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Abstract 
Dirac made the hypothesis that all large, dimensionless numbers that could 
be constructed from the important natural units of cosmology and atomic 
theory were connected [1] [2]. Although Dirac did not succeed in exactly 
matching all these numbers, he suspected that there was a way to unify all of 
them. Dirac’s hypothesis leads to the N constant which unifies most of phys-
ics’ parameters. It represents the maximum number of photons with a wave-
length equal to the universe circumference. Using a new cosmological model, 
we found the β constant which represents the ratio between the expansion 
speed of matter in the universe and the speed of light. With these constants, 
we can now calculate accurately several physics parameters, including the 
universal gravitational constant G, the Hubble constant H0, and the average 
temperature T of the cosmological microwave background (CMB). Our equa-
tions show that G, H0 and T are not really constant over space and time. 

( ) 11 3 1 26.673229809 86 10 m kg sG − − −≈ × ⋅ ⋅ , ( )2.7367958 16 KT ≈  

( ) 1 1
0 72.09548580 32 km s MParsecH − −≈ ⋅ ⋅ , ( ) 1216.303419702 84 10N ≈ ×  
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1. Introduction 

The universal gravitational constant G, the Hubble constant H0 and the average 
temperature T of the cosmological microwave background (CMB) of the un-
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iverse suffer from higher uncertainties than most of other constants because, for 
the moment, they are only measured. The measurement of G is imprecise be-
cause of the low intensity of gravitational forces. Even with the best torsion scale, 
collected data are tainted by errors caused by the influence of masses that circu-
late in the vicinity (Sun, Moon, Earth, etc.). The H0 constant is measured using 
observations of distant galaxies and the results vary according to the method 
used. With respect to the average temperature of the diffuse background of the T 
universe, it is difficult to make an accurate and reliable measurement of its value, 
especially near absolute zero (0 K). 

The purpose of this paper is to provide to the modern metrology system new 
equations that could accurately determine G, H0, T, and N from other well-defined 
constants. The value of N represents the maximum number of photons existing 
in the universe which have the lowest energy possible (with a wavelength equal 
to the circumference of the universe). These equations may help to discriminate 
different measurement results and identify the best methods to use. Several 
measurements are displayed as having incredibly low tolerances but do not 
overlap with other measurements that display similar tolerances. 

We will begin by defining the parameters used in our article while giving their 
value using CODATA 2014 [3]. Subsequently, in order to find the desired equa-
tions, we will show our model of the universe that will, among other things, al-
low finding the β constant. The value of β represents the ratio between the ex-
pansion speed of the material universe and the expansion speed of the luminous 
universe (which is, for now, the speed of light in vacuum c). This constant is 
crucial in the subsequent calculations of several physics’ constants. A modified 
version of Dirac’s hypothesis on large numbers will be presented in order to es-
tablish a link with the fine-structure constant α. Using this link, we will find eq-
uations giving the exact values of H0 and G while explaining why these parame-
ters of the universe are not constant through space and time. What we will end 
up with is a modified version of the Weinberg equation that will provide a tool 
to “measure” the Hubble constant H0 as a function of the universal gravitational 
constant G. Through this article, several links are made between the infinitely 
small and the infinitely large. 

2. Development 
2.1. Values of Physics Parameters 

In general, we will use the concise form of notation to display tolerances. For 
example, typically, 2.736(17) K will mean 2.736 ± 0.017 K. 

According to Salvatelli, Hubble constant is 3.2 1 1
0 2.372.1 km s MParsecH + − −

−≈ ⋅ ⋅  
[4]. This value will be used until we get a precise value of H0 from Equation (44) 
and Equation (63). It should be noted that 1 MParsec ≈ 3.085677581 × 1022 m. 

The average temperature of the Cosmic Microwave Background (CMB) has 
been measured by the Cobra probe at T ≈ 2.736(17) K [5]. According to Fixsen, 
it is T ≈ 2.72548(57) K [6]. 
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According to the CODATA 2014 [3], the physics parameters used are: 
• Speed of light in vacuum 1299792458 m sc −≈ ⋅  
• Electric constant in vacuum 12 1

0 8.854187817 10 F mε − −≈ × ⋅  
• Magnetic constant in vacuum 8 2

0 4π 10 N Am −≈ × ⋅  
• Planck constant ( ) 346.626070040 81 10 J sh −≈ × ⋅  
• Planck length ( ) 351.616229 38 10 mpL −≈ ×  
• Planck time ( ) 445.39116 13 10 spt −≈ ×  
• Planck mass ( ) 82.176470 51 10 kgpm −≈ ×  
• Planck temperature ( ) 351.416808 33 10 KpT ≈ ×  
• Universal gravitational constant ( ) 11 3 1 26.67408 31 10 m kg sG − − −≈ × ⋅ ⋅  
• Electron charge ( ) 191.6021766208 98 10 Ceq −≈ ×  
• Electron mass ( ) 319.10938356 11 10 kgem −≈ ×  
• Classical electron radius ( ) 152.8179403227 19 10 mer

−≈ ×  
• Fine-structure constant ( ) 37.2973525664 17 10α −≈ ×  
• Boltzmann constant ( ) 23 11.38064852 79 10 J Kbk − −≈ × ⋅  
• Stephen-Boltzmann constant ( ) 8 2 45.670367 13 10 W m Kσ − − −≈ × ⋅ ⋅  
• Rydberg constant ( ) 110973731.568508 65 mR −

∞ ≈  

2.2. Our Model of the Universe 

In 1929, Hubble showed that the universe is expanding [7]. In 1931, Lemaître 
was the first to advance the idea that the universe began with a “primeval-atom” 
[8] which was later ironically nicknamed by Hoyle “Big Bang” in a BBC broad-
cast in 1949 [9]. According to our model, the material universe is embedded in a 
luminous universe, both being spherical and expanding with a speed propor-
tional to their radius. The equations of relativity show that any mass must move 
at a speed lower than c, otherwise it would have infinite energy [10]. Therefore, 
the expansion of the material universe is slower than its luminous counterpart 
which is in expansion at the speed of light (which is c for now). With this model, 
we will calculate some parameters. 

With special relativity, Einstein showed that a gravitational field generated by 
a mass m slows down light [11]. Erroneous by a factor of 2 compared to what 
happens in reality, his equation, which was coming from special relativity, is 
subsequently corrected by Schwarzschild using general relativity [12]. 

We want to show that the speed of light in vacuum may vary in a gravitational 
field. In their Appendix A, Equation (A.1), Binney and Merrifield cited an Equa-
tion (from Weinberg’s 1972 book “Gravitation and Cosmology”) which gives the 
proper time τ for a photon (the same time then if we were traveling on a photon) 
[13]. We consider this equation as being an excellent approximation (in a con-
text of a weak gravitational field) deduced from general relativity. 

( ) ( )( )2 2 2 2 2 2 22 d 1 2 d d d where 0Gmc t c x y z
r

τ −
= + Φ − − Φ + + Φ = ≤   (1) 

The Φ  value represents the Newtonian gravitational potential. In a weak 
gravitational field condition, 2cΦ  . The gravitational potential Φ is meas-
ured at a distance r from the center of mass m. Let dx, dy, dz be the change in 
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the spatial coordinates of a photon in the element of time dt. For an observer at 
rest, 0τ = . Let us consider an arbitrary point A in space which has the spatial 
coordinate (x1, y1, z1). Let us also consider that the center of mass for the mass m 
is the origin O. We are interested in the gravitational field effect on the refractive 
index of the vacuum between the point A and O. We want to calculate the speed 
of light vL(r) in vacuum for a distance r = AO  from the center of mass O. We 
always have the possibility to make translations and rotations such a way our 
coordinate system is centered on the point-mass m and that the x axis coincides 
on the AO  line segment. At that time, we can consider that there is no more 
interaction in other axis. So, dy = 0 and dz = 0. We then simplify Equation (1) to 
get Equation (2). 

( ) ( )2 2 2 22 d 1 2 d 0c t c x+ Φ − − Φ =                    (2) 

( )
( )
( )

2
2

0 2
0

1 2d where 1 2
d 1 2L

cx cv r n c
t n c

− Φ
= = = ≈ − Φ

+ Φ
          (3) 

For a distance r from the center of mass m, the speed of light c is reduced by 
the refractive index n0 caused by a gravitational field of potential Φ, which gives 
a modified speed of light vL(r). When the gravitational potential cΦ   in 
Equation (3), we can use an approximation for the refractive index n0. However, 
we will not use this approximation in our further calculations. 

Locally, in space and time, the speed of light seems constant and equal to c. If 
the universe is expanding and its density is decreasing, the refractive index 
would also be decreasing, which would imperceptibly accelerate light.  

However, the value of c is already the result of another speed limit that we call 
k (which we do not yet know the value) affected by a local refractive index n. Let 
us use Equation (3) to build another equation with the same form. We are cur-
rently at an arbitrary distance ru from the center of mass of the universe. Know-
ing that the apparent mass of the universe is mu, the speed c is the result of Equ-
ation (4). 

2

2

1 2  where   and  0
1 2

u

u

Gmk kc n
n rk

−− Θ
= = Θ = ≤

+ Θ
            (4) 

The radius of the space [8] [14] (or the radius of the universe [14]), as de-
scribed by Lemaître, corresponds to what we prefer to call the apparent radius of 
curvature of the luminous universe Ru. We call its value “apparent” because the 
equation giving Ru assumes a speed of light that is constant over time and equal 
to c, for a time equal to the apparent age of the universe Tu = 1/H0. However, in 
our model, the speed of light is not constant over time. Its value is indeed c in 
the present moment. However, assuming that the universe is expanding accord-
ing to Equation (4), its value was necessarily lower than this speed in the past. If 
we go back far enough in time (when the apparent radius of curvature of the 
universe was smaller), we even find a moment where the speed of light was zero. 

According to Hubble, the constant H0 represents the speed of movement of 

https://doi.org/10.4236/jmp.2019.106046


C. Mercier 
 

 

DOI: 10.4236/jmp.2019.106046 645 Journal of Modern Physics 
 

galaxies (in km∙s−1⋅MParsec) [7]. In our opinion, it is equivalent to locally mea-
suring the derivative of the velocity of matter vm with respect to distance r. Ac-
cording to the equations of relativity, to avoid needing infinite energy, matter is 
obliged to travel slower than light since the speed of light is a speed limit. Matter 
moves locally at a rate β times slower than the speed of light c by moving away 
radially from the center of mass of the universe. Locally, at our location in the 
universe, the value of H0 is evaluated at a distance r = ru (which represents a 
fraction β of the apparent radius of curvature of the luminous universe Ru).  

0
0

d
d

u

m
u

u ur r

v c c cH R
r r R H

β β
β=

= = = ⇒ =                (5) 

We are at a distance ru from the center of mass of the universe. 

0
u u

cr R
H
ββ= =                           (6) 

Let us find the apparent mass of the universe mu. Let us also associate a mass 
mph with a photon. If we place this photon at the periphery of the luminous un-
iverse, at a distance Ru from the center of mass of the universe, it will have an Eg 
gravitational energy. 

u ph
g

u

Gm m
E

R
=                           (7) 

According to the special relativity, the mass energy associated with this pho-
ton is Em. 

2
m phE m c=                            (8) 

By equating Equation (7) and Equation (8), replacing Ru with Equation (5), 
and isolating the apparent mass of the universe mu, we obtain the same equation 
as that of Carvalho [15]. 

2 3

0
u

u

c cm
G R G H

= =
⋅ ⋅

                      (9) 

For a distance ru, our local universe parcel travels at speed vm. 
2

2

1 2  where   and  
1 2

u
m

u

Gmk kv n
n rk
β −− Θ

= = Θ =
+ Θ

        (10) 

The measurement of H0 is made by observing the global displacement of ga-
laxies at our location ru. Each galaxy has its own movement. Due to the expan-
sion of the universe, the galaxies are moving away from each other. The value of 
the Hubble constant H0 represents the derivative of the speed of the material 
universe vm with respect to the element of distance dr, evaluated at a distance r = 
ru from the center of mass of the universe. 

( )
0 22

d 21   where  
d 1 1u

m u

ur r u

v Gmk yH y
r r k ry y

β

=

 
 = = =
 + − 

   (11) 

Solving Equations (4) to (6) and Equation (11) leads to Equations (12) to (16). 
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82 5 6.17 10 m sk c= + ≈ ×                     (12) 

3 5 0.764β = − ≈                          (13) 
261.28 10 muR ≈ ×                          (14) 
259.80 10 mur ≈ ×                          (15) 

531.73 10 kgum ≈ ×                          (16) 

The k constant represents the asymptotic value for the speed of light in va-
cuum when the apparent radius of curvature of the universe tends towards in-
finity. The β constant is geometric and can be defined as the ratio between the 
speed of expansion of the material universe and the speed of expansion of the 
luminous universe (which is the speed of light). It can also represent the ratio of 
the apparent radius of curvature of the material universe ru (evaluated at our lo-
cation in the universe with respect to the center of mass of the universe) and the 
apparent radius Ru of curvature of the light universe. The value of mu represents 
the apparent mass of the universe. 

We draw the reader’s attention to the fact that β constant is unique to our 
cosmological model, but it is essential for making multiple connections between 
physics’ constants. It allows making several links between the infinitely large and 
the infinitely small in Dirac’s large numbers hypothesis. 

2.3. Dirac’s Large Number Hypothesis 

In this section, we show many equations. In order to condense the information, 
we ask the reader to refer to the section at the beginning of this article which de-
fines the different parameters of the universe.  

By calculating ratios of quantities having the same units, Dirac found that 
these appeared to result from a few large numbers. Without using all of Dirac’s 
examples, here are some ratios that give the same unitless large number [2].  

60

0

1 7.94 10pu u

p p ph p

mR m
L m m t H

= = = ≈ ×                (17) 

With similar findings, Dirac figured this was no coincidence. We will see that 
without β in Equation (13), it is impossible to make certain ratios equal to other 
large numbers. 

Dirac could see that these large numbers were separated into a few distinct 
orders of magnitude without being able to calculate them precisely. All ratios 
that we found may, by adding certain factors, come from a single number N. The 
N value represents the maximum number of photons having the lowest energy 
(of 2πRu wavelength) that may exist in the universe. Here, we assume that we 
convert the entire mass mu of the universe in this specific wavelength of photon 
type. To obtain N, let us calculate the mass mph associated with the 2πRu wave-
length photon by making the corpuscular and wave energy of a photon equal in 
Equation (18). 
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2 69    2.74 10 kg
2π 2πph ph

u u

hc hm c m
R R c

−= ⇒ = ≈ ×           (18) 

1216.3 10u phN m m= ≈ ×                      (19) 

The other “large” numbers are of type N exponent a fractional number, such 
as N1/2, N1/3, N1/4, …, N1/57 or N2/3, N3/4, etc. It is possible to find more than a 
hundred equations giving N itself. Here are a few examples (Equations (20) to 
(27)) which will be calculated from, among others, postulates #1 and #2 cited 
further. In the following equations, Tp represents the Planck temperature which 
is about Tp ≈ 1.42 × 1032 K. This is the highest temperature that can be reached in 
the universe when we condensate the apparent mass of the universe mu in a 
point-like sphere of radius equal to Planck length Lp. We also think this was the 
initial temperature of the universe at the Big Bang. The value of qp is the Planck 
charge which is about qp ≈ 1.88 × 10−18 C. 

1 2 60

0 0 0

2π 4π1 1 7.94 10p p bu u u

ph p p e

m T kR m R
N

m L t H hH q
α

µ
−

= = = = = ≈ ×       (20) 

2
1 3 40

2
0

3.98 10
4π

e uu e e

e u ph e e

m Rm r q
N

m R m r G m
β βα α

β α ε β
= = = = ≈ ×         (21) 

4 42 2
2 3 81

1 2 2 4 2 2 2 1.58 10pu u e

e e e ph

mm R m
N

m r m m
αα β β

β β α
= = = = ≈ ×             (22) 

1 4 1 44 2 3
1 4 30

3 2 4 2

15 π 2.82 10
π 15

p b

ph

T k T
N

T m c
β α

β α
   

= = ≈ ×   
   

          (23) 

3
1 6 202π

1.99 10
4π

p e b pe

p e p

m r k Tr
N

L m R L hc

α α
β β β β∞

= = = = ≈ ×        (24) 

57 256 1 4 1 162
1 16 7

3
0

4π 15 4.10 10
π

pTR c
N

H T
ββ α∞

     
= = ≈ ×          

        (25) 

1 12
2

1 19 2 2 6
2

1 16π 2.57 10
4π

e
p u

e ph

m
N L R R

R r m
β

β α∞
∞

 
= = = ≈ ×  

 
        (26) 

1 21 1 202 2 2
1 57

2 2 2
0

1 137
4π

p p e

e e e

q m q
N

q m Gm αβ βε

   
= = = = ≈       

           (27) 

Equation (27) which implies the fine-structure constant α will be used in Equ-
ation (48). For rational exponents of small values such as 1/57, we consider the 
term “large number” is no longer appropriate. Note that our constant β is re-
quired in several equations. 

2.4. Variations of Physics “Constants” over Time 

According to our model, light accelerates over time. In order for the principle of 
conservation of energy to be maintained, an electromagnetic wavelength equal to 
2πRu must increase its wavelength over time to allow light to accelerate during 
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the same period. As the universe is expanding, the mass associated with the 
photon decreases over time. 

The universe expands and its angular velocity of rotation decreases like a ska-
ter who extends his arms. The radius Ru is limited by its tangential rotation 
speed which is that of light. As the universe is expanding, the refractive index of 
the vacuum decreases and allows a slow acceleration of light over time. 

Photons may have different wavelengths. Therefore, they may have different 
energy and different associated masses. Let’s suppose that we convert all the 
mass mu of the universe into a huge number N of photons, all having the lowest 
energy possible. Due to the Plank Equation (see Equation (50) further in this ar-
ticle) used to convert wavelength to energy, these photons are at their lowest 
energy possible when they will all have the longest wavelength (when λ = 2πRu, 
which corresponds to the circumference of the universe). It is impossible to have 
a dimension bigger than the circumference of the universe, thus confirming 
these photons cannot have any lower energy. Of course, the apparent radius Ru 
of the luminous universe is always increasing over time. Therefore, the mass mph 
associated to the energy of one of these photons is decreasing over time since the 
circumference of the universe will increase in the same time frame. However, in 
percentage, it will be the same for the mass mu of the universe. 

The maximum number N of lowest energy photons is forced to be constant 
over time since if the mass mph associated with the lowest energy photons as the 
denominator of Equation (19) decreases over time, it will be the same, in per-
centage, for mu which includes the mass of these photons as the numerator. If N 
is constant, all other large numbers are also constant. In these unitless numbers, 
the variations in the numerators are compensated by the same percentage 
changes in the denominators. All “constants” with units though, must vary over 
time. 

Attention, in metrology, it is very useful to consider constant the speed of 
light. This makes it possible to “freeze” several parameters of our universe and to 
determine them more precisely. We have every right to do this and to refer all 
units of measurement to the speed of light, which varies very little in the course 
of human life. By doing this, we force the fine-structure constant to look like va-
rying over time (even if it is not the case). 

If we are trying to make comparisons, it’s like having the right to say that a 
rocket takes off from the ground or to say that the earth is moving under the 
rocket. We may feel that we have a choice. However, in fact, only one option 
represents the reality, otherwise, we face the “twin paradox” that was presented 
to Einstein by Paul Langevin at the Bologna Congress in 1911 (at that time, it 
was not yet clearly a paradox). Because of the massive mass of the earth and the 
principle of conservation of the momentum, we are obliged to say that the phys-
ical phenomena will be explained only if we consider that the rocket takes off 
from the ground (and not the opposite). It’s the same with the speed of light. To 
explain physics phenomena, we are forced to admit that the speed of light in-
creases over time. However, for physicists in metrology, it would be a disaster to 
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admit such an affirmation since nothing would be really constant anymore, 
apart from unitless ratios, the fine-structure constant, and the geometrical con-
stants. 

By imposing the constancy of c in metrology, certain phenomena become dif-
ficult to explain. The expansion of the universe observed by Hubble is incom-
patible with the “constancy” of c imposed in metrology. If light really accelerates 
over time and if we continue to say that the speed of the light is constant, that is 
to say, that the units of distance measure enlarge and that the objects shrink over 
time. Such considerations may lead some to conclude, erroneously, to the exis-
tence of a “Big Crunch”. If it is really constant, it is the expansion of the universe 
that is no longer understandable. Schwarzschild’s explanation, with the change 
in the index of refraction of the vacuum in presence of a mass, would no longer 
be transposable to the universe as we have done. It would then be necessary to 
question all calculations made on black holes and gravitational lenses. We can-
not believe such an avenue. 

Our choice is to see the speed of light accelerating slowly over time. Doing so, 
all “constants” that have units of measurement vary. Only the unitless constants, 
such as the fine-structure constant, the unitless ratios and the geometric con-
stants are really constant. 

Results will be diametrically opposed if it is taken for granted that the speed of 
light is constant for metrological purposes or that it changes over time. Both 
points of view are valid and have their advantages. In this article, it will be con-
sidered that the speed of light changes over time. 

Einstein’s general relativity explains the laws of gravitation by space-time de-
formations caused by the masses involved [16]. It is however possible to explain 
the phenomenon of gravitation by a pressure differential caused by a shield ef-
fect between different masses located in the vacuum of the universe which is 
filled with corpuscles transmitting their momentum as described by Fatio [17] 
and Le Sage [18]. Besides, the Jérôme brothers seem to have succeeded in unify-
ing this concept with Einstein’s general relativity [19] (unpublished document). 
In this scenario, masses would not be attracted, but they would rather be pushed 
towards one another by invisible corpuscles. According to Sidharth, these cor-
puscles consist of harmonic oscillators (photons) of different wavelengths [20]. 
The repeated impacts of photons traveling in all directions in the vacuum of the 
universe would create a “radiation pressure” (expression used by Mansuripur 
[21]) or a “thermodynamic radiation pressure” (to refer to the analogous “ther-
modynamic pressure” term used by Horowitz for gases [22]). Just like in gases 
where molecules are agitated, the word “thermodynamics” is used to refer to the 
random stirring of photons. Sidharth considers that the spectrum of these pho-
tons’ wavelength varies between the Planck length Lp and the circumference of 
the universe (2πRu). To be more precise, we rather think that these wavelengths 
vary between the circumference of Planck particle (2πLp) and the apparent cir-
cumference the luminous universe (2πRu). 
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The equations of Einstein’s general relativity [16] and Newton’s universal gra-
vitation [23] assume that the universal gravitational constant G is constant 
through universe and through time. But, considering the gravitational force as 
the result of a radiation pressure, it is possible to conceive that G is constant only 
for a small parcel of the universe. It’s like the water pressure around a fish in the 
bottom of a lake. The pressure is almost uniform around the fish, but it differs 
from the surface of the lake. The universe can never end in a “Big Crunch” since 
the external radiation pressure of it is zero. This pressure deficit generates an ir-
remediable expansion of the universe. 

2.5. First Calculation of a More Precise Hubble Constant 

According to different sources, H0 is between 67.8(9) km∙s−1∙MParsec−1 [24] and 
4.8
4.377.6+
−  km∙s−1∙MParsec−1 [25]. Uncertainties from different measurement re-

sults do not always overlap. For a better precision in calculations that we will do 
further, we must find a method which will assure us a minimum of unequivocal 
precision. 

As the CMB average temperature T of the universe can be precisely measured, 
an exploitable link may be made between this parameter and H0. 

According to Alpher, the universe has all properties of a black body [26]. The 
universe absorbs perfectly all electromagnetic energy, whatever wavelengths it 
receives. This absorption is converted into thermal agitation which causes the 
emission of a thermal radiation whose emission spectrum on the surface of the 
sphere of the luminous universe depends only on its average temperature. The 
Stefan-Boltzmann law allows us to determine the flux density M˚ (in W∙m−2) as a 
function of the surface temperature T (in K). 

( ) 4M T Tσ=                          (28) 

The Stefan-Boltzmann’s constant is defined by σ in the following equation. 
5 4

8 2 4
3 2

2π
5.67 10 W m K

15
bk

h c
σ − − −= ≈ × ⋅ ⋅              (29) 

The flux density on the surface of the sphere representing the luminous un-
iverse may be defined as the total power Pu dissipated in the universe over the 
total area Au of the sphere. The dissipated power Pu corresponds to taking the 
total energy Eu and dividing it by the apparent age of the universe Tu = 1/H0. 

0u u u

u u u u

P E E H
M

A A T A
= = =                  (30) 

The total energy of a mass m in movement is given by Et. 
2

tE mc=                         (31) 

The apparent mass mu of the universe described in Equation (9) already 
represents that of the expanding universe. So, in Equation (31), we replace m by 
the apparent mass of the universe mu and the energy Et by the total amount of 
energy Eu contained in the universe. 
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5
2

0
u u

cE m c
GH

= =                        (32) 

Using Equations (28) to (30), and Equation (32), we get the value of T which 
should be the average temperature of the Cosmic Microwave Background (CMB). 

1 43 7

5

1 15
2πb u

h cT
k A G
 

=  
 

                     (33) 

Ludwig Boltzmann expressed the statistical entropy S [27] as a function of the 
number Ω of microstates defining the equilibrium of a given macroscopic sys-
tem. 

( )lnbS k= Ω                        (34) 

The expansion of the material universe is β times slower than that of the lu-
minous universe. Entropy is a measure of disorder in the universe and increases 
with the expansion rhythm. Its measure at Ru would have the value S'. 

( ) ( )
ln

ln   whereb b
b b

k kSS k k
β β β

Ω
′ ′ ′= = = Ω =         (35) 

The “Boltzmann constant” kb is true locally in our universe, at our position ru 
with respect to the center of mass of the universe. At the periphery of the lu-
minous universe, at Ru = ru/β, the “Boltzmann constant” becomes bk ′  as given 
in Equation (35). At the periphery of the luminous universe, Equation (33) be-
comes Equation (36). 

1 4 1 43 7 3 7

5 5

1 15 15
2π 2πb bu u

h c h cT
k kA G A G

β   
= =   ′    

            (36) 

Let’s find the Au area of the sphere of the luminous universe when the un-
iverse is static. 

( )24π  For static universeu uA R=                (37) 

Applying this assumption to Equation (36), T ≈ 31.9 K. This is false because 
with the Cobra probe T ≈ 2.736(17) K [5]. It is like if the volume of the static 
universe were not big enough to dissipate the energy down to the desired value. 
However, according to Hawking [28] and Fennelly [29], the universe is rotating. 
Einstein showed that a rotating disk has a larger circumference than a static disk 
[30]. The circumference becomes “Cir.”. 

( )
2 2 2 2

2π
Cir. 2π      Universe in rotation

1 1
u u

u u
R R

R R
v c v c

′ ′= = ⇒ =
− −

  (38) 

We think that the tangential speed of rotation of the universe is the same as 
the tangential speed of rotation of the electron on itself. As Llewellyn [31], let us 
suppose that the spin of the electron is caused by a rotation of the electron on it-
self. 

As it will be shown in Equation (53) and Equation (56), the mass me and the 
charge qe of the electron are contained within the classical radius re of the elec-
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tron. The wave energy associated with the electron is, for its part, contained in 
the Compton radius rc which is 1/α ≈ 137 times larger than re. A wave can be 
seen in two different ways. From the side, it will look like a sinusoid. But seen 
from the front, it looks like a circle. As for an electromagnetic wave, the fre-
quency of the wave associated with the electron is calculated by considering that 
the circumference of the wave circle is traveling at the speed of light. 

There seems to be only one way to explain the fact that the mass of the elec-
tron is contained in the radius re and that its wave energy is contained in the 
Compton radius rc. This is because the mass me of the electron turns at a relati-
vistic speed such that its Lorentz factor is equal to the fine-structure constant α, 
which would explain why rc = re/α. 

2 21e cr r v cα = = −                       (39) 

We make the hypothesis that the tangential velocity v of the luminous un-
iverse periphery is the same as that of the electron. 

( )( )1 1 0.999973v c cα α= − + ≈                 (40) 

This speed is close to that of light. For an observer located at the center of ro-
tation, the time that elapses in the periphery of the luminous universe is dilated 
and the distances are compressed by the Lorentz factor. Equation (38) becomes 
Equation (41). 

( )  Universe in rotationu uR R α′ =                 (41) 

The area of the outer surface of the sphere of our universe from Equation (37) 
becomes equal to Equation (42). 

( )2 24π   Universe in rotationu uA R α=               (42) 

with Equation (5) and Equation (42), we modify Equation (36) to obtain Equa-
tion (43) which should give the average cosmological microwave background 
(CMB) temperature T. 

1 42 3 5 2
0

6

15
8πb

h c H
T

k G
αβ  

=  
 

                     (43) 

By varying H0 between 67.8 and 77.6 km∙s−1∙MParsec−1 of the Planck [24] and 
Chandra [25] probes respectively, we obtain a value of T between 2.65 K and 
2.84 K. Data from Cobra (2.736(17) K [5]) and WMAP (2.72548(57) K [6]) 
probes confirm these results with a lower uncertainty than that currently weigh-
ing on H0. 

Let Equation (43) being equal to Fixsen’s T and isolating H0 to calculate its 
value. 

( ) ( )
3 2 2

1 1
0 2 5 3

π 8 71.505 30 km s MParsec
15

bT k GH T
c hβ α

− −= ≈ ⋅ ⋅        (44) 

Equation (44) agrees with Salvatelli who gets 3.2 1
.

1
0 2 3 k7 m s MParse. c2 1H +

−
− −⋅ ⋅≈  

[4]. It is almost the average result between that of the Planck and Chandra probes. 
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2.6. Hypothesis Leading to an Exact Calculation of the Universal  
Gravitational and Hubble Constants 

We assume that the α constant can be used as a scale factor. Applied a certain 
number of times, this factor can be related to some unitless ratios involving 
physics constants.  

n
u phm m α=                           (45) 

Let us start by incorporating Equation (5), Equation (18), Equation (44) and 
Equation (45) into Equation (19) in order to find N and then n. The accuracy of 
N(T, G) will especially depend on the temperature T that will be used in Equa-
tion (46) and on the universal gravitational constant G. Any little change in oth-
er parameters (within the tolerances mentioned in the CODATA) of Equation 
(46) will not have any impact on the result value since T and G are much less 
accurate than the others that are used in this equation. Let’s take T ≈ 2.72548 (57) 
K from Fixsen coming from the Wilkinson Microwave Anisotropic Probe (WMAP) 
[6]) and ( ) 11 3 1 26.67408 31 10 m kg sG − − −≈ × ⋅ ⋅  from the CODATA 2014 [3].  

( ) ( )
2 2 2 10

121
5 4 4 2

1 15, 6.4071 54 10
4π

u
n

ph b

m h cN T G
m T k G

α β
α

= = = ≈ ×       (46) 

Let us define [x] as being the rounded integer value of x. 

( ) ( ) ( )log log 57.00332 17 57n N α= − = =                 (47) 

For now, this result cannot be demonstrated, we must create the postulate #1. 

57 121POSTULATE #1:      1 6.303419702(84) 10N α= ≈ ×       (48) 

2.7. Calculation of the Universal Gravitational Constant 

To calculate G, we need an equation giving exactly the value N obtained by Equ-
ation (48) as a function of G, but independent of H0 and T that we do not know 
with sufficient precision (compared to other physics constants from CODATA). 

The most frequent opportunities to see the constant G intervene in physics 
equations are found in the calculations of gravitational energy and gravitational 
force. Let us start by evaluating, on Earth, the gravitational energy Eg that there 
is between two electrons separated by a distance equal to the classical radius re of 
the electron. 

2
e

g
e

Gm
E

r
=                           (49) 

The energy of an electromagnetic wave of wavelength λ is given by Equation 
(50). 

hcE
λ

=                            (50) 

Even in a context where the speed of light increases over time, the principle of 
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conservation of energy must be respected. For this reason, the photons that are 
on the periphery of the luminous universe continue to see their wavelength in-
crease over time to gradually adapt to the new diameter of the universe. The 
same goes for all other lengths in the universe. We do not realize this because all 
the other physics constants change at the same time (except unitless ratios, the 
fine-structure constant and the geometric constants). 

Let us bring the experiment made with the two electrons to the periphery of 
the luminous universe. By doing this, the classical radius of the electron will in-
crease by a factor β and become er′  (just as for the apparent radius of curvature 
of the universe). 

e
e

r
r

β
′ =                           (51) 

The gravitational energy of Equation (49) is now given by Equation (52). 
2 2
e e

g
e e

Gm Gm
E

r r
β′ = =

′
                    (52) 

On the other hand, the electrical energy Ee remains the same whether meas-
ured here on Earth or at the outskirts of the universe. This equation is indepen-
dent of the radius (although it seems to depend on it at first). Let us analyze the 
equation of Ee on Earth. 

2

04π
e

e
e

q
E

rε
=                         (53) 

The charge qe of an electron is obtained by Equation (54). 

0

4π e e
e

m r
q

µ
= −                       (54) 

The speed of light c is related to ε0 and μ0 by Equation (55). 

0 01c ε µ=                         (55) 

If we use Equation (54) and Equation (55) in Equation (53), we obtain Equa-
tion (56). 

2
e eE m c=                          (56) 

Equation (53) and Equation (56) show that the energy contained in the mass 
of an electron is equivalent to the electrical energy contained between two elec-
trons spaced with a distance equivalent to the classical radius of the electron re. 
In Equation (56), it can be seen that the electric energy Ee is independent of the 
classical radius of an electron. Therefore, if we reproduce this experience on the 
periphery of the luminous universe, the electric energy eE′  that we will have 
will be equal to the energy Ee that we had on Earth. Let us then make the con-
nection between the electric energy eE′  and the gravitational energy gE′  at the 
periphery of the luminous universe. Bringing the experiment to the periphery of 
the luminous universe allows seeing why a β factor is introduced into the equa-
tion. 
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2 2
42

2 5.45 10e e e e

g ee

E m c r c r
E GmGm ββ
′
= = ≈ ×

′
               (57) 

As in Equation (48), we found that the fine-structure constant α plays a role in 
determining orders of magnitude. By an adjustment of the exponent of the 
fine-structure constant α, we obtain a result identical to that of Equation (57). 

42
20

1 5.45 10
α

≈ ×                        (58) 

We conclude that Equation (57) and Equation (58) are equal. By isolating the 
universal gravitational constant G, we obtain an equation that we elevate to the 
rank of postulate #2. It is an equation that cannot be deduced from any other 
known equation of current physics. 

( )
2 20

11 3 1 2POSTULATE #2:     6.673229809 86 10 m kg se

e

c r
G

m
α
β

− − −= ≈ × ⋅ ⋅ (59) 

This result is in perfect agreement with the Taylor-Parker-Langenberg value 
which is ( ) 11 3 1 26.6732 31 10 m kg sG − − −≈ × ⋅ ⋅  [32]. However, based on Equation 
(59), it can be seen that the tolerance of the measured value of G from CODATA 
2014 [3] is underestimated by a factor of about 2.74. Qing [33] has shown that 
the tolerances of several recent measurements of G do not overlap with each 
other. Despite the very optimistic accuracy displayed for the various measures, 
the value of G lies between 6.672 to 6.676 × 10−11 m3∙kg−1∙s−2. The tolerance dis-
played in Equation (59) was calculated from the tolerances displayed for the 
other constants of CODATA 2014. When measuring the universal gravitational 
constant G, it is easy to underestimate some sources of errors, which can explain 
this difference. Equation (59) relies on more precise and reproducible constants. 

By using different combinations of equations, shown in this article, we can 
deduce other equations which also give the universal gravitational constant G 
precisely. We will enumerate them without making any demonstration.  

2 17 3 2 19 2 20 21 2 23

2 2 2
0 0

2π
4π4π 2π

e e e e

ee e e

q r R c r q hc cG
h R mm m m

α α α α α
β βε β ε β β

∞

∞

= = = = =       (60) 

2.8. Improvement of the Hubble Constant and of the Average CMB  
Temperature 

Now that we can precisely calculate N and G, we can equate Equation (19) with 
Equation (48) using Equation (9), Equation (18) and Equation (59). 

35

2 2 20 57
0 0

2π2π 1u e

ph e

m m ccN
m hGH hr H

β
α α

= = = =                 (61) 

Let’s associate the energy of the mass me of an electron with the wave energy. 

2

2πe
e

hcm c
r
α

=                            (62) 

With Equation (62), we modify Equation (61) to obtain Equation (63). 
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( )
19

1 1
0 72.09548580 32 km s MParsec

e

c
H

r
α β − −= ≈ ⋅ ⋅          (63) 

The result of Equation (63) is similar to Equation (44) with Fixsen and con-
firms Salvatelli’s value of 3.2 1

.
1

0 2 3 k7 m s MParse. c2 1H +
−

− −⋅ ⋅≈ . Thanks to various 
equations in this article, we can deduce new equations which will calculate H0 
precisely. We will enumerate them without making any demonstration.  

19 2 18
16

0 2
0

4π 2π
4π e e

e

m c m c
H cR

hq
α β α β

α β
µ∞= = =          (64) 

Equating Equation (44) and Equation (63), and using Equation (62), we ob-
tain T which is the average CMB temperature. 

( )
1 42 6 17

3

15 2.7367958 16 K
π

e

b

m c
T

k
β α 

= ≈ 
 

            (65) 

2.9. Weinberg’s Formula 

Weinberg found an empirical equation for a typical mass m of a pion-like par-
ticle (see page 619 in the Weinberg’s 1972 book available in reference [34]). This 
equation has also been cited by Sidharth in reference [20]. However, the result of 
this equation does not precisely correspond to any known value. Therefore, we 
think it is incomplete. It is like if a multiplying factor is missing. In the following 
equation, ћ = h/2π. 

1 32
280 1 10 kg

H
m

Gc
− 

≈ ≈ × 
 



                    (66) 

Let us show that the precise values of α, β, G and H0 result in the mass me of 
an electron from a modified version of Weinberg’s Equation (66). Let us multip-
ly Equation (63) by 1 (in parenthesis, let us multiply by G and divide by Equa-
tion (59)). 

19 3 2

0 2 20 2
e e

e e e

c Gm Gm
H

r c r cr
α β β β

α α
 

= = 
 

               (67) 

Isolating me, we obtain Equation (68). 
2

0
3 2

e
e

cH r
m

G
α

β
=                           (68) 

The energy contained in the mass me of an electron at rest is equal to the wave 
energy for the Compton wavelength λc of the electron. 

2 22π
  where        

2π
e

e c e
c e

rhc hcm c m c
r
αλ

λ α
= = ⇒ =            (69) 

2 2
2

2 2e
e

r
m c
α

=
                            (70) 

Introducing the result of Equation (70) in Equation (68), we obtain the elec-
tron mass me as a function of G and H0. Of course, we get the same value than 
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the CODATA (except the tolerance), but this equation should not be considered 
as a way to get the mass of the electron since our values of G and H0 come 
someway from this equation. However, as we will see, Equation (71) may be 
useful for other purposes. 

( ) ( )
1 32

310
0, 9.109383559 85 10 kge

H
m G H

Gc
α
β

− 
= ≈ × 

 



      (71) 

The apparent age of the universe is 1/H0 and Equation (71) is a function of H0. 
As a result, the mass me of the electron varies with time. Since this is the case for 
me, it is also the case of other particles and for the apparent mass of the universe 
mu. Without doing it here, it can be shown that this is the case for all other “con-
stants” with units. 

Equation (71), which is a modified version of the Weinberg formula, could be 
used to determine and calculate the Hubble constant H0 as a function of the 
universal gravitational constant G because all other constants of the equation are 
precisely known.  

( ) ( )
3 3 2

1
0 2 3 72.104 33 km s MParseceGcm

H G
β
α

−= ≈ ⋅ ⋅


         (72) 

Using the value of ( ) 11 3 1 26.67408 31 10 m kg sG − − −≈ × ⋅ ⋅  from CODATA 2014 
[3] in Equation (72) we obtain a measured value of H0 which is similar to the 
result of Equation (63). This value of H0 corresponds to an apparent age of the 
universe of 13.56(6) billion years. Our H0 value from Equation (63) gives also 
about 13.56 billion years. 

3. Conclusions 

This article seems to be very useful from a metrological point of view since it 
makes it possible to precisely determine several constants which were, until now, 
only measured. The equations found make it possible to discriminate the results 
of several research studies on the Hubble constant, on the universal gravitational 
constant and on the average CMB temperature. 

A new model of the universe that uses the β constant has been introduced. 
This constant represents the ratio between the expansion speed of the material 
universe and the expansion speed of the luminous universe which is the speed of 
light. This constant seems to let us believe that the universe is geometric in a 
certain way. It may be found that β constant is essential in the evaluation of sev-
eral parameters of the universe (see Equation (59), Equation (63), Equation (65), 
Equation (71), and many others). We have also seen this by using it to modify 
the Dirac hypothesis on large numbers because it allows making several links 
that would not be possible without it. This hypothesis allows making an impor-
tant link with the fine-structure constant α. Using this link, we derived equations 
giving the exact values of H0, G and T. Knowing where these parameters come 
from, we can explain why these parameters of the universe are not constant 
across space and the time. 
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We used a modified version of Weinberg’s equation which undoubtedly 
shows that there is a link between the electron mass, the Hubble constant H0 and 
the universal gravitational constant G. This link gives, for the first time, a precise 
tool to measure the Hubble constant here on Earth, without having to use star 
observations. 

We determined that only unitless parameters are constant. To have a precise 
metrology system, the International Bureau of Weights and Measures (BIPM) 
makes the choice to impose the constancy of c. This relevant choice makes it 
possible to increase the precision of the other physics parameters by becoming 
really constant. Unitless constants, such as α, will appear to vary over time and 
some phenomena will become difficult to explain. To consider or not c as con-
stant seems incompatible without really being so. One must be aware of the 
choice of hypotheses that are being made in the theoretical analyses of scientific 
documents. It is important to define the chosen choices from the beginning. 

One must be aware of the choice being made in theoretical analyzes. The cho-
sen choices must be defined right at the beginning. 

By using the equations of G and H0 shown in this article, it will probably be 
possible to determine more precisely the movement speeds of the different ga-
laxies, their masses and several other parameters of the universe. By using the 
equation giving N in the modified hypothesis of large numbers of Dirac, it will 
probably be possible to establish close links between several physics’ constants, 
which will make it possible to determine new equations that were previously 
unknown to us. 
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Appendix A: Solving of the System of Equations  

In this appendix, we will focus on detailing calculations that made it possible to 
solve a system of 5 unknowns with 5 equations. We will use Equation (59) to 
evaluate the universal gravitational constant G and Equation (63) to evaluate the 
Hubble constant H0. 

Let us start by rewriting Equation (4) in another form that will be more prac-
tical and list the other starting equations. 

21  where    and  
1

u

u

Gmk yc n y
n y r

+
= = =

−
             (73) 

0
u

cR
H

=

 

                           (74) 

    

0
u u

cr R
H
β β= =                          (75) 

3

0
u

cm
GH

=                            (76) 

( )
0 22

d 21   where  
d 1 1u

m u

ur r u

v GmkyH y
r r k ry y

β

=

 
 = = =
 + − 

       (77) 

In these equations, the unknown values are: Ru, ru, mu, β and k. It is a system 
of 5 equations with 5 unknowns that can be solved mathematically. 

In Equation (73), we isolate the value of k and obtain Equation (78). 

1
1

yk c
y

+
=

−

 

                        (78)

 

In Equation (77), we also isolate the value of k to obtain Equation (79). 

( ) 20 1 1uH r
k y y

yβ
= + −                     (79)

 

Let us equate Equation (78) and Equation (79) to obtain Equation (80). 

( ) 201 1 1
1

uH ryc y y
y yβ

+
= + −

−
                (80)

 

Let us use Equation (74) and Equation (75) in Equation (80) and simplify to 
get Equation (81). 

2 1 51 0      
2

y y y − ±
+ − = ⇒ =                 (81)

 

All y parameters in Equation (73) are strictly positive. Therefore, y is positive. 

5 1
2

y −
=                          (82)

 

Putting the result of (82) in Equation (73), we obtain Equation (83). 

2 5k c= +                         (83) 

In Equation (77), substitute the value of y for the parenthesis by its algebraic 
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value. 

( )
0 2 2

2 1

1 1
u

u

Gm
H

kr y y

β  
 =
 + − 

                (84)

 

In Equation (84), replace the value of mu with Equation (76). 

             

( )
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0 2 2
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2 1
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kr H y y

β  
 =
 + − 
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In Equation (85), we use Equation (75) and Equation (83), then we isolate β. 

( ) 2

2 1

1 12 5 y y
β

 
 =
 + −+  

               (86)

 

In Equation (86), let us replace y by Equation (82) with the β value. Then, let 
us list the other results from our system of equations of and let us evaluate their 
value. 

3 5 0.764β = − ≈                     (87) 

8 12 5 2 6 10 m sk c c −= + ≈ ≈ × ⋅                (88) 
531.8 10 kgum ≈ ×                      (89) 
261.28 10 muR ≈ ×                      (90) 
260.98 10 mur ≈ ×                      (91) 

Let us note that β is related to the golden number which is φ ≈ 1.618... 

1 54 2   where 
2

β ϕ ϕ +
= − =                 (92) 
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