarithmically varying at +∞  of a non-trivial type: 

( ) ( )( )

( ) ( )( )
2

2

log , 0 1; , ;

log , 0 1,

k

k

k k
k n

k k
k n

x x

x x

δδ

δδ

δ δ

δ δ

≤ ≤

≤ ≤

 < < ∈


 ⋅ < < ∈


∏

∏

 

 

           (5.24) 

The first of the foregoing function shows the obvious fact that no one of the 
three classes in Definition 5.1 is closed under multiplication. 

The following examples concern various types of compositions.  
2) Logarithm of a regularly-varying function:  

( )
( )( ) ( ) ( )( ) ( )( ) ( )

, log logarithmically varying at , as

log log 1 1 log log 1 , .

f f

f x f x o f x o x
α

α

α

λ λ α λ

 ∈ +∞ ∈ ⇒ +∞


= + = + + → +∞   

 
(5.25) 

3) A regularly-varying function of the logarithm. The general result is:  

( )
quasi-logarithmically varying at ,

,
asymptotically sublinear at ,

hypo-logarithmically varying at .

g
g
f

f g

+∞
 +∞ = +∞
 +∞
⇒ +∞

           (5.26) 

In fact the assumptions mean that g satisfies “ ( ) ( ) ( )1g x g x Oλ = + ” and f  sa-
tisfies “ ( )( ) ( ) ( )1 1f x O f x o+ = + ” ([1]; Prop. 5.2-(I), p. 814), hence:  

( )( ) ( ) ( )( ) ( )( ) ( )1 1 , .f g x f g x O f g x o xλ = + = + → +∞       (5.27) 

The most meaningful contingency for f  in (5.27) is:  

 
( ) ( )

( ) ( )
differentiable with 1 , ;

in particular : , 1, so generalizing the first example in 5.24 .

f f x o x

f δ δ

′ = → +∞


∈ +∞ < 
(5.28) 

The case “ ( )1f ∈ +∞ “ needs restrictions:  

( )
hypo-logarithmically varying at ,

,
asymptotically uniformly continuous at ,

hypo-logarithmically varying at ;

g
g
f

f g

+∞
 +∞ = +∞
 +∞
⇒ +∞

          (5.29) 

whose proof is as above, noticing that now “ ( ) ( ) ( )1g x g x oλ = + ” and f  sa-
tisfies, by definition, “ ( )( ) ( ) ( )1 1f x o f x o+ = + ” ([1]; Prop. 5.2-(I), p. 814); and 
a sufficient condition for such an f  is “ ( ) ( )1f x O′ = ”.  

4) A slowly-varying function of the logarithm. Here is a result useful in in-
verting an hyper-exponential function:  
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Proposition 5.4. (I) If ( ){ }0 of order n∈ +∞   and  
( ) ( ) , 1 1k

k k n−∈ +∞ ≤ ≤ −  , then the function : log=    has the following 
properties:  

( ){ } ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( )( )

( )

0

1 1 1

1 1

of order ; , 1 1;

1 log 1 , , 1 ;

log log log 0

, , 1 ;

k
k

k kk k k

k k k

k

n k n

x x x x x x k n

x o x x x o x x

o x x k n

−

− −− −

− − +− −

−

 ∈ +∞ ∈ +∞ ≤ ≤ −

 ′ ′− ⋅ − ⋅ → +∞ ≤ ≤


= ⋅ = ∀ >

 = → +∞ ≤ ≤







   

 

 

 

(5.30) 

hence   is hypo-logarithmically varying at +∞  of order n according to our 
Definition 5.2. 

(II) If ( ){ }0 of order n∈ +∞  , then:  
( ) ( ) ( ) ( )( ) ( )1log , , 1 ;k k kx o x x x o x x k n−− −= ⋅ = → +∞ ≤ ≤       (5.31) 

hence ( ){ }0 of order n∈ +∞   and it is hypo-logarithmically varying at +∞  
of order n.  

Proof. Part (I). The types of asymptotic variation of   and ( )k  follow 
from ([2]; Prop. 7.5-(III), p. 825) and, anyway, they follow from the detailed 
calculations below to prove the remaining relations in (5.30). The assumptions 
on   stand for the set of relations:  

( ) ( )( ) ( ) ( ) ( ) ( )11 1; , , 1 1;k kx o x x x kx x x k n+− −′ = − ⋅ → +∞ ≤ ≤ −     (5.32) 

which imply:  

( ) ( ) ( ) ( ) ( )1, , 0; 1 , ;1 1;kk kx x x x x x x k nε + − ′→ +∞ ∀ > − ⋅ → +∞ ≤ ≤ −     (5.33) 

and from these we get:  

( ) ( ) ( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

11 1 1

2 2 2

log ; log log log ;

log log log as log log .

x x x x x o x x x o x

x x x x x x x x x

−− − −

− − −

 ′ ′≡ = ⋅ = ⋅ =


′′ ′ ′′ ′ ′′ ′ = − ⋅ + ⋅ − ⋅

  

     

 

 

(5.34) 

For any higher derivative we use Faà Di Bruno’s formula ([2]; formulas (6.1)-(6.2), 
p.818):  

( ) ( ) ( ) ( ) ( )

( ) ( )

1 2
11

1

2

2 =

, ,
0

2

log log

log log ,

k
k

k
j

k

i i ki k
ii ik

i i
i k

i ik

x a x D x

D x D x

+ + +
+ +

≤ ≤

= ⋅ ⋅

⋅

∑











      (5.35) 

where the summation is taken over all possible ordered k-tuples of non-negative 
integers ji  such that  

( )1 2 1 22 hence 1 ;k ki i ki k i i i k+ + + = ≤ + + + ≤         (5.36) 

and 
1 , , ki ia


 are suitable coefficients with 0, ,0,1 1a =


. Now we have by (5.33):  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )( )
1 21

221 1
1

1( )
1

1 12 2
, ,

log 1 log log , : 1;

log log log 1 1 ,

k kk

kk

k

m i i ii i
k k

i ii ii kik k k
i i

x x x m i i

D x D x D x x x x c x

− − − −+ +

−− − − −

 ′− ⋅ ⋅ = + + −


⋅ ⋅ − − ≡







  

 





(5.37) 

https://doi.org/10.4236/apm.2019.95022


A. Granata 
 

 

DOI: 10.4236/apm.2019.95022 467 Advances in Pure Mathematics 
 

where 
1 , , ki ic


 are suitable non-zero constants. Hence the term with the greatest 
growth-order in the sum is obtained when “ 1 1ki i+ + = ”, i.e. when 
“ ( ) ( )1, , 0, ,0,1ki i =  , so that “ ( ) ( )1( ) log logki i x x+ + ′

  ”, and we get the 
principal part of ( )k . The last estimates in (5.30) follow from the estimates for 
′  in (5.34) and from “ ( ) ( )log logx x 

 ”. For part (II) the claim about the 
smooth variation of   follows from ([2]; Prop. 7.1, formula (7.3), p. 820) whe-
reas the estimates in (5.31) follow from (5.35) where each term in the sum is  

( ) ( )( ) ( ) ( )( )1 2 1log log log .ki i i k ko x x x o x x x− − − − −− −⋅ ⋅ = ⋅ ⋅

             

In conclusion, the discussion in this section gives a theoretical description of 
the possible concepts related to a “logarithmic variation” at +∞  but these seem 
to have a limited import for practical applications, though linked with the gener-
al theory of asymptotic variation. An application is presented in the next section. 

6. Inverse of a Function with a Type of Exponential Variation 

This is termed “Open Problem 4” in ([2]; p. 866); a complete treatment requires 
some calculations and it is appropriately understood in the context of logarithmic 
variation. Let f  have a definite type of exponential variation namely, either:  

( ) with , 0;cf c c∈ +∞ −∞ ≤ ≤ +∞ ≠                (6.1) 

or  

( ) ( )0 .f +∞∈ +∞ +∞                      (6.2) 

The restriction in (6.2) is unavoidable as the class ( )0 +∞  contains func-
tions with different types of asymptotic variation whose inverses (if they exist) 
may have quite different behaviors and no definite general result may be given. 
Assumptions in (6.1) or (6.2) imply that f  is ultimately positive and f ′  has 
ultimately one strict sign, hence f  has an inverse 1f −  on some neighborhood 
of +∞ ; 1f −  is defined on a right neighborhood of zero if 0c < , or on a 
neighborhood of +∞  if 0c ≥ . By the change of variable ( )1x f y−= , as in ([1]; 
formula (2.38), p. 786), we get:  

[ ]
( )

[ ]

( )( ) ( )
( )

1

10 0

loglim lim lim ,H

xy y
y y

f f y f xy c
y f xf y+ +

−

− →+∞→ →
→+∞ →+∞

′ ′
= = =          (6.3) 

whence:  

( )
( )

( )

1

1

if 0 ,
log ,

0 if 0;

if ,
log ,

0 if ;

log , , if 0;

y c
c y

y c
f y y c

o y
y c

y y c

−
+

−

+

 → +∞ < < +∞
 

→ −∞ < <
 → +∞ = +∞
=  → = −∞
= +∞ → +∞ =



          (6.4) 

and analogously we get that in each case:  

[ ]

( )( )
( )

( )
( )

1

10
lim lim 0;

xy
y

y D f y f x
xf xf y+

−

− →+∞→
→+∞

⋅
= =

′
               (6.5) 
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hence 1f −  is slowly varying at 0+  or at +∞ . Moreover, the limit in (6.3) also 
yields:  

( )( )
( )

{ }
( )

1

, if 0,
, if \ 0 ,

if .

o y c
f f y cy c

y c

−

= =
′ ∈
= ±∞ = ±∞

                 (6.6) 

1) For 0c =  the sole assumption “ ( ){ }of order , 2f n n+∞∈ +∞ ≥ ” implies, 
by a result in ([2]; Prop. 7.7-(II), p. 830) that:  

( ){ } ( )1 1
0 of order ; , 1 1,k

kf n D f k n− −
−∈ +∞ ∈ +∞ ≤ ≤ −      (6.7) 

which stand for the set of relations in (5.32) with ′
  replaced by 1f − . These 

relations imply:   

( )( ) ( )( )( )1 1 1 1 , , 1 ;k kD f y o y D f y y k n− − − −= ⋅ → +∞ ≤ ≤       (6.8a) 

which, together with the estimate “ ( )1 , 0f y y− ∀ >

  ”, yield:  

( )( )1 , , 0;1 ;k kD f y y y k n− − + → +∞ ∀ > ≤ ≤

            (6.8b) 

and better estimates do not obtain in general as shown by the inverse of the 
function ( )exp , 1xα α > . 

2) If “ { }\ 0c∈ ” and “ ( ){ }of ordercf n∈ +∞ ” we get from ([2]; formula 
(8.69), p. 840):   

( ) ( )( ) ( )( )1 1 , 1;i i if f y c f f y c y i− − ≡ ≥               (6.9a) 

and from the formula for the higher derivatives of an inverse function ([2]; for-
mulas (6.4)-(6.5), p. 819), we get the estimates:  

( )( ) ( ) ( ) ( ){ }

( )

1
1

1
1

1 21 2 2 1
, ,

, ,

1
, ,

, ,

1 1 1 1

1 1 , 1 ,

k
k

k
k

kk k k
i i

i i

k
i i

i i

D f y cy o a c y o

c y a o k n

−− − −

− −

= + ⋅ ⋅ +      

 
= ⋅ ⋅ + ≤ ≤    

 

∑

∑













 (6.9b) 

provided that the last sum is not zero. In fact, choosing ( ) xf x e=  in ([2]; for-
mula (6.4), p. 819) it is checked at once that:  

1
1

, ,
, ,

log , 1;
k

k

k k
i i

i i
y a D y k− = ≥∑







                (6.9c) 

hence the sum equals the numerical non-zero coefficient appearing in the expli-
cit expression of logkD y . In conclusion, we have the relations:  

( ) ( )( )1 1 1 1log ; log , ;1 ;k kf y c y D f y c D y y k n− − − −⋅ ⋅ → +∞ ≤ ≤   (6.10) 

which mean that f  is logarithmically varying at +∞  of order n according to 
Definition 5.2. 

3) For c = +∞  we give the two most meaningful results concerning the cases 
“ ( )log , 1f α α∈ +∞ > ” and “ ( )log f +∞∈ +∞ ”.  

Proposition 6.1. Let  

 ( ) ( )( ) ( ){ }: exp , with of order , 1; 0;f x R x R n Rα α α αα= ∈ +∞ > >  (6.11) 

which, by ([2]; Prop. 9.4-(II), p. 847) implies “ ( ){ }of orderf n+∞∈ +∞ ”. Then, 
besides the relations in (6.7) we have the additional properties:   
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( ) ( ) ( )
( ){ } ( ) ( ) ( )( )

11

0

log log with a suitable constant 0 and a function such that :

of order , . . , , 1 ;k k

f y y y c

n i e x o x x x k n

α−

−

 = ⋅ >

∈ +∞ = → +∞ ≤ ≤

 

  
(6.12a) 

( )( )
( ) ( ) ( ) ( )

( )

1 1 1
1

1 !
1 log

, ;1 ;
k k

k

k

k
y y f y

D f y y k n
o y

α
− −− −

−

−

−
− ⋅ ⋅

→ +∞ ≤ ≤
=



 (6.12b) 

hence ( ){ }1
0 of orderf n− ∈ +∞  and it is hypo-logarithmically varying at +∞  

of order n.  
Proof. The inverse of the function Rα , denoted by 1R α , has the following 

properties:  

( ){ }
( )

( ) ( ) ( )

1 1

1 (1 )
1

1 0

of order , by ([2]; Prop. 7.7-(I), p.830);

, 1 1, by ([1]; formula (3.3), p.798);
with a suitable .

k
k

R n

D R k n
R x x x

α α

α α
α

α

−

 ∈ +∞
 ∈ +∞ ≤ ≤ −
 ≡ ⋅ ∈ +∞

 






 (6.13) 

We cannot in general assert that ( ){ }0 of order n∈ +∞  ; for instance it may 
be a constant as in the case ( )R x xαα = . However it is certainly differentiable n 
times by its definition “ ( ) ( )1

1:x x R xα
α

−= ”, and the asymptotic relations for 

1
kD R α  ([1]; formula (3.5), p. 799), yield the following ones for ( )k

 :  

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )( )

1
1

0

1
1

0

1
1

0

1
1

1 1 1 1

1 1 1 1

1 , , 1 ,

i k i

i k i

k
k i k i

i

k
i i k

i

k
k

i

k k

k
x D x D R x

i

k
x x R x o

i

k
x R x o

i

x R x o o x x x k n

α
α

α
α

α
α

α
α

α α

α α

−

−

− −

=

− − −

=

− −

=

− − −

 
= ⋅ 

 
   −    = ⋅ +              

   −    = ⋅ ⋅ ⋅ +              

= ⋅ ⋅ = → +∞ ≤ ≤

∑

∑

∑





     (6.14) 

because the following sum is zero:  

( )1 1

10

1 1 0, 1.
i k i

k
k

xi

k
D x x k

i
α α

α α

−

−

==

   −    ⋅ = = ≥     
      

∑        (6.15) 

Now, inverting the equation defining f  one gets “ ( ) ( )1
1 logf y R yα

− = ” whence 
the factorization for 1f −  in (6.12a) with the above-studied slowly-varying  . For 
the higher derivatives of 1f −  one may use the relations:  

( ) ( )( ) ( ) ( ){ }
( ) ( ) ( )( ) ( )

1 1 1
0

1

log log ,because log of any order ;

log log log by 5.31 ;

i i

i i

D y o y y y n

D y o y y y

α α α−

−−

 = ∈ +∞

 = ⋅


 


(6.16) 

so getting:  

( ) ( ) ( )

( )( ) ( ) ( )( )
( )( ) ( )( ) ( )

11

0

1 1

0

1 1

log log

log log log

log log .

k
k i k i

i

k
i i k

i

k k

k
D f y D y D y

i

o y y o y y y

o y y y o y

α

α

α

− −

=

−− −

=

−− −

 
= ⋅ ⋅ 

 

= ⋅ ⋅

= ⋅ =

∑

∑







     (6.17) 
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But one may also use an explicit expression for the derivatives given in ([1]; 
formula (3.30), p. 802), namely:  

( ) ( ) ( ) ( ) ( ) ( )1

2
log 1 1 ! log log , 1,

kk ik k k
i

i
D x k x x x c x kφ φ φ− − −

=

′= − − ⋅ + ⋅ ≥∑  (6.18) 

where “ ( ) ( ) ( ) ( )
log

log d di i i

t x
x t tφ φ

=
= ”; and this implies:  

( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( )

1 1 1 1 1

2

1 1 1

1 !
log 1 log 1 log

1 !
1 log , , 1.

ii j ji i i
j

j

i i

i
D y y y y c y

i
y y y i

α α α

α

α
α

α

− − −− −

=

− −−

−
= − ⋅ + ⋅

−
− ⋅ → +∞ ≥

∑



(6.19) 

Now in (6.17) we take both the first and the last term out of the sum in the first 
line and use the relations in (6.19) and the same estimates for ( )logk iD y−

  as 
above, so getting:  

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

1 11

1 1/

=1

1

log log log log

log log

log log , , ,

k k k

k
i k i

i

k

D f y D y y y D y

k
D y D y

i

D y y y k n

α α

α

α

−

−
−

= ⋅ + ⋅

 
+ ⋅ ⋅ 

 

⋅ → +∞ ≤ ≤

∑

 





     (6.20) 

because we have:  

( ) ( ) ( )( ) ( )( )1 1 1log log log log ,k ky D y o y y yα α −−⋅ = ⋅   

and each term in the sum is “ ( )( ) ( )( )1 2log logko y y yα −− ⋅ ⋅ ”. Relations in 
(6.19)-(6.20) yield (6.12b) and the proof is complete.                        

Proposition 6.2. If ( ){ }of order , 0R n R+∞∈ +∞ > , R  is its inverse and 
( ) ( )( ): expf x R x= , then:  

( ){ } ( )

( )( ) ( ) ( ) ( ) ( )( )

( )( ) ( ) ( )( ) ( )

1 1
0

1 11 1 1

11

of order ; , 1 1;

1 log 1 , , 1 ;

log log , , 1 ;

k
k

k kk k k

k k k

f n D f k n

D f y y R x x Df y y k n

D f y o y y R x o y y k n

− −
−

− −− − − −

−− − −

 ∈ +∞ ∈ +∞ ≤ ≤ −
 ′− ⋅ − ⋅ → +∞ ≤ ≤

 = = → +∞ ≤ ≤






 

  (6.21) 

hence 1f −  is hypo-logarithmically varying at +∞  of order n.  
Proof. We have ( ) ( )1 1 logf y R y− −=  hence the properties in the first line in 

(6.21) follow from ([2]; Prop. 7.7-(II), p. 830); the remaining properties follow 
from (5.30).                                                      

  

7. Various Minor Complements 
7.1. Counterexamples on Formal Differentiation: First Group 

The counterexamples listed in Remarks 2 and 3 after the proof of Proposition 2.3 
([1]; p. 791), may be rearranged and completed to show the total independence 
of the following two statements:  

<< f , g strongly or weakly comparable of order 1>>,        (7.1) 

<< ,D f D g
 

 strongly or weakly comparable>>,           (7.2) 

https://doi.org/10.4236/apm.2019.95022


A. Granata 
 

 

DOI: 10.4236/apm.2019.95022 471 Advances in Pure Mathematics 
 

where “strong [resp. weak] comparison” means the validity of a “o”-relation 
[resp. “O”-relation] linking f  and g; and “order 1” means that the same type 
of comparison may be established between the derivatives ,f g′ ′ . All asymptotic 
relations in the following examples refer to x → +∞ . 

Counterexample 1:  

( ) ( ) ( )
( ) ( ) ( ) ( )

: , 0; : exp , 0;

( ); ( ) ; ;
, strongly comparable of order 1;

, strongly comparable but with inverted order.

f x x g x x

g x f x g x f x D g x D f x
f g
D f D g

α δα δ = ≠ = − >

 ′ ′





 

 

          (7.3) 

For this counterexample any pair of functions f , g may be used where: f  is 
of the type in I-(2.7) and g of the type in I-(2.8). 

Counterexample 2:  

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2 3

2 1

: sin ; : ;

; ; 2cos 1 ; 3 ;

, strongly comparable of order 1; 1 ;
, not weakly comparable.

f x x x g x x

f x g x f x g x D f x x o D g x x

f g D f x O
D f D g

−

 = + =

 ′ ′ = + =

 =



 



 

  (7.4) 

Counterexample 3:  

( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

( ) ( )

: exp sin ; : exp cos , 0 1, 0 1 ;

lim lim 0;

lim lim ;

1;
, not weakly comparable; , not weakly comparable.

x x

x x

f x x x x g x x x x

f x g x f x g x

f x g x f x g x

D f x D g x
f g f g

α β α β α β α

→+∞ →+∞

→+∞ →+∞

    = + = + < < < < −   
 ′ ′= =

 ′ ′= = +∞


 ′ ′


 

 

(7.5) 

Counterexample 4:  

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2

1

: ; : 1 2 sin cos ;

; ~ 2 1 cos 1;
, strongly comparable;

, strongly comparable but with inverted order;
, not weakly comparable.

xf x e g x x x x x

f x g x D g x x x D f x
D f D g
f g
f g

−

−

 = = + +


+ ≡ −





′ ′


 

 

 

       (7.6) 

7.2. Counterexamples on Formal Differentiation: Second Group 

The following may be considered remarks on Prop. 2.5 in ([1]; pp. 794-796) and 
concern the formal differentiation of an asymptotic relation between two func-
tions having the same type of asymptotic variation. To be definite consider the 
inference:  

( ) ( ) ( ) ( ){ }
( ) ( )

?

, , either , , ,or , ,

, .

cf x g x x f g f g c

f x g x x

α α→ +∞ ∈ +∞ ∈ ∈ +∞ ∈

′ ′⇒ → +∞

  



(7.7) 

By definition “ ( ) ( ), 0f x g x >  ultimately” and if we add the assumption 
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“ ( ) ( ), 0f x g x′ ′ ≠  ultimately” we may write:  

, whence 1 ;f f g f f g f g f f g g
g f g g f g
′ ′ ′

′ ′ ′ ′≡ ⋅ ⋅ ⋅ ⇔
′ ′ ′

       (7.8) 

hence the thesis in (7.7) is automatically granted for ( ) { }, , \ 0f g α α∈ +∞ ∈  
and for ( ) { }, , \ 0cf g c∈ +∞ ∈ , whereas the following counterexamples 
show that it is false in the remaining cases. 

Counterexample 1:  

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1

1
1

1

: log 1 log sin d log , ; 0;

,
1 sin 1

;

lim 0;

x

x

g x x a t t t t x f x x a

O x
g x x a x o

x
xg x g x

+∞ −

−
−

−

→+∞

  = ⋅ + ≡ → +∞ ≠   


= ′ = − +   
 
 ′ =


∫ 



(7.9) 

which is a counterexample for “ ( )0,f g ∈ +∞ “ and for “ ( )0,f g ∈ +∞ ”. 
Counterexample 2:  

 

( ) ( ) ( )

( ) ( ) ( )( )
( )

( ) ( ) ( ) ( )

( )
( )

1

1 1

: sin , ; 0, 0;

,
cos

;

1 cos 1 1

1 if 1, 1,
1 if 0 1, 0;

x x x

x x

x

g x ae e ae f x x a

O f x
g x x e a e

f x

g x g x a x a e o

a
o a

α α α

α α

α

α

α

α

α

α

α
α

−

− −

 = + ≡ → +∞ ≠ >
  ′=  ′ = +     ′ 


  ′ = + ⋅ ⋅ +    
 +∞ > > =  < < ≠





   (7.10) 

which is a counterexample for “ ( ),f g +∞∈ +∞ ” and for “ ( ),f g +∞∈ +∞ ” 
with the choice “ , 1a α > ”. It is also a counterexample for “ ( )0,f g ∈ +∞ ” with 
the choice “ 0 1; 0aα< < ≠ ”. 

Counterexample 3:  

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )

1 1 1 1

1

1

: sin , ; , , 0;

sin sin cos

1 cos 1 ;

1 cos 1 1 1

1 if

x x

x

x

g x e a x x ae f x x a

g x e a x x x x x x x

a x e x o f x
a

g x g x x x o o
a

a

α α

α

α

β α β

α α β α β β α β α α β

α α β

α α β

α β

α α β α β

α βα
α

α βα
α

− − + −

− − − − + − − + − +

− − +

− +

 = + ≡ → +∞ > 
 ′ = − − − + + 

+  ′= − − +  
+ ′ = − − + +    

= −∞





( ), 1; 1 ;aα β α












 > < −

(7.11) 

which is a counterexample for “ ( ),f g −∞∈ +∞ ”. It is also a counterexample for 
“ ( )0,f g ∈ +∞ ” with the choice “ 0 1; , 0aα β< < > ”. 

7.3. A Correction in the Statement of Proposition 4.1 in ([1]; p. 808) 

The last few lines in the statement of this proposition were erroneously inserted 
from another file. Starting from the words “Relations in (4.10) imply...” to the 
end of the statement the text must be replaced by the following: 
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Relations in (4.10) do not imply the validity of the asymptotic scale:  

 ( ) ( ) ( ) ( ) ( ) ( )1 , ,n nf x f x f x f x x+ ′ → +∞           (4.12) 

which characterizes a subclass of rapidly-varying functions. However, a different 
way of writing relations in (4.6) yields the asymptotic scale:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 11 2 , .n n n n nf x x f x x f x x f x x f x x− − − −− − −′ → +∞    (4.13) 

The mentioned subclass is that of hyper-exponentially varying functions of 
order n ([2]; Def. 8.2, formula (8.70), p. 840). 

7.4. Clarifications Concerning Three Examples in [1] 

 The function in formula (2.16), p. 783, “ ( ) ( )( ): 2 sinf x x xα φ= + ” belongs to 
the class ( )α +∞  iff the condition  

( ) ( ) ( )1cos ,x x o x xφ φ −′⋅ = → +∞                 (7.12) 

is satisfied, because there is no a-priori-specified condition on the asymptotic 
behavior of φ . With the added condition “ ( ) ( )1x oφ = ” then (7.12) is obvious-
ly equivalent to condition “ ( ) ( )1x o xφ −′ = ” stated in ([1]; first line of p. 784). 
 Remark 2, p. 791. In the three asymptotic relations appearing in the third line 

in this Remark the roles of the two functions ,f g  must be interchanged so 
that the relations read: 

,g f g f′ ′
   but g g f f′ ′

 . 

We have the same situation a few lines below where in the third line in for-
mula (2.70) ,f g  must be interchanged as well, so that this line must be re-
placed by:  

( ) ( )( ) ( ) ( )( )limsup limsup ;
x x

f x g x f x g x
→+∞ →+∞

′ ′= = +∞  

and this is done for consistency with the preceding line though, in this particular 
instance, the very same relations involving “liminf, limsup” obviously hold true 
for the inverted ratios. 
 In the last function listed in formula (2.105), p. 796, the first term ( )1 2 xe−  

is to be replaced by xAe−  with a constant 0 1 4A< < . In fact for the function  

( ) ( )2 2: sinx x xf x Ae e e− −= +  

we have the following relations:  

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

2

1; sin 1 ;
4

11 sin 1 ;
4

x x x

x

f x Ae f x e A e o

xf x f x x e o
A

− −  ′ ′′− = − +    


  ′′ ′ = − − +   



 

whence ( ) ( )xf x f x′′ ′  is “oscillatory and unbounded for 0 1 4A< < ”. 

7.5. A Clarification Concerning Definition 8.1 in ([2]; p. 832) 

In this definition, in the second line of formula (8.1) there is the condition “ f ′  
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strictly one-sided” referred to the case of hyper-exponential variation, a redundant 
condition as it automatically follows from the assumption on the one-signedness of 
f . This is obviously the case also for exponential variation of index 0c ≠ , 

whereas for hypo-exponential variation, i.e. ( ) ( )f x f x′
 , this restriction is 

not required. 

7.6. Completing the Proof of Proposition 8.4 in ([2]; p. 839) 

We give the proof of the last claim in this proposition which is missing in [2]. 
The assumptions are:  

( ) ( )
( ) ( ) ( ) ( )

0 1 1

0 1

, , 0, whence :

lim , lim ;
c c

x x

f f c

f x f x c f x f x c→+∞ →+∞

′ ∈ +∞ ∈ +∞ −∞ ≤ <


′ ′′ ′= =

 
     (7.13) 

and the assertion is:  

( ) { }0 0 \ 0 .c f= ⇔ +∞ ∈  

In fact, a simple consequence of 1 0c <  is that “ ( ) 0f ′ +∞ = ” and “ f
+∞

′∫  
converges” ([2]; formulas (8.27) and (8.47)); hence ( )f +∞  exists as a finite 
number. Now, if 0 0c =  then it cannot be ( ) 0f +∞ = , otherwise L’Hospital’s 
rule applied to the first limit in (7.13) would give a contradiction with the second 
limit. Viceversa, if ( ) 0f +∞ ≠  then ( ) ( ) ( ) ( ) ( )1f x f x f x f o′ ′ +∞ = , as 
x → +∞ . 

We point out three misprinted references in the original proof: in the first line 
following formula (8.63) the reference to formula (8.60) must be changed in a 
reference to formula (8.63); in the third line following formula (8.64) the refer-
ence to formula (8.63) must be changed in a reference to formula (8.64); and in 
the fifth line following formula (8.64) the reference to formula (8.13) must be 
changed in a reference to formula (8.12). Also notice that the function 1f  in 
formula (8.65), p. 839, satisfies:  

( ) ( ) ( ) { }1 1 0 0: 1 exp , 0; ( ) of any order .f x cx c f nγ γ= + − > ∈ +∞ +∞ ∀ ∈    

8. Conclusions 

In this final section we give a bird’s eye view of the matter treated in [1] [2] and 
the present paper altogether, the intention having been that of systematizing the 
theory of what we termed “higher-order types of asymptotic variation”. The 
classical Karamata and de Haan theories of regular and rapid variation, whose 
detailed exposition is (in [4]; Chapters 1, 2, 3), are based on various types of 
asymptotic functional equations satisfied by measurable or Baire functions; they 
are quite demanding and have their meaningful applications to probability, 
number theory and other fields. But for applications to the asymptotic study of 
ordinary differential equations or the analytic theory of asymptotic expansions 
in the real domain one has to deal with functions differentiable a certain number 
of times and whose derivatives show the same types of behavior so that one is led 
to formulating concepts of higher-order types of variation. For once-differentiable 
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(namely, absolutely continuous) functions the theory of regular or rapid varia-
tion of order 1 (in a stronger sense than Karamata’s) is quite elementary directly 
inferred from the value of the limit “ ( ) ( )limx xf x f x α→+∞ ′ ≡ ”, assumed to ex-
ist as an extended real number; but for types of variation of order 2≥  the per-
tinent theory must be based on appropriate definitions and preliminary results. 
Here is a list of the various types of asymptotic variation we defined and studied 
in our work. The locution “strong sense” refers to the involvement of certain de-
rivatives and the regularity of the functions must grant that the highest-order 
involved derivative is the derivative of an absolutely continuous function.   
 Slow variation of order 1n ≥  (in a strong sense involving derivatives up to 

order n); 
 Regular variation of index α ∈  and order 1n ≥  (in a strong sense in-

volving derivatives up to order n); 
 Smooth variation of order 1n ≥  (involving derivatives up to order n); 
 Rapid variation of order 1n ≥  (in a strong restricted sense involving deriva-

tives up to order 1n + ); 
 Three classes related to the concept of exponential variation: 
• hypo-exponential variation,  
• exponential variation,  
• hyper-exponential variation; 
 Three special subclasses of slow variation related to the concept of logarith-

mic variation: 
• quasi-logarithmic variation,  
• logarithmic variation,  
• hypo-logarithmic variation.  

Let us say something about each class starting from “regular variation”, slow 
variation being the special case of index zero. A basic lemma by the author ([1]; 
Prop. 2.6, p. 796), establishes precise relationships between the indexes of varia-
tion of a function and its derivatives so that, when defining higher-order regular 
variation, one knows the possible links between the indexes of the involved de-
rivatives, and this is absolutely necessary for applying these concepts. The main 
feature of regularly-varying functions of order n is the n asymptotic relations sa-
tisfied by the ratios ( ) ( ) ( )kf x f x :  

( ) ( ) ( ) ( ) ( ) ( )
( )

1 1

, , 1 ,

k k k

k k k

f x f x k x o x

x o x x k n

α α α

α

− −

− −

= − − + +

≡ + → +∞ ≤ ≤



         (8.1) 

where α  is the index of regular variation of f . These relations turn out to 
characterize such a class whenever α  does not assume the exceptional values 
“ 0,1, , 2n − ”: ([1]; Prop. 3.1, p.799). The relations valid in the exceptional cas-
es are simple “o”-estimates and lead in a natural way to the concept of high-
er-order smooth variation. The concept of smooth variation used in the litera-
ture until now refers to functions satisfying (8.1) for each k ∈  (smooth vari-
ation of any order n, in our terminology) and an exposition is in ([4]; §1.8, pp. 
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44-49) where the authors mention as a simple check the equivalence between the 
relations in (8.1), assumed valid for each k ∈ , and the relations satisfied by 
the associated function:  

( ) ( )( ) ( ) ( ) ( ): log ; lim ; lim 0, , 2.k

x x
h x f x h x h x x kα

→+∞ →+∞
′= = = → +∞ ≥   (8.2) 

As a matter of fact this equivalence is anything but trivial and the original in-
genious proof by Balkema, Geluk and de Haan is revisited in ([1]; pp. 802-803) 
to highlight the technical ideas. Besides the equivalence of (8.1) and (8.2) for 
1 k n≤ ≤ , we give two other simple but useful characterizations: ([1]; Prop. 3.2 
and Def. 3.2, pp. 801-804). 

Next, the concept of rapid variation of order n needs some critical a-priori 
remarks leading to a restricted class which is the right class for most applications. 
For this class, which involves derivatives up to order 1n + , we give five different 
characterizations expressing asymptotic relations satisfied by either the loga-
rithmic derivatives ( ) ( )( ) , 0kD f x k n≤ ≤



, or their reciprocals: ([1]; Def. 4.1 
and Prop. 4.1, pp. 807-808). 

The three concepts related to exponential variation are studied in some detail 
in ([2]; §§8-9-10). Though these concepts may in principle be brought back 
to the concepts of slow, regular and rapid variation by the simple change of va-
riable ( ) ( ): xg x f e= , they are quite important for applications and deserve a 
separate explicit treatment not to be found in the literature in a systematized way. 
After the exposition of the properties for order 1 the pertinent concepts of high-
er-order exponential variation are defined quite simply provided a preliminary 
lemma clarifies the relationships between the indexes of exponential variation of 
a function and its derivative: ([2]; pp. 838-840). 

Let us now come back to the concept of slow variation ( ≡  regular variation 
of index 0). In many a respect slowly-varying functions behave differently from 
regularly-varying ones of index 0α ≠  and it is improper to speak of high-
er-order slow variation because a derivative of a slowly-varying function, if it ex-
ists and is regularly varying, has a non-zero index of variation. Also, the concept 
of slow variation, though including all iterated logarithms, does not exactly de-
fine what is intuitively attached to “logarithmic variation” when the variable 
tends to +∞ . So, for the sake of completeness, we added in §5 of the present 
paper a discussion about a concept of logarithmic variation which does not seem 
to be explicitly stated in the literature though it is to be implicitly found in the 
more advanced theories in [4]. In fact we had to use some non-trivial results 
from this monograph to prove some estimates. Unlike the to-be-avoided concept 
of higher-order slow variation, the definitions of the three types of logarithmic 
variation allow respective types of higher order. 

Fundamental features of the various classes of functions are certain asymptot-
ic functional equations and some of them represent in fact the starting points for 
the more general definitions of the classes in Karamata and de Haan theories. 
Many such functional equations are collected in ([1]; §5), ([2]; §8) and §5 of the 
present paper; they motivate the discussion in §4 of the present paper comparing 
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the two approaches to the concept of “type of asymptotic variation”: via an 
asymptotic differential equation or an asymptotic functional equation. The main 
contribution consists in proving that for a function which is either ultimately 
concave or ultimately convex the two approaches coincide for each one of the 
studied classes including those related to logarithmic variation. 

Now some words about the types of asymptotic variation for functions ob-
tained by means of algebraic operations: linear combination, multiplication, 
composition and inversion. While the pertinent results are quite simple if all the 
involved functions are smoothly varying, an hard job was required in ([2]; §7) to 
obtain complete results in the cases of regular or rapid variation due to the ex-
ceptional values of the indexes which cause anomalies; pathological counterex-
amples are given. An equally hard job was done to obtain results on the high-
er-order types of compositions involving exponential and regular variations in 
([2]; §9); three cases needed separate treatments: order 1, order 2, order 3n ≥ . 
The study of the inverse of a function with a type of exponential variation, left 
open in ([2]; Open Problem 4, p. 866), received adequate study in §6 of the 
present paper clarified by the concepts related to logarithmic variation. 

The remaining material in our three papers concerns elementary applications 
of the theory such as: relations between “integral of a product” and “product of 
integrals” ([2]; §10.1); sums of exponentially-varying terms ([2]; §10.2); certain 
types of asymptotic expansions ([2]; §11); types of variation of infinite series and 
Wronskians ([this paper]; §§2, 3). 

We hope that our exposition (in these three semi-expository papers) of the 
general theory of “higher-order types of asymptotic variation” will reveal ex-
haustive and apt to applications. Until now the author has applied this theory to 
obtain non-elementary results about the asymptotic behaviors of Wronskians [5] 
[6]. A minor fact remain unsolved and this is “Open Problems 1 and 3” in ([2]; p. 
866) and an open problem stated after relation (2.110) in ([1]; p. 796). We think 
that the three problems are interrelated and if one finds out a counterexample 
for one of them, then suitable adaptations will yield counterexamples for the 
other questions. This puzzled the author and a lot of scribbled-out sheets of pa-
per have been wasted. 
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Bibliographical Notes and Corrections to Parts I and II   

 For the matter treated in §2 we have no reference in the literature apart from 
the elementary case in [3]. 

 Chapter 3 in the monograph [4] is devoted to a deep study of various 
asymptotic relations satisfied by the ratio ( ) ( ) ( )f x f x g xλ −    where g is 
a fixed “auxiliary” function; in §5 we reported on the special case 1g ≡  with 
some complements pertinent to differentiable functions in order to complete 
our theory of “higher-order types of asymptotic variation”. The exposition in 
§5 clarifies and expands the notion cursorily touched on in ([1]; Prop. 
5.2-(III), p. 815). 

 Here is a list of corrections for a number of typos in the papers [1] [2]: 
page-number univocally identifies the pertinent paper because the two pa-
pers have a consecutive page-numbering. 
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