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Abstract 
Initially, all that was known about diffraction in quasicrystals was its point 
group symmetry; nothing was known about the mechanism. The structure was 
more evident, and was called quasiperiodic. From mapping the Mn atoms by 
phase-contrast, optimum-defocus, electron microscopy, the progress towards 
identifying unit cell, cluster, supercluster and extensive hierarchic structure is 
evident. The structure is ordered and uniquely icosahedral. From the known 
structure, we could calculate structure factors. They were all zero. The quasi 
structure factor is an iterative procedure on the hierarchic structure that cor-
rectly calculates diffraction beam intensities in 3-dimensional space. By a cre-
ative device, the diffraction is demonstrated to occur off the Bragg condition; 
the quasi-Bragg condition implies a metric that enables definition and mea-
surement of the lattice constant. The reciprocal lattice is the 3-dimensional 
diffraction pattern. Typically, it builds on Euclidean axes with coordinates in 
geometric series, but it also transforms to Cartesian coordinates. 
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1. Introduction 

Rapidly cooled Al6Mn has a phase, supposedly with “Long range orientational 
order and no translational symmetry” [1]. In fact, it produces sharp icosahedral 
diffraction owing to hierarchic translational structure. Its five-fold rotation axes 
are forbidden in classical crystallography owing to space filling constraints, and 
its icosahedral structure lies outside the limitations of the fourteen Bravais lat-
tices allowed in crystallography. The “long range order” has been long debated, 
but with minimal progress in understanding how a periodic incident beam, 
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whether of electrons or X-rays, diffracts coherently from the “quasiperiodic” lat-
tice. 

The foremost beginning lies in the formula: Mn has an atomic number that is 
almost double that of Al. Consequently imaging, in phase-contrast, optimum 
defocus, transmission, electron microscopy [2], maps the heavier element which 
has four times the scattering power of the lighter one. Knowledge of the magni-
fying power of the microscope then reveals that the intervening atoms are Al 
that forms about the central Mn in edge-sharing Al12Mn unit cells. The resulting 
stoichiometry is Al6Mn, as in the melt before crystallization and as in elemental 
analysis. Being edge sharing the structure is not space filling. (By contrast, all 
crystals are both face sharing and space filling.) In icosahedral i-Al6Mn, the rela-
tive atomic sizes are perfect for extremely dense packing in icosahedral coordi-
nation [3] [4] [5] [6]1. The unit cells cluster into icosahedral structures in at least 
four tiers of icosahedral hierarchy, seen in the image. There are good reasons for 
projecting the hierarchy to extend infinitely.   

The stereogram of the principal axes and of principal reflecting planes in the 
icosahedral structure is, in its simplest form, 3-dimensional; indexed in geome-
tric series; and complete [7]. Axial diffraction patterns have been likewise in-
dexed [3] [4]. Every component in every beam, in each diffraction plane normal 
to major axes, has been precisely indexed by additions of one or two members of 
the geometric series. With this description of the pattern, and knowing the 
structure, the diffraction is simulated by normal scientific method [8] [9]2, as 
outlined below. 

Because Bragg diffraction is well understood in its wide application to crystals, 
it is a mildly useful foil for understanding diffraction in quasicrystals, but only if 
differences are emphasized. Bragg’s law describes the linear series of diffraction 
orders, n = 0, 1, 2, 3 …, that result from periodically spaced reflecting planes of 
atoms. For the simple case of high energy electron diffraction from a cubic crys-
tal, we can write approximately: 

( )2 1 22 2

hkladn
h k lλ λ

ΘΘ ⋅⋅
≈ =

+ +
                    (1) 

where the scattering angle, Θ ≈ 2sin(θ) for the Bragg complement to the angle of 
incidence θ; while d is the periodic interplanar spacing; and λ << d is the wave-
length of the incident beam. For each indexed scattering angle Θhkl in a cubic 
crystal with lattice parameter a, there corresponds an interplanar spacing dhkl = 
a/(h2 + k2 + l2)1/2, h, k, and l positive integral. 

By contrast, the quasicrystal (QC) does not have regular, periodic, interplanar 
spacings, and the orders in the diffraction pattern are in geometric series τm. 
Moreover, the relations between scattering angle Θ', d' and λ were a priori un-

 

 

1All diatomic quasicrystals have diameter ratios for central atom/matrix atoms of (1 + τ)1/2 − 1, i.e. 
equal to the diagonal/side ratio in the golden rectangle. 
2By an application of Ockham’s razor, “Dimensions should not be multiplied without necessity”: 
because axioms are unquestioned in math, they are meaningless in physics—as are all other unfalsi-
fiable hypotheses [8] [9]. 
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known. Supposing modified relations, the following solution is consistent with 
the diffraction pattern: 

,  positive or negative integral,m d mΘτ
λ
′ ′

≈              (2) 

with details to be determined by simulation and experimental consistency. Every 
atom scatters. We have to suppose that in any given QC orientation, either most 
atoms scatter randomly but that atoms in adjacent planes may filter coherent 
scattering for the appropriate d' spacing; or that all atoms in the geometric 
structure coherently scatter the incident periodic wave. The former supposition 
is falsified because known interplanar spacings do not match Equation (1); the 
following evaluation of quasi scattering factors is a numerical solution that de-
scribes the coherent sharp diffraction that follows Equation (2). Complete analy-
sis is work in progress. 

Meanwhile, consistency is required between structure, scattering, and mea-
surement. In particular, and consequent on optimum defocus imaging, it is clear 
that the unit cell has dimensions a(1 × τ), where a is the quasilattice parameter 
that requires measurement, and the bracket gives the dimensions of the golden 
rectangle [3] [10]. (All 30 edges in the icosahedron belong to 15 golden rectan-
gles through its center.) Given the structure, the parameter must be close to the 
diameter of the Al atom. Neighboring cells have common edges, but not com-
mon faces. 

In crystals, Equation (1) provides the principal condition required for diffrac-
tion, and it is harmonic in order n. However, the equation is not a sufficient 
condition. Many indexed beams that are allowed by the equation are in fact for-
bidden by symmetric details within the periodic unit cells [11]. Classically, the 
structure factor method is used to identify them. By contrast, the quasicrystal 
unit cell is not periodic, so a more complex calculation is needed to identify and 
simulate the many and varied, beam intensities that occur in the geometric series 
diffraction pattern. Knowing, from optimum defocus imaging, the detailed 
structure of i-Al6Mn, we can proceed to compare diffracted beam intensities by 
simulations of Quasi Structure Factors. We need to simulate, not only the sup-
position of Equation (2), but also to measure the lattice parameter a, along with 
beam intensities and other features of the diffraction pattern. The fact that the 
known structure—at least when considered as ideal and defect free—is uniquely 
icosahedral, is confirmation of its correspondence with the point group symme-
try of the diffraction pattern. The quasi structure factors are calculated from the 
known ideal structure. 

2. Hierarchic Icosahedral Structure  

Figure 1 shows a foil section of i-Al6Mn imaged in phase-contrast, opti-
mum-defocus, electron microscopy [3]. White dots map Mn because of its high-
er atomic number, i.e. in the thin foil, the principal contrast is due to the greater 
scattering power of Mn (atomic number 25) compared to Al (atomic number 13).  
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Figure 1. At left, phase-contrast, optimum defocus electron micrograph ([3] pp. 66-67) of 
i-Al6Mn reveals icosahedrally coordinated Mn atoms as white dots and the filled red cir-
cle. The red circles outline 4 tiers of ordered icosahedral clusters. The large red circle out-
lines a supercluster section containing cluster centers at the corners of the white penta-
gon. At right, the black pentagon models the section by mirror image. Here, the triads of 
golden rectangles represent icosahedral clusters of twelve unit cells (two on each central 
axis), icosahedrally coordinated.  
 
The Mn atom is the first of four tiers of icosahedral structure (red circles). When 
combined with all of the information given by the point group symmetry of the 
diffraction pattern [1]; and with the 3-dimensional stereogram of principal axes 
and diffraction planes [7]; while furthermore having patterns in geometric series 
completely indexed, the structure is evident. This series is intuitively consistent 
with the idea of hierarchic structure, and is proved to be so by calculations of 
quasi structure factors. While the model is an ideal representation for the rapidly 
quenched intermetallic alloy; the probability of deriving this image from any 
other structure that has been proposed (e.g. [12]) is absurdly small. 

3. Quasi Structure Factors (QSF) 

Whereas, in crystals, the Bragg condition (Equation (1)) determines harmonic 
factors n that relate λ to Θ; corresponding structure factors sum atomic scatter-
ing amplitudes that determine intensities and forbidden lines. Likewise in quasi-
crystals, the dual importance of the quasi-Bragg condition and quasi-structure 
factors applies, but especially so because line intensities are many and varied. 
The general application of the formulae has been previously described [5], but 
we need to revisit the prerequisite of indexation. Begin with the atomic coordi-
nates for the unit cell and cluster: 

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )2 2 2

Unit cell : : 0,0,0

:1 2 ,0, ;1 ,1 2 0, 1, ,  and 1 2 1, ,0

Cell or Cluster centers :1 2 ,0, ,1 2 0, , ,1 2 , ,0 .

u

cc

r Mn

Al

r

τ τ τ

τ τ τ τ τ τ

± ± ± ± ± ±

± ± ± ± ± ±

 (3) 

In crystals (that obey Equation (1)), the structure factor formula projects each 
atomic site at vector ri in a unit cell onto a selected plane normal having integral 
indices hkl (Equation (1) with cs = 1). By summing the projected cosines on 
non-equivalent atoms, an amplitude is obtained that corresponds to the intensity 
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of the (hkl) diffracted beam after a crystal is oriented to the Bragg condition. For 
example, the closest crystalline approximant to i-Al6Mn is second phase, face 
centered cubic (fcc) AlxMn, x >> 6 [7]. About the [110] axis diffracted beams 
have either all indices even or all odd; otherwise diffraction is forbidden by the 
symmetry of the unit cell [11]. The structure factors Fhkl have values equal to ei-
ther 0 or 4. The atomic scattering factor is fi and, in the crystal, the metric cs = 1: 

( )( )
1

cos 2
N

hkl i s hkl i
i

F f c h rπ
=

= ⋅ ⋅∑                     (4) 

By contrast, in icosahedral quasicrystals (that obey Equation (2)), quasi-structure 
factors (QSFs) are more complex and more varied: because it is not structurally 
periodic, the summation in Equation (4) is extended to clusters and superclus-
ters indefinitely. Write the vector from the origin to each atom in a cluster clr  
as the sum of a unit cell vector ur  used previously, with a vector to the cell cen-
ters in the cluster :cc cl cc ur r r r= + . Then since 

( ) ( ) ( )
cluster 12 13

exp exp exp
N

hkl cl hkl cc hkl u
i i i

h r h r h r⋅ = ⋅ × ⋅∑ ∑ ∑           (5) 

with corresponding summations over cell centers and unit cell sites, Ncluster = 
Ncc∙Nu, the QSF for the cluster may be calculated: 

( )( )
12

cluster cell

1
cos 2hkl s hkl cc hkl

i
F c h r Fπ

=

= ⋅ ⋅ ⋅∑                  (6) 

and the calculation iterates on superclusters orders 1, 2, 3 ... p, by inclusion of 
the stretching factor τ2p: 

( )( )
12

2 1

1
cos 2p p p

hkl s hkl cc hkl
i

F c h r Fπ τ −

=

= ⋅ ⋅ ×∑                 (7) 

cluster
hklF  may also be written 0

hklF . The iteration is important when the calcula-
tion is performed over large clusters, for then truncation errors due to the many 
additions tend to randomize answers. Though large clusters yield precise con-
clusions [3] [4] here we will be concerned rather with diffraction effects at the 
cell and cluster levels up to supercluster order 2. Notice, by contrast with (peri-
odic) crystals, that a line that is forbidden, or partly forbidden at the cell level 
may be allowed by different greater dimensions at cluster and higher order le-
vels. We therefore begin by supposing that the diffraction is in first Bragg order 
n = 1, and proceed to determine details in the quasi Bragg law (Equation (2)), 
including the calculated ratio dh/dcs. The negative derivative that will be calcu-
lated is used to refine former results. 

Figure 2 shows simulations for QSFs in the geometric series (100), (τ00), 
(τ200), (τ300) and (τ400), all plotted against varying values for the metric cs. Each 
plot contains a single peak centered at cs = 0.894; no other significant structure is 
found between 1.2 > cs > 0.8. The plots confirm the geometric series diffraction 
that is observed in diffraction patterns, and that was discovered in the stereo-
grams [7] and indexation [3]. Moreover, the plots confirm the explanation for 
the geometric series being due to the hierarchic structure. The series shown is  
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Figure 2. QSFs simulated for indexed lines as shown from an i-Al6Mn supercluster order 
2. The lines peak consistently when cs = 0.894 with similar intensities (FWHM). By con-
trast corresponding QSFs for Bragg conditions (cs = 1 and n = 0, 1, 2, 3…, m = 0) are un-
regulated, with more or less random QSF structures, spread out and very weak, like noise. 
 
illustrative: all simulated peaks from the quasicrystal occur with the same metric 
(i.e. the value of cs when the QSF peaks). The plots also emphasize the critical 
and creative importance of the metric for the confirmation of Equation (2). 

The significance of Figure 2 is further illustrated by comparing equivalent 
scans calculated for crystals [4]. Owing to the condition expressed in Equation 
(1), all “QSFs” calculated for crystals peak only on the ordinate axis (cs = 1). 
Moreover, in the simple case of fcc Al for example, the number of values calcu-
lated is limited, typically 4 or 2 or zero, there being only four non-equivalent 
atoms in the unit cell. By contrast, not only do quasicrystal QSFs peak only at a 
precise off-Bragg condition (cs = 0.894; Θ' = Θ/cs; d' = d∙cs) in Equation (2) and 
Table 1 below, but the intensities have a wide spectrum of values over various 
diffraction beams (hkl). This variety is due to the larger number of atoms that 
contribute to the diffraction from large clusters, i.e. much greater than the 
number in a single unit cell. 

The peaks describe a new physical effect in quasicrystals. In crystals, Bragg’s 
law (as in Equation (1)) supposed a simple model, with elementary mathematics 
and clear experimental evidence. By contrast, quasicrystals are described by  
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Table 1. Calculation for the lattice parameter a' in the quasicrystal from measurements 
made by assuming Bragg diffraction. 

Bragg condition Quasi-Bragg condition Comment 

nλ ≈ dΘ τmλ ≈ d'Θ' 
Including metric, ('), n, m integral 

m = −infinity, −1, 0 1, 2, 3… or 
h' = 0, τ−1, 1,τ, τ−1, τ−2, τ−3… 

d = a/h d' = a'/h' r is fixed within known models 

  
Diffraction depends on harmonic r. h in SF 

for Equation (1) & QSF for (2) 

cs = 1 cs < 1 

In quasi Bragg h' cs < h 

00dτ′  = 0.205 × cs nm 

100d ′  = 0.205 × cs × τ = 0.296 nm, 
= a' 

 
equally simple mathematics (Equation (2), Equations (5)-(7)), and equally clear 
diffraction evidence, but require a more complex model. The equations and evi-
dence imply that the sums on the cosines in Equation (7), when each is multip-
lied by planar densities taken from the structure, result in specular reflection 
from imaginary planes that are 10% shifted from the corresponding Bragg con-
dition. This is the most remarkable feature of the hierarchic scattering that is 
observed in geometric series (Equation (2)). The shift is 1 − cs at the peak. 

Notice that in the experimental high energy electron diffraction pattern, the 
intensities of the higher orders are further and normally reduced by the devia-
tion parameter, that result from larger scattering angles [12]. The “third bright 
ring” is exceptional and is described further below where it is used to define the 
quasi lattice parameter. 

All atom sites in Equation (7) were summed for the supercluster order 2, but 
with four adjustments: edge cell atoms that were counted twice were entered by 
halving the atomic scattering factor fAl; secondly, those that were counted thrice, 
at intersections of three cells, were entered with one third fAl. Thirdly, mobile 
sites, where one atom shares two sites were counted as for edge sharing; and 
fourthly, some details were ignored because of their small effects and uncertain-
ty. For example, Pauling’s observation [13] that though icosahedral structures 
are known in crystals having large unit cells, the structures contain holes at their 
centers. These holes contain less than 2% of the volume of icosahedral struc-
tures. In principle the holes can be filled with octahedral structures (the octahe-
dron is a subgroup of the icosahedral group and so should not display obvious 
effects in diffraction). However, we have chosen to ignore hole fillings because 
various fillings are possible.  

Given the method of indexation described, the scattering is thus seen to be 
coherent when the metric cs = 0.8943. Figure 2 is an example of the general re-

 

 

3When the calculations were undertaken earlier under the assumption of second Bragg order, n = 2, 
a different value was found with a value for 1 − cs about 5% instead of 10% as in Figure 1. On reflec-
tion, this will be seen to be consistent; and the assumption depended on the symmetry of the unit 
cell. However, since it is now obvious from Equations (5)-(7) that structure factors depend on both 
the unit cell and the on the clusters, the earlier hypothesis that n = 2 is corrected and is replaced by 
indexation based on n = 1. 
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sult that is calculated in quasicrystal diffraction. We now need to consider how 
to apply the calculated metric for the hierarchic structure. 

Figure 3 illustrates five simulations using four imagined pseudo-indices hav-
ing h = 1.5, 1.6, 1.7 and 1.8, and also the midway index at h = 1.618034…, the (τ, 
0, 0), i.e. consistent with quasi-Bragg diffraction in Equation (2), with m = 1. 
The pseudo-indices are anharmonic and unreal because the corresponding m is 
fractional. The central peak in Figure 3 is the second peak in Figure 2. The peak 
intensities are constant. By plotting, separately, the index against the peak posi-
tions, the linear slope dh/dcs is found to be −0.186, i.e. negative. A similar rela-
tionship between indexation with interplanar spacing applies to quasicrystals as 
to crystals (namely dhkl = a/(h2 + k2 + l2)) so the derivative ddhkl/dcs must be posi-
tive. This fact is used to derive the true quasicrystal lattice parameter a' in Table 
1. This parameter is the corrected value that, previously, was supposedly meas-
ured by incorrectly by assuming second order (n = 2) Bragg diffraction in the 
quasicrystal. The calculated slope demonstrates the fact that the lattice parame-
ter that was previously measured by assuming Bragg diffraction, was overesti-
mated (Table 1). 

4. Quasi Lattice Parameter and Reciprocal Lattice 

The parameter is at first sight ambiguous because the unit cells are edge sharing. 
Fixed are the stretching factor τ2; the icosahedron cell length τ∙a', and its side 
length 1∙a'; but the two most obvious subordinate cells are overlapping cubes 
side τ∙a', or floating cubes side a' with severe underfilling. The measured lattice 
parameter is reported to be a = 0.205 nm [12] [14], i.e. measured from the “third 
bright ring” [1] [15], following the methods of classical Bragg diffraction. In the 
crystallography of cubic materials, an interplanar spacing d and scttering vector 
Θ depend on h−1 and h respectively, in a (h00) line. However in the quasicrystal,  
 

 
Figure 3. Simulations for QSFs plotted against various trials of metric cs, where the index 
is also varied by imaginative construction. The relationship is almost linear dh/dcs = 
−1.86. 
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the off-Bragg condition requires correction for cs. Then the cell side length 
measures as 0.205 × cs × τ = 0.296 nm (Table 1), or 3% greater than the diameter 
of Al in the pure metal. The measurement of a’ depends on correct conventions 
of indexation and definition. It is convenient to define the lattice parameter a' in 
i-Al6Mn, as the normal diameter of Al in the unit cell of pure Al. We therefore 
define the quasi-lattice parameter as the width of the icosahedral unit cell. When 
we progress to the reciprocal lattice, it is convenient to express the parameter in 
simplified icosahedral units, a' = 1. This corresponds with the fact that in hie-
rarchic quasicrystals, diffraction measurement occurs through the compromise 
multi-spacing effect, or metric, cs.  

Quasicrystal crystallographers sometimes ask about the reciprocal lattice in 
quasicrystals because the reciprocals provide important understanding in mea-
surement from crystals.  

This understanding extends to most of the solid state physics of crystals, in-
cluding energy band structures, conductivity etc. In early researches, alternative 
bases were sometimes used to index the diffraction pattern, but the Euclidean 
axes of the Oh subgroup of the icosahedral point group are now standard.  

Should we use coordinates that are Cartesian, or coordinates in geometric se-
ries? The former represent the unit cell parameter a' in linear order, and so are 
the more convenient choice for some purposes. More generally, the geometric 
series expansion of the hierarchic solid relates to the true structure. 

Meanwhile, the reciprocal lattice in momentum space has the same point 
group symmetry as the solid structure and Euclidean axes are again the best 
choice. The 3-dimensional lattice may be calculated from QSFs using power 
values for h, k and l equal to τm, m = −infinity, −1, 0 1, 2, 3… A diffraction pat-
tern is a projection of a reciprocal lattice onto two dimensions. The reciprocal 
lattice may be recorded by abscissae coordinates in either linear or geometric se-
ries. The latter series has been used to construct dispersion curves ([16] [17] p. 
17), with energy space ordinates plotted against k vector abscissae. In geometric 
coordinates, the free electron dispersion is then a straight line with slope 2. 
Meanwhile, because the geometric series, base τ, is a particular Fibonacci se-
quence, quasi-Bragg reflected beams in the extended zone scheme have the slope 
−1. Zone boundaries are constructed on linear units m in the power series τm 
coordinates. By simple transformation, extended zones can be represented on 
alternative linear coordinates. Another example is for high energy electrons used 
in imaging. Dispersion is represented in momentum ordinates with scattering 
vector abscissae ([17] p. 51). This dispersion is useful for describing the dynam-
ics of quasi-Bloch waves [5]. Each representation, geometric series or linear, has 
its merits, while results are mutually transformable. 

Knowing the clear icosahedral structure, corresponding progress is also ex-
pected in defect structures (e.g. [7]) in rapidly quenched material. A further ex-
pectation is application of the quasi structure factor method to 2-dimensional 
quasi-crystalloid structures, i.e. with periodicity on the c-axis but having 10-fold, 
6-fold or 8-fold rotational symmetries (e.g. [17] p. 68). We use math, but only 
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when it is falsifiable (cf. [4] p. 83); and not where it is falsified. 

5. Conclusion 

We do not ask “What is a quasicrystal?” [18]. “The short answer is no one is 
sure.” With the mapping of Mn, and with the extension of the hierarchic struc-
tures from cell to cluster to superclusters of infinite order, the structure is known. 
With the stereographic projections of principal axes and diffraction planes in-
dexed in three dimensions; with complete indexations based on summations of 
backbone geometric series in 3-dimensions; with the representation of all dif-
fraction beams by quasi structure factors, the diffraction pattern is matched to 
the known structure. It is no wonder that the matching lattice constant and re-
ciprocal lattice are consistently measured; the wonder is that periodic probes, 
whether of X-ray or electron beams, scatter coherently from the hierarchic, qua-
siperiodic structure. This coherence is firmly demonstrated by numerical me-
thods applied on an off-Bragg condition, as this paper emphasizes. Though the 
quasicrystal lattice is geometric, the reciprocal lattice is easily transformed to li-
near coordinates. 
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