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Abstract 
It is well known that the full compressible Navier-Stokes equations with 
viscosity and heat conductivity coefficients of order of the Knudsen number 

0>  can be deduced from the Boltzmann equation via the Chapman-Enskog 
expansion. In this paper, we carry out the rigorous mathematical study of the 
compressible Navier-Stokes equation with the initial-boundary value 
problems. We construct the existence and most importantly obtain the higher 
regularities of the solutions of the full compressible Navier-Stokes system 
with weak viscosity and heat conductivity in a general bounded domain. 
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1. Introduction 

This paper is concerned with the following initial boundary value problem of the 
full compressible Navier-Stokes equations [1] in a smooth bounded domain 

3Ω∈   
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∂ +∇ ⋅ =
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∂ + ⋅∇ +∇ = ∆ + + ∇∇⋅ =

  ∂ + ⋅∇ + ∇ ⋅ = ∆ + ∇ + ∇ + ∇ ⋅   





 (1) 

with the initial data  

[ ]( ) [ ]( )0 0 0, , 0, , , ,u x u xρ θ ρ θ=                     (2) 

and the Dirichlet boundary condition  

[ ] [ ], 0,1 ,u θ
∂Ω

=                            (3) 
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where ( ), 0t xρ > , ( ) ( )1 2 3, , ,u t x u u u=  and ( ), 0t xθ >  denote the density, 
velocity and temperature of the fluid, respectively. 0>  is the Knudsen 
number, and the constants µ , 0λ >  and 0κ >  stand for the viscosity and 
heat conductivity coefficients, respectively, moreover µ  and λ  satisfy the 

physical restrictions 
2 0
3

µ λ+ > . Our goal in this paper is to study the global 

existence of (1) with 0>  and small enough. 
The Navier-Stokes equations are a fundamental model aimed at describing the 

motion of an incompressible viscous fluid. There are huge number of 
literatures on the mathematical studies for the compressible Navier-Stokes 
equations. Here, we only mention the works related to our current study. The 
full compressible Navier-Stokes equations with viscosity and heat conductivity 
coefficients of order of the Knudsen number 0>  were formally derived by 
Bardos-Golse-Levermore [2]. Recently, Liuyang Zhao [3] and Duan Liu [4] 
justified the compressible Navier-Stokes equations as the second order 
approximation to the Boltzmann equation in the whole space and in general 
bounded domain, respectively. Wang [5] and Wang Xinyong [6] studied the 
vanishing viscosity limits of the compressible Navier-Stokes system, while the 
same issue for the incompressible one was also investigated by Masmoudi-Rousset 
[7]. When the viscosity and heat conductivity are independent of the Kundsen 
number, Matsumura-Nishida constructed the global existence in the whole space 
[8] and in bounded domain [9] by an elementary energy method, respectively. 
Recently, Huang Lixin [10] proved the global well-posedness of classical 
solutions with large oscillations and vacuum for the isentropic compressible 
Navier-Stokes equations. The large time behaviors of the classical solutions are 
studied by Ukai-Yang-Zhao [11] and Duan-Liu-Ukai-Yang [12] and reference 
therein. For the mathematical study of the weak solutions of the compressible 
Navier-Stokes equations we refer to the survey book by Lions [13]. 

Compared with the previous works such as [8] and [9], the main difficulty in 
the current paper is the weak dissipation structure of the system (1), say, the 
coefficients of the viscosity and heat conductivity involve the Knudsen number, 
it is quite hard to establish the higher regularities of the solutions. More precisely, 
the standard elliptic estimates cannot be directly applied here due to the 
singularity perturbation and the usual regularity estimates to deal with the 
boundary value problem of elliptic partial differential equations which cannot be 
available either. To overcome those difficulties, we introduce the Helmholtz 
decomposition, the Galerkin method and conormal derivatives to handle the 
boundary terms and obtain the higher order energy estimates. The overall 
structure of this paper is to make zero-order, first-order, second-order energy 
estimates and conormal energy estimates for Navier-Stokes, we construct the 
existence and most importantly obtain the higher regularities of the solutions of 
the full compressible Navier-Stokes system with weak viscosity and heat 
conductivity in a general bounded domain. 

Notations. Throughout this paper, C denotes some generic positive (generally 
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large) constant and λ  denotes some generic positive (generally small) 
constants, where C and λ  may take different values in different places. D E  
means that there is a generic constant 0C >  such that D CE≤ . 

2. Solutions of the Compressible Navier-Stokes Equations  

This section is devoted to proving the global classical solution to the initial 
boundary value problem of (1), (2) and (3), the main result of this paper. We 
emphasize that it is extremely difficult to obtain the uniform higher regularity of 
the solutions of the system (1), (2) and (3) due to the weak dissipation on the 
right hand side and the non-slip boundary condition, which is quite different 
from the incompressible case, where the standard elliptic estimates can be 
directly adopted to gain the regularity of the solutions, cf. [7]. To settle this 
problem, it is convenient to introduce the so-called conormal derivatives. Since 
∂Ω  is compact, one can find finitely many points 0

ix ∈∂Ω , radii 0ir > , 
corresponding sets ( )0 0 ,i i iB x rΩ = Ω  and smooth functions ( )k

i iCφ ∈ Ω  
( )1, 2, , , 6i m k= ≥  such that ( )0 0 ,m

i ii
B x r∂Ω ⊂



 and  

( ) ( ){ }0 0
3 1 2, | , , 1.i i i ix B x r x x x m iφΩ = ∈ > ≥ ≥  

In what follows, we omit the subscript i of iφ  for notational simplicity. Using 
this, we now change coordinates so as to flatten out the boundary. To be more 
specific, we define  

( ) ( )( ): , , .y z y y z xφΦ + =  

Denoting ( )1
T

11,0,
y

e φ= ∂ , ( )2
T

20,1,
y

e φ= ∂  and ( )T0,0, 1ze = − , one sees 
that ( )1 2, , zy y

e e e  is a local basis around the boundary. We emphasize that 1y
e  

and 2y
e  on the boundary are tangent to ∂Ω , and in general, ze  is not a 

normal vector field. 
The following lemma is concerned with the basic properties of the conormal 

derivatives.  
Lemma 1. Let  

, 1, 2,ii i i zy
Z iφ= ∂ = ∂ − ∂ ∂ =  

where ( )
1

zz
z

ϕ =
+

 is smooth, supported in +  with the property ( )0 0ϕ = ,  

( )0 0ϕ′ > , ( ) 0zϕ >  for 0z > . It is easy to check that  

1 2 2 1,Z Z Z Z=  

and  
, 1, 2.z i i zZ Z i∂ = ∂ =  

We now define the following Sobolev conormal derivatives  
0 01 11 12

1 2 ,t tZ Z Zα αα α αα = ∂ = ∂  

where 0 1, ,α α α  are the differential multi-indices with  
( ) ( )def

0 1 1 11 12, , ,aα α α α α= = , and the corresponding Sobolev conormal norm:  
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( ) ( ) ( ) ( ),2

22
,  ,m k

co cox xH HL Lm k
f t Z f t f t Z f tα α

α α
∞ ∞

≤ ≤

= =∑ ∑  

for smooth function ( ),f t x . Note that we also use kH  to denote the usual 
Sobolev space ( ),2kW Ω . 

The following anisotropic Sobolev embedding and trace estimates which are 
given in [[7], Proposition 2.2, pp. 316] will be frequently used in the later proof.  

Lemma 2. Let 1 20, 0m m≥ ≥  be integers, ( ) ( )1 2m m
co cof H H∈ Ω Ω  and 

( )2m
cof H∇ ∈ Ω . 

Then   

2 1

2 ,m m
co coL H Hf C f f∞ ≤ ∇  

provided 1 2 3m m+ ≥ , and   

( ) ( )2 2 1

2 ,m m ms
co co coH H H Hf C f f f

∂Ω
≤ ∇ +  

for 1 2 2 0m m s+ ≥ ≥ .  
The solution of (1), (2) and (3) is sought in the set of the functions space  

( ) [ ] [ ]{ }2 2
0 0 0 1 0 0, , | 1, , 1 , 0, 2 , 6 ,t u u c c m mρ θ ρ θ α α= − − ≤ > + ≤ ≥


 

X
X  

where  

[ ] [ ]( ) [ ]( ){ }
[ ] [ ]{ }

10 0

2 30 0

2 2 2

0

2 22 2 4 3

0

1, , 1 sup 1, , 1 , ,

sup , , , .

m m
co co

m m
co co

H Hs t

H Hs t

u u s u s

u u

ρ θ ρ θ ρ θ

ρ θ θ

−

− −

≤ ≤

≤ ≤

− − = − − + ∇

+ ∇ + ∇



 

X
 

We now state the main result of this paper.  
Theorem 1. Let 0 0κ >  and 0 6m ≥ . If  

[ ]0 0 0 01, , 1 ,uρ θ κ− − ≤



X

 

then there exists a unique global smooth solution [ ]( ), , ,u t xρ θ  to (1), (2) and 
(3) satisfying  

[ ] [ ] [ ]

[ ] [ ]

[ ]

[ ]

1 20 0 0

103 00

2 10 0

22 2 2 2

2 224 3
0 0

2 22 2
0 0

2
0 0 0 0

1, , 1 , , , ,

, d , d

d , d

1, , 1 ,

m m m
co co co

m mm co coco

m m
co co

x xH H H

t t
x x xH HH

t t
x xH H

u u u

u s u s

s u s

C u

ρ θ ρ θ ρ θ

θ ρ θ

ρ θ

ρ θ

− −

−−

− −

− − + ∇ + ∇

+ ∇ + ∇ + ∇

+ ∇ + ∇

≤ − −

∫ ∫

∫ ∫





  

 

X

      (4) 

for 0 0C > .  
Proof. The local existence of (1), (2) and (3) follows from a standard iteration 

method, we only prove the a priori estimate (4) under the a priori assumption  

( ) 2 2
0 ,N t κ≤                      (5) 

where ( )N t  is given by  
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( ) ( )( )
[ ] [ ] [ ]

[ ] [ ]

[ ]

1 20 0 0

103 00
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22 2 2 2

2 224 3
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2 22 2
0 0

, ,

1, , 1 , , , ,

, d , d
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m mm co coco
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x x xH HH
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N t N u t

u u u

u s u s

s u s

ρ θ

ρ θ ρ θ ρ θ

θ ρ θ

ρ θ

− −

−−

− −

=

= − − + ∇ + ∇

+ ∇ + ∇ + ∇

+ ∇ + ∇

∫ ∫

∫ ∫



  

 

 

The proof is then divided into the following four steps. 
Step 1. The zeroth order energy estimate. Denote [ ], 1, 1ρ θ ρ θ  = − − 



 , take 

the inner product of (1)1, (1)2 and (1)3 with ,uρ  and 
θ
θ



, respectively, to obtain 

( ) ( ) ( )2

2

1 d , , , 0,
2 d x x xu u u

t
ρ ρ ρ ρ ρ ρ+ ∇ + ∇ ⋅ + ∇ ⋅ =                (6) 

( ) ( ) ( ) ( )
( )

2

2 2

2 2

1 d d , , , ,
2 d

,

x x x x

x x

u x u u u u
t

u u

ρ ρ θ θ ρ ρ θ

µ λ µ

Ω
+ ∇ + ∇ + ∇ + ∇

= − ∇ − + ∇ ⋅

∫   

  

 
      (7) 

( ) ( )


( ) ( )( ) ( )

2 2 2
2 2

22
2T 2

2 2

3 d 3 3d d d , ,
4 d 4 4

1 , .
2

t x x x

x
x

x x u x u u
t

u u u

ρ ρ ρθ θ θ θ θ θ ρ θ
θ θ θ

θ θ θκ κ θ µ λ
θ θθ

Ω Ω Ω
+ ∂ + ⋅∇ + ∇ ⋅ + ∇ ⋅

 ∇
= − + ∇ + ∇ + ∇ + ∇ ⋅ 

 

∫ ∫ ∫    






   
 (8) 

Taking the summation of (6), (7) and (8), applying Lemma 2 and the a priori 
assumption (5), we then have for some 0λ >   

( ) ( )

( ) ( )

2 2

02 2
2 2

0 02 2

, , , d

, , 0, , , d .

t
x

t
x

u t u s s

C u x u s s

ρ θ λ θ

ρ θ κ ρ θ

   + ∇   

   ≤ + ∇   

∫

∫

 



 

 




          (9) 

To obtain the dissipation of xρ∇  , we next get from the inner product of 
( )( )11 , x u∇ ⋅  and ( )( )22 , xρ ρ∇   that  

( ) ( )( ) ( )

( ) ( ) ( )

( )( )

0 0 0

0 0 0

2
0

d, d , d , d
d

, d , d , d

, d

t t t
t x x x x

t t t
x t x x x x

t
x

u s u u s u s
s

u s u u s P s

u u s

ρ ρ ρ

ρ ρ ρ ρ

µ λ µ ρ ρ

∂ ∇ ⋅ + ∇ ⋅ ∇ ⋅ − ∇

+ ∇ ∂ − ⋅∇ ∇ − ∇ ∇

= − ∆ + + ∇∇⋅ ∇

∫ ∫ ∫

∫ ∫ ∫

∫

 

 



  

  



 

( )( ) ( )

( ) ( )

( )( )

0 0

0 0

2
0

d, d , d
d

, d , d

, d ,

t t
x x x

t t
x x x x

t
x

u u s u s
s

u u s P s

u u s

ρ ρ

ρ ρ ρ

µ λ µ ρ ρ

⇔ ∇ ⋅ ∇ ⋅ − ∇

− ⋅∇ ∇ − ∇ ∇

= − ∆ + + ∇∇⋅ ∇

∫ ∫

∫ ∫

∫



 



 

 



 

where we used the fact ( ) ( ), , 0x t x tu uρ ρ∇ ∂ + ∇ ∂ = . The above identity then 
implies  

( )( )

( )( ) ( ) ( )

( )

2

20
223 2 2

0 02 2

2
0 20

, d

, 0 d , d

d ,

t
x x

t t
x x x

t
x

u t s

C u C u s C u s s

C s

η

ρ λ ρ

ρ θ

κ η ρ

− ∇ + ∇

 ≤ ∇ + ∇ + + ∇  

+ + ∇

∫

∫ ∫

∫

 







 

   



   (10) 
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Let 0κ  and   be suitably small, then (9) and (10) give rise to  

( ) ( ) ( )

( )
( ) ( )

2 2

02 2
2 23 2

0 0 0 0 0 0 22
2

, , , , , d

, , , d

0 .

t
x x

t
x x

u t u u s s

C u C u C u s

CN C N t

ρ θ ρ λ ρ θ

ρ θ ρ θ

   − ∇ + ∇   

 ≤ + ∇ + ∇ 
≤ +

∫

∫

 

  

 

 

 





 

Similarly, by acting 0
t
α∂  [ ]( )0 0 2mα ≤  to (1), one also has  

( ) ( ) ( )

( )
( ) ( )

0 0 0 0

0 0 0 0

2 2

02 2
2 23 2

0 0 0 0 0 0 22
2

, , , , , d

, , , d

0 .

t
t t t x x t

t
t t x t x t

u t u u s s

C u C u C u s

CN C N t

α α α α

α α α α

ρ θ ρ λ ρ θ

ρ θ ρ

   ∂ − ∂ ∂ ∇ + ∇ ∂   

 ≤ ∂ + ∂ ∇ ∂ + ∇ ∂ 
≤ +

∫

∫

 

  



 

 

 



    (11) 

Step 2. The first order energy estimate. The energy estimates for , ,x uρ θ ∇  


  
are subtle since we know nothing about the derivatives of these quantities on the 
boundary and the dissipation of (1) is very weak. Our strategy to take care of 
these difficulties is the Helmholtz decomposition, elliptic estimates and the 
Galerkin method. To see this, we first decompose u as 1 2u u u= +  with  

1 1uxu = ∇ , 2
xu = ∇ ×   and 2 0u

∂Ω
= . 

Moreover, we set ( ) ( ) ( )
1

, 1
m

m k k
k

t x d t xθ
=

− = ∑   with  

( ) ( )( )1
0 1, 2,k x H k∈ Ω =   being the eigenvalues of the operator x−∆ , i.e.  

, ,
0, ,

x k k k

k

x
x
λ−∆ = ∈Ω

 = ∈∂Ω

 


 

where 1 20 λ λ< ≤ ≤ . The key point here is that we get an approximation 
sequence mθ  such that 0mθ ∂Ω

∆ = . 
We now approximate (1) as  

( )
( ) ( ) ( ){ }
( ) ( ) ( )( ) ( )

[ ]( ) [ ]( )
[ ] [ ]

2T 2

0 0 0

0,
,

3 ,
2 2

, , 0, , , ,
, 0,1 .

t x

t x x m

t m x m m x

m

m

u
u u u u u

u u u u u

u x u x
u

ρ ρ
ρ ρθ µ λ µ

µρ θ θ ρθ κ θ λ

ρ θ ρ θ
θ

∂Ω

∂ +∇ ⋅ =


∂ + ⋅∇ +∇ = ∆ + + ∇∇⋅
  ∂ + ⋅∇ + ∇ ⋅ = ∆ + ∇ + ∇ + ∇ ⋅  

 
 =
 =



  (12) 

Note that here [ ] [ ]def, ,m mu uρ ρ=  also depend on m, we drop the subscript m 
for brevity. 

Noticing 2 10, 0x xu u∇ ⋅ = ∇ × =  and ( )1 2, 0u u = , taking the inner product 
of (12)2 with 2

tu∂  and integrating the resulting equation with respect to t, one 
has 

( )
( )
( ) [ ]( )
( ) ( )

22 2 2
0 2

2 22 2
0 0 2 20 0

22 2 2 2
0 0 0 20

2
0

,  d

, d d

, , d

0 ,

t
x x t

t t
x x t x

t
x x x

u u u s

C u u C u s C u u s

C u u C u s s

C N C N t

λ

ρ ρ

κ ρ

κ

∇ × ∇ × + ∂

≤ ∇ × ∇ × + ∂ + ⋅∇

≤ ∇ × ∇ × + ∇

≤ +

∫

∫ ∫

∫









 

 
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here the fact that x x x xu u u∆ = ∇ ∇ ⋅ −∇ ×∇ ×  and  
( ) ( )2 2 2 2, ,x x t x x tu u u u∇ ×∇ × ∂ = ∇ × ∇ ×∂  was used. 

Likewise, it follows that for 0
0

1
2

m
α

− ≤   
  

( )
( ) [ ]( )
( ) ( )

0 0 0

0 0 0

212 2 2
0 2

22 2 2 2
0 0 0 0 2

2
0

,  d

, , d

0 .

t
x t x t t

t
x t x t x t

u u u s

C u u C u s s

C N C N t

α α α

α α α

λ

κ ρ

κ

+∇ ×∂ ∇ ×∂ + ∂

≤ ∇ ×∂ ∇ ×∂ + ∇ ∂

≤ +

∫

∫ 



 

 

    (13) 

Next, we consider the following elliptic problems  

def
1

def2
2

,

,
0,

x t x x

x t t x

u u u h

u P u u u u h
u

ρ ρ ρ

µ ρ ρ

∂Ω

 ∇ ⋅ = − ∂ − ∇ ⋅ − ∇ ⋅ =

− ∆ +∇ = −∂ − ∂ − ⋅∇ =

 =





   

  

where  

( )1u .t m xP uρθ λ µ= ∂ + − + ∇ ⋅  

In view of Lemma 4.3 in [[9], pp. 451] and applying Lemma 2, one has for  

0
0

2
2

m
α

− ≤   
  

( ) ( )
( ) ( )

( ) ( )

0 0 0

0 0

0 0 0

0 0 0

0 0
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From (13), (14) and (11), it follows  
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Moreover, by using  

( ) ,x x t x xu u u u u pµ λ µ ρ ρ− ∆ − + ∇ ∇ ⋅ = − ∂ − ⋅∇ −∇   

( )

( ) ( )( ) ( )
2T 2

3
2

,
2

m t m x m m x

x x x

u u

u u u

κ θ ρ θ θ ρθ

µ λ

− ∆ = − ∂ + ⋅∇ − ∇ ⋅

 + ∇ + ∇ + ∇ ⋅ 
 




 

https://doi.org/10.4236/ajcm.2019.92003


W. Zhang et al. 
 

 

DOI: 10.4236/ajcm.2019.92003 39 American Journal of Computational Mathematics 
 

we get from standard elliptic estimates that  
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where we also used the fact 
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Consequently, one has  
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Step 4. Conormal energy estimates. Acting Zα  ( )0mα ≤  to (1), we get  

( )
( )( ) ( ){ }

( )( ) ( ) ( ) ( )( ) ( )
2T 2

0,

, ,

3 .
2 2

t x

t x x

t x x

Z Z u

Z u u u Z P Z u u P

Z u Z P u Z u u u

α α

α α α

α α α

ρ ρ

ρ µ λ µ ρθ

µρ θ θ κ θ λ

 ∂ + ∇ ⋅ =


∂ + ⋅∇ + ∇ = ∆ + + ∇∇⋅ =

  ∂ + ⋅∇ + ∇ ⋅ = ∆ + ∇ + ∇ + ∇ ⋅ 

 





 

(22) 

As before, the concormal energy estimates are also divided as the following 
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Consequently, we arrive at  
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Taking the summation of (23), (24) and (25), applying Lemmas 1 and 2 and 
the a priori assumption (5), we then have for some 0λ >   
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Similarly, performing the analogous estimates, one has  
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To obtain the dissipation of xZα ρ∇  , we get from the innner product of  
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( )( )122 , xZ uα∇ ⋅  and ( )222 , xZα ρ
ρ
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Let 0κ  and   be suitably small, then (26) and(27) give rise to  
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   (28) 

Step 4.2. The energy estimates of , ,xZ uα ρ θ ∇  


  for 0 1mα ≤ − . As in Step 
2, we first decompose Z uα  as 1 2Z u Z u Z uα α α= +  with  
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where 1 20 λ λ< ≤ ≤ . 
We now approximate (22) as  
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Note that here [ ]def, ,m mZ Z u uα αρ ρ  =   also depend on m, we drop the 
subscript m for brevity. 

Noticing that 2 0x Z uα∇ ⋅ =  and ( )1 2, 0Z u Z uα α = , taking the inner product 
of (29)2 with 2

tZ uα∂  and integrating the resulting equation with respect to t, 
one has  
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 (30) 
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Next, we consider the following elliptic problems:  
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Since [ ]0 0 2mα ≤ − , it follows  
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Combing (28), (30) and (31), we arrive at  
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Moreover, by using  
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the standard elliptic estimates implies  
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which further implies  
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for [ ]0 1mα ≤ − . 
Step 4.3. The estimates of 2
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Consequently, one has  
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Let m →∞ , we thereupon conclude from (28), (31), (32), (33), (34), (35), (36) 
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Finally, we close our estimates by letting   be suitably small. This ends the 
proof of Theorem 1. 
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