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Abstract 

We point out that a suitable scale of time for the Schrödinger perturbation 
process is a closed line having rather a circular and not a conventional 
straight-linear character. A circular nature of the scale concerns especially the 
time associated with a particular order N of the perturbation energy which 
provides us with a full number of the perturbation terms predicted by Huby 
and Tong. On the other hand, a change of the order N—connected with an 
increased number of the special time points considered on the scale—requires 
a progressive character of time. A classification of the perturbation terms is 
done with the aid of the time-point contractions present on a scale characte-
ristic for each N. This selection of terms can be simplified by a partition pro-
cedure of the integer numbers representing 1N − . The detailed calculations 
are performed for the perturbation energy of orders 7N =  and 8N = . 
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1. Introduction 

The scale of time, which is well known in everyday life and in science, too, is a 
product of a long experience. As far as we can distinguish the later events from 
the earlier ones, we organize the idea of time as a parameter which allows us to get 
an insight into the degree of the past, or future, connected with our observations. 

In effect a tool to classify the events, and the time distances between them, is 
established. Conventionally this is done with the aid of an infinite scale extended 
between an infinite past—say representing the negative coordinates—and a sim-
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ilar scale—say having the positive coordinates—representing the future: 

.t−∞ < < ∞                           (1) 

The distances between the time points on the scale can be measured with a 
smaller or larger accuracy. These distances provide us with separations between 
different time points. 

In practice the Schrödinger’s quantum mechanics—developed in course of 
1920’s [1] [2] [3] [4]—has not much to do with the intervals of time. Its main 
idea was rather to distinguish between the stationary states of the chosen pieces 
of matter. Such pieces are described with the aid of the stationary eigenenergies 
and eigenfunctions, both kinds of parameters being independent of time. Con-
cretely the classical Hamiltonian function of a chosen object is transformed into 
its operator form, and the integration of the classical Hamilton equations is re-
placed by a study of a differential eigenequation of the form 

ˆ .H Eψ ψ=                           (2) 

Here Ĥ  is the Hamiltonian operator represented by a sum of the kinetic and 
potential operators 

kin pot
ˆ ˆ ˆ ,H E E= +                         (3) 

so—for a single particle system— 

( )2 2 2
kin

1ˆ ˆ ˆ ˆ ,
2 x y zE p p p

m
= + +

                    
(4) 

( ) ( )pot
ˆ ˆ ,E V V= =r r                       (5) 

ψ  is the eigenfunction called the wave function of an object, say a particle sub-
mitted to an external field having the potential V, symbol r  is the position 
vector, E is the energy eigenvalue. 

Because of 

ˆ ˆ ˆ, , ,x y zp i p i p i
x y z
∂ ∂ ∂

= − = − = −
∂ ∂ ∂
  

             
(6) 

the momentum operator in (4) is of a differential character, whereas (5) represented 
by a function of the particle (object) position r , is of a multiplicative nature. 

The problem is that even in relatively simple physical cases the eigenequation 
(2) is difficult to solve. By solution we understand a set of the eigenenergies 

1 2 3, , ,E E E E=                         (7) 

and eigenfunctions 

1 2 3, , ,ψ ψ ψ ψ=                         (8) 

which satisfy (2). Only in very few physical cases equation (2) can provide us 
with simple solutions (7) and (8). The (7) are considered to be real energies of 
the system’s quantum states, the (8) are the wave functions suitable in calculat-
ing other physical observables than energy.  

In general the case when all eigenvalues on the right of (7) are different is 
classified as a non-degenerate problem, an opposite case is called to be a dege-
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nerate one. 
Schrödinger was certainly aware about the difficulties connected with the so-

lution of his Equation (2); see [3]. His proposal became to calculate the solutions 
of a rather complicated (2) with the aid of solutions of a less complicated equa-
tion 

( ) ( ) ( ) ( )0 0 0 0ˆ ,H Eψ ψ=                       (2a) 

having the potential ( )0V r  more simple than ( )V r  in (2). The potentials 
difference 

( ) ( ) ( )0per perV̂ V V V= = −r r                     (9) 

is called the perturbation potential, or simply a perturbation. In order to obtain 
possibly accurate results Schrödinger developed a formalism in which the solu-
tions of (2) can be expressed with the aid of solutions of (2a). In this 
process—beyond of the solutions of (2a)—the matrix elements of the kind 

( ) ( )0 0perVα βψ ψ
                       

(10) 

are also involved. 
A more easy treatment of the perturbation does concern the calculation of the 

energies of Equation (2) with the aid of solutions of Equation (2a) obtained in 
case of a non-degenerate case. Nevertheless an accurate calculation of these 
energies requires a complicated superposition of the solutions of (2a), as well as 
calculation of the matrix elements in (10). In principle these calculations were 
performed with no reference to the parameter of time; see Sec. 2. 

The aim of the present paper is to point out that an introduction of the time 
scale—which has, however, a nature different than the well-known scale charac-
terized by the formula (1)—provides us with a rather spectacular simplification 
of the original Schrödinger’s perturbation scheme. 

2. Outline of the Time-Independent Perturbation Theory of 
a Non-Degenerate Quantum State 

A characteristic point is that Schrödinger obtained the solution of his perturbed 
equation without any reference to time [3]. An outline of a more modern 
time-independent perturbation theory is given, for example, in [5]. In the case of 
a non-degenerate quantum system let the unperturbed eigenequation 

( ) ( ) ( ) ( )0 0 0 0ˆ
n n nH Eψ ψ=                       (11) 

be considered as solved. In principle we have an infinite set of the quantum 
numbers n for wnich the eigenequation (11) does hold. The number of the ei-
genfunctions and eigenenergies of the perturbed eigenequation 

( ) ( )per
0

ˆ ˆH H V Eλ ψ λ ψ ψ= + =
                 

(12) 

let be also infinite. 
For 0λ =  we obtain the unperturbed problem equivalent to (11), whereas 

for 1λ =  we have a full perturbation problem. In principle we assume as valid 
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the following series expansions 

( ) ( ) ( ) ( )0 1 22
n n n nψ λ ψ λψ λ ψ= + + +                 (13) 

and 

( ) ( ) ( ) ( )0 1 22
n n n nE E E Eλ λ λ= + ∆ + ∆ +                (14) 

and look for the solution of (12) in terms of the functions 
( ) ( ) ( )0 1 2, , ,n n nψ ψ ψ                         (15) 

and numbers 
( ) ( ) ( )0 1 2, , ,n n nE E E∆ ∆                        (16) 

which make (12) valid for any λ  from the interval 

0 1.λ< <  

The function combined on the right of (13), viz. 
( ) ( ) ( ) ( )0 1 2 N

n n n n nψ ψ ψ ψ ψ= + + + +                 (17) 

is called the perturbed wave function of state n presented with the accuracy to 
the perturbation order N, whereas the numbers entering on the right of (14), viz. 

( ) ( ) ( ) ( )0 1 2 N
n n n n nE E E E E= + ∆ + ∆ + + ∆                (18) 

give the perturbed energy of state n also with the accuracy of the perturbation 
order N. 

By assuming the convergence of the series in (13) and (14), an increase the 
order number N applied in the sequence 

1, 2, 3, , N                         (19) 

improves the accuracy of solutions presented in (13) and (14). 
Physically as a more easy accessible and more interesting parameter, is consi-

dered the perturbed energy (14). Huby and Tong presented the number of the 
kinds of terms necessary to obtain the successive components 

( ) ( ) ( ) ( )1 2 3, , , ,NE E E E∆ ∆ ∆ ∆                   (20) 

entering the Schrödinger series for the energy perturbation of any non-degenerate 
state n; see [6] [7]. This number is expressed as a function of N by the formula 

( )
( )

2 2 !
.

! 1 !N

N
S

N N
−

=
−                        

(21) 

For low N the numbers NS  are also rather small, for example 

1 2 3 4 5 61, 1, 2, 5, 14, 42,S S S S S S= = = = = =            (22) 

It should be noted that the kinds of the perturbation terms entering the set of 

NS  do not depend explicitly on state n, but they depend solely on N. Any kind 
of terms is, in its turn, a combination of the matrix elements of the perturbation 
potential with the unperturbed wave functions ( )0

αψ  and ( )0
βψ , given in (10). 

Another dependence of the terms is due to the differences of the unperturbed 
energy ( )0

nE  of state n submitted to perturbation and similar unperturbed ener-
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gies ( )0Eα , ( )0Eβ , ( )0Eγ , i.e. 
( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 0 0, , ,n n nE E E E E Eα β γ− − −                 (23) 

As a rule the differences (23) enter the denominators of the perturbation 
terms, so there should be satisfied the relations 

, , ,n n nα β γ≠ ≠ ≠                       (24) 

etc.; see e.g. [8] for further details. 
For 2N >  numerous terms entering NS  composed of (10), (23) and (24) 

can be submitted to infinite summations over the states indicated on the left of 
(24). 

In practice the way of deriving the sets of NS  terms necessary for the 
Schrödinger perturbation formalism indicated above becomes a complicated 
task. Concurrent methods, obtained mainly without inclusion of the time para-
meter, are given in [9]-[17]. The computational applications performed with the 
aid of these methods seem to not provide us with a complete formalism suitable 
for a large perturbation order N. One of the by-products of the present paper is 
to make the perturbation method for large N to be more simple than before. 

3. Feynman’s Time-Dependent Formalism Referred to the 
Schrödinger Perturbation Theory 

Feynman diagrams including the time variable became a well-known tool in 
representing the quantum phenomena of different kind [18] [19] [20]. They 
could be applied also in the case of the Schrödinger perturbation calculation. A 
fundamental difficulty of such a treatment comes from an enormous inflation of 
the number of diagrams which had to be considered in case of a large perturba-
tion order N. For, according to the Feynman formalism, we should calculate and 
combine the results of 

( )1 !NP N= −                         (25) 

diagrams in order to obtain the energy expression equivalent to the NS  terms 
entering the Schrödinger theory. 

It is evident that 

N NP S=                           (26) 

for 1,2N = , and 3, but already for 4N =  we have 

4 46 5.P S= > =                        (27) 

It is easy to check that for 3N   we have N NP S . For example for 
20N =  we obtain 

17
20 19! 1.23 10P = ≅ ×                      (28) 

and 
9

20 1.77 10 .S = ×                        (29) 

Evidently the ratio 
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N NP S                            (30) 

increases systematically with N tending to a huge number. 
But the Feynman theory was based on a linear time scale represented by the 

interval given in formula (1). We demonstrate—in the remainder part of the 
paper—that a different kind of the time scale, namely that having a circular-like 
character, can lead precisely to the diagrams and, in consequence, the energy 
terms dictated by the Schrödinger perturbation calculus. 

4. Scale of Time Suitable for the Schrödinger Perturbation 
Formalism, Its Contraction Points and Side Loops 

Our idea is to replace a tedious calculation of the perturbation energy attained 
with the aid of solving the perturbed Schrödinger eigenequation by an imme-
diate production of the perturbed energy terms due to an application of a suita-
ble scale of time; see Figures 1-4. 

According to Leibniz [21] [22] [23] time is an ordering parameter for the 
events occurring in the nature. A reference to the Leibniz concept of time as a 
merely successive order of things can be done also in connection of a discussion 
of the Mach’s principle and the structure of dynamical theories [24] [25] [26]. 

 

 
Figure 1. Time scale for the perturbation order 1N = . The beginning-end point is 1. 

 

 

Figure 2. Time scale for the perturbation order 2N = . Beyond of the beginning-end point 
2 there exists also point 1 on the scale. No contraction between 1 and 2 is admissible. 

 

 

Figure 3. Time scale for the perturbation order 3N = . Beyond of the beginning-end 
point 3 there exist also points 1 and 2. They can remain either free [diagram (a)] or are 
contracted [diagram (b)] giving a side loop. 
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Figure 4. Time scale for the perturbation order 7N = . Beyond of the beginning-end 
point 7 there exist also points 1, 2, 3, 4, 5 and 6. They are free on the diagram (a), but can 
form—for example—a maximal side loop for 7N =  due to contraction 1: 6  [diagram 
(b)] or a cascade of loops [diagram (c)] due to contractions 1: 6  and 2 : 5 . 

 
In case of the perturbation calculation, the Leibniz idea suggests to choose an 

appropriate scale of time, so it will be helpful to represent the results of the per-
turbation process. A necessary scale for any perturbation order N occurs to be a 
circular-like scale. This implies that N points of time—representing N successive 
collisions of the quantum system with the perturbation potential (9)—are 
present on a topological circle. One of these points, say the Nth point, let be the 
beginning-end point of the scale, called henceforth the main scale, or loop, of 
time. The remainder 1N −  time points on the scale can be left either free, or 
submitted to contractions. 

The contractions of the time points done on the main scale lead to the side 
loop, or loops, of time. Since it occurs that the Nth point should be excluded 
from contractions, a maximal size of the loop created from the main loop of the 
N points of time is given by the contraction between the time points 1 and 

1N − . This contraction is labelled by 

1: 1.N −                           (31) 

Beyond of the maximal loop of (31), a set of the minimal loops due to con-
tractions 

1: 2, 2 : 3, 3 : 4, , 2 : 1N N− −                  (32) 

can be also created. We can have still the intermediate side loops like 

1: 3, 2 : 4, 3 : 5, , 3 : 1,N N− −                  (33) 

or other loops larger than those due to contractions in (33). 
Beyond of single contractions listed in (31)-(33), also multiple contractions of 

the time points like 

1: 2 : 3, 2 : 4 : 5, 2 : 4 : 7,                     (34) 

or 

2 : 3 : 5 : 6, 2 : 4 : 6 : 7,                     (34a) 

or those composed of a still larger number of the time points, should be taken 
into account: the size of the admitted contractions depends on the size of the 
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considered N. Moreover, the combined contractions of the time points like 

1: 2 4 : 5                          (35) 

may come also into play. A general rule is that the time loops due to the accepta-
ble contractions should not cross. This means that, for example, the combined 
contraction due to the pair 

1: 4 2 : 5                          (36) 

is not admissible. 
A fundamental effect is that a full set of acceptable contractions for a consi-

dered order N gives precisely the number NS  of the Schrödinger perturbation 
terms predicted by the formula (21) for that N; no superflous neither lacking 
terms do occur. This is checked for the orders between 1N =  and 7N =  in 
the earlier papers by the author [25-34]. A full set of diagrams necessary for 

6N =  is given in [25], a similar set for 7N =  enters [34]. In the present paper 
the perturbation energy of the order 8N =  is also examined from the same 
point of view giving a similar agreement of the results; see Sec. 9. 

5. Concentrations of the Contraction Points and Their Use 

The concentration of a contraction point is equal to the number of the loops of 
time which meet together in that point. Evidently, if the contraction point is lo-
cated on the main loop of time, one of the loops met in that point is the main 
loop itself. The other loops created by the time contractions on the main loop 
are called the side loops. An advantage to operate with the concentrations of 
loops is that they allow us to express the perturbation results in a more compact 
form than could be expected before. 

This is so because the concentrations which are characteristic for a given N 
can be referred directly to partitions of the number 1N − . In the next step the 
knowledge of partitions does lead to the number of the perturbation terms and 
the formulae for these terms. The effect of partitions and their connections with 
the contraction points will become evident in the computational practice giving 
the NS  Schrödinger terms for 7N =  and 8N = ; see Sec. 9. 

The next advantage of the time-point formalism is that any admissible con-
traction of the time points gives a correct contribution to the perturbation ener-
gy belonging to some N. The details of contributions can be easily derived by the 
analysis of contractions. The notation of the energy terms—see Sec. 6—can be 
simplified, because several terms of a given N can combine into the expressions 
representing the perturbation energies belonging to N N′ < —the point usually 
neglected in the former perturbation calculations done by many authors. The 
way of calculation of particular energy expressions and examination of their 
properties are presented in Sec. 9, where the examples of 7N =  and 8 are stu-
died in detail. An evident effect due to such study is that the energy contribution 
given by any of the time-point contractions can be obtained. Details concerning 
such contributions and notation suitable to represent the perturbation terms are 
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presented both in Sec. 6 and Sec. 9. 

6. Notation Applied to Represent  
the Energy Perturbation Terms 

Only for the perturbation orders 1N =  and 2N =  the side loops for the 
main loop of time do not exist. But any NS  term for 2N >  is a product of 
energy contributions due to the main loop of time and those due to the side 
loops, respectively. 

The contributions due to the side loops are easy to access from contractions of 
the time points and will be discussed first. Any contraction 

:α β                            (37) 

where as a rule we have 

α β<                           (37a) 

provide us with the energy multiplier equal to the energy correction 
.Eβ α−∆                            (38) 

The difference 

β α−                            (39) 

indicates the perturbation order of energy contributed by the side loop 
represented by E∆ . In result, when the difference indicated in (39) is larger 
than 2, we have more than one Schrödinger perturbation term represented by 
the side loop, for 

1.Sβ α− >                           (40) 

The contribution to energy due to the main loop of time depends on the 
number and situation of the time points present on that loop. When no contrac-
tions are present for the time points on the loop, the loop has N time points on it 
and gives the energy term in the form 

VPVPVPVP PV .                     (41) 

Such loop carries N symbols V and 1N −  symbols P. 
Evidently for 1N =  no P symbol enters (41) and we obtain a single term for 

the perturbation energy equal to 
per

1.V n V n E= = ∆                     (42) 

For the order 2N =  we have no side loops and the perturbation energy is 
represented by the formula 

2 .VPV E= ∆                         (43) 

The symbol P within the brackets on the left of (43) represents a reciprocal 
value of the energy difference, viz. 

( ) ( )0 0

1 ,
n p

P
E E

=
−                        

(44) 

situated between two matrix elements of perV , viz. 
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per per, ,n V p p V n                    (44a) 

and submitted to summation process over the dummy state index p. In effect 

( ) ( )0

p

0

er per

.
p n n p

n V p p
E

n
V

E
V

PV
≠

=
−

∑
               

(45) 

The meaning similar to the term (45) does prolongate to any perturbation 
term given by the main loop of time carrying no contraction points. For example 
for 3N =  such term is represented by 

( ) ( ) ( ) ( )0

per p r r

0 0

e p

0

e

.
p nq n n p n q

n V p p V q q V

E E E E

n
VPVPV

≠ ≠

=
   − −   

∑∑
         

(46) 

This formula has two P and two dummy indices (p and q) for summation over 
the quantum states with exclusion of state n which is submitted to perturbation. 
It is easy to extend (46) to an arbitrary order N. 

More complicated contributions to energy due to the main loop occur in case 
when the side loops are also present. For 3N =  the only possible contraction 
of the time points is 

1: 2.                             (47) 

Evidently the side loop created by (47) does provide us with the term 

1,V E= ∆                         (47a) 

however our task is to present also a contribution due to the main loop of time. 
In this case contraction (47) transforms the term (46)—having no contrac-
tions—to the formula 

( ) ( )

per per

20 0

2 .
p n

n p

n V p p V n
VP

E
V

E≠

=
 − 

∑
               

(48) 

The whole perturbation energy due to contraction (47) is represented by the 
product of (47a) and (48) taken with a minus sign: 

21: 2 VP V V→ −
                      

(49) 

because we have an even number of terms entering the product in (49); an odd 
number of terms would give a positive sign. A characteristic point is that the to-
tal number of P and V entering the term in (49) remains the same as it does exist 
in the term (46): there are two P and three V together. 

Another situation can be when the non-neighbouring time points, say 1 and 3, 
enter contraction 

1: 3.                             (50) 

This may occur for the perturbation order equal at least to 4N = , so the last 
time point 4 is the beginning-end point on the scale and does not enter into 
contractions. 

The energy term for the main loop of time having no contraction points be-
comes —in this case—a triple sum of terms 
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( ) ( ) ( ) ( ) ( ) ( )

per per per per

0 0 0 0 0 0
p nq nr n n p n q n r

n V p p V q q V r r V n
VPV

E E E E E
PVPV

E≠ ≠ ≠

=
     − − −     

∑∑∑
   

(51) 

whereas the contraction (50) implies the side loop having point 2 as free on it. 
This makes the energy contribution due to the side loop equal to 

2VPV E= ∆                         (52) 

But the main loop of time having a contraction point (50) on it changes its 
contribution to the perturbation energy. Together with the beginning-end point 
of time the loop becomes similar to that representing the term (52), however the 
presence of the contraction point (50) implies the loop contribution to energy 
equal to 

( ) ( )

per per

20 0

2 .
p n

n p

n V p p V n
VP

E
V

E≠

=
 − 

∑
               

(53) 

In effect the perturbation term due to contraction (50) is equal to product of 
(52) and (53): 

2
2 .E VP V−∆

                        
(54) 

The minus sign in (54) is dictated by the presence of an even number of terms 
entering the final product. 

The notation procedure indicated above can be extended to any perturbation 
order N. 

7. Time-Point Contractions on a Circular Scale and a Check 
of Validity of the Energy Terms Contributed by the 
Side-Loops of Time 

Let us begin with a maximal side loop presented by the time point contraction in 
(31). Because the number of free points of time present on the side loop in (31) 
is 

1 1 2,N N N′ = − − = −                     (55) 

the energy contributed by the side loop due to (31) is equal to 

2 .NE −∆                            (56) 

This energy has to be joined with the energy contribution given by the main 
loop of time which—due to contraction (31)—possess only two points of time: 
the beginning-end point and the contraction point (31). It should be noted that 
the presence of the beginning-end point does not give any contribution to the 
perturbation energy, for such contribution can be given only by a loop of time. 

In effect of the contraction point of two loops, they are joined together. This 
implies that the energy term of the main loop should have the term 

2P                             (57) 

and not P alone; see (53). But beyond of (57) we note that the main loop be-
comes similar to the time loop characteristic for the second-order perturbation 
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term; see (52). In effect the main loop makes the whole contribution of the con-
traction (31) to the perturbation energy equal to 

2
2 .NVP V E −− ∆

                       
(58) 

A formal check of validity of the energy expression given in (58) is simple: 
since the perturbation energy concerns order N, it should have the total number 
of P in the perturbation expression equal to 1N −  and the number V is equal to 
N. Respectively, the perturbation energy in (51) contains the number of P equal 
to 3N −  and that of V equal to 2N − . The multiplier 

2VP V
                          

(59) 

present in (58) supplies the lacking number of P and V in the term 2NE −∆  to 
the required number of P and V in an energy term belonging to NE∆ . 

The same reasoning can be applied to any contraction of the time points 

1,2,3, , 1N −                         (60) 

entering the time scale useful for calculating the perturbation energy of the order N. 
Examples of such calculations are presented in the earlier papers; see e.g. [33] [34]. 
The number of the time points which can be submitted to contractions for a 

given N is 1N − ; evidently different contractions can give different concentra-
tions at the contraction points. The point present on the scale having no con-
tractions has concentration 1, a maximal concentration of the 1N −  time 
points is evidently 1N − . 

The same number 1N −  is equal to the number of P’s present in any term of 
the Schrödinger perturbation energy; evidently for 1N =  we have no P present 
in the perturbation term. 

8. Systematic Time-Dependent Approach to the Schrödinger 
Perturbation Method. Partitions of the Number N − 1 and 
the Time Point Contractions 

A fundametnal process of quantum mechanics is a change of a given system 
upon the action of a perturbation which—in its character—can be independent 
of time. To calculate the result of such a change on a non-degenerate system the 
Schrödinger perturbation formalism—represented by the sets of terms labelled 
by their order numbers N—is usually applied. 

In principle there exist several ways according to which the necessary sets of 
terms can be obtained. In many cases no time approach should be used to this 
purpose. We are guided, however, by the Leibniz idea that a suitable arrangement 
of the perturbation events along a time scale can be helpful in an analysis of the 
expected change of a quantum system, including that due to the perturbation ef-
fect. Consequently the change of a system upon the action of a time-independent 
perturbation implies the importance of time. In fact we find that a circular scale 
of time—supplemented by the necessary time-point contractions on it—can 
represent with a perfect accuracy the perturbation terms of energy obtained in 
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an almost automatic way. 
All possible partitions of the number 1N −  lead to respective time-point 

contractions necessary for calculating the perturbation terms belonging to that 
N. Certainly the time points entering contractions are dependent on the position 
of a given partition number in the sum equal to 1N − . In this way we obtain a 
full set of necessary contractions for a given number 1N − . 

For example for 3N =  we have 1 2N − =  and the only set of the accepta-
ble contractions is reduced to a single contraction 

1: 2 2 : 1N N= − −                       (61) 

represented by a partition number of 1N −  equal to 2. But there exists also the 
partition 

1 1                            (61a) 

without contractions. 
For 4N =  we have the contractions 1: 2  and 2 : 3  represented by parti-

tions 
2 1
1 2.                            

(62) 

Here the time point 3 and time point 1 remain free in the first and second row 
of (62), respectively. A full set of partitions for 1 3N − =  becomes 

1 1 1
2 1
1 2

3;                           

(63) 

the partition 3 does represent the contractions 1: 2 : 3  and 1: 3 . 
For 5N =  we obtain the partitions 

( ) 4
11 1 1 1 no contractions points 1, 2,3, 4 free ; 1S→ =    (64) 

2
2 12 1 1 1: 2, points 3, 4 free; 1S S→ =               (65) 

1 2 11 2 1 2 : 3, points 1, 4 free; 1S S S→ =              (66) 
2

1 21 1 2 3 : 4, points 1, 2 free; 1S S→ =                (67) 

1 22 2 1: 2, 3 : 4; 1S S→ =                         (68) 

3 13 1 1: 3, 1: 2 : 3; point 4 free; 2S S→ =             (69) 

1 31 3 2 : 4, 2 : 3 : 4; point 1 free; 2S S→ =            (70) 

44 1: 4, 1: 2 : 4, 1: 3 : 4, 1: 2 : 3 : 4, 1: 4 2 : 3; 5.S→ = (71) 

A characteristic point is that the S-like results are equal to the number of con-
tractions; an exception is the first term [see (64)] where the absence of contrac-
tions is associated with all partitions equal to 1. A total value of the sum of the 
S-products on the left of (64)-(71) is equal to: 

4 2 2 2
1 2 1 1 2 1 1 2 2 3 1 1 3 4

51 1 1 1 1 2 2 5 14 .
S S S S S S S S S S S S S S

S
+ + + + + + +

= + + + + + + + = =           
(72) 
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Therefore a set of partitions of 1 4N − =  gives the 5S  perturbation terms. 
A similar situation does repeat for 6N =  which gives 1 5N − = ; the parti-

tions are 

( ) 5
11 1 1 1 1 points 1,2,3,4,5 free ; 1S =                                (73) 

( ) 3
2 12 1 1 1 1: 2, 3,4,5 free ; 1S S→ =                                  (74) 

( ) 1 2 11 2 1 1 2 : 3, 1,4,5 free ; 1S S S→ =
                                (75) 

( ) 2
1 2 11 1 2 1 3 : 4, 1,2,5 free ; 1S S S→ =                                 (76) 

( ) 3
1 21 1 1 2 4 : 5, 1,2,3 free ; 1S S→ =                                  (77) 

2
1 21 2 2 2 : 3 4 : 5; 1S S→ =                                       (78) 

2 1 22 1 2 1: 2 4 : 5; 1S S S→ =                                      (79) 

2
2 12 2 1 1: 2 3 : 4; 1S S→ =                                        (80) 

2
1 31 1 3 3 : 5, 3 : 4 : 5; 2S S→ =                                      (81) 

1 3 11 3 1 2 : 4, 2 : 3 : 4; 2S S S→ =                                     (82) 
2

3 13 1 1 1: 3, 1: 2 : 3; 2S S→ =                                       (83) 

4 14 1 1: 4, 1: 2 : 4, 1: 3 : 4, 1: 2 : 3 : 4, 1: 4 2 : 3; 5S S→ =                (84) 

1 41 4 2 : 5, 2 : 3 : 5, 2 : 4 : 5, 2 : 3 : 4 : 5, 2 : 5 3 : 4; 5S S→ =               (85) 

55 1: 5, 1: 2 : 5, 1: 3 : 5, 1: 4 : 5, 1: 2 : 3 : 5, 1: 3 : 4 : 5, 1: 2 : 3 : 4 : 5; 14;S→ = (86) 

The total sum obtained from the 14 S like terms on the right is equal to 
5 3 2 2 3 2 2
1 2 1 1 2 1 1 2 1 1 2 1 2 2 1 2 2 1

2 2
1 3 1 3 1 3 1 2 3 3 2 1 4 4 1 5

61 1 1 1 1 1 1 1 2 2 2 2 2 5 5 14 42 .

S S S S S S S S S S S S S S S S S S

S S S S S S S S S S S S S S S S
S

+ + + + + + +

+ + + + + + + +

= + + + + + + + + + + + + + + + = =     

(87) 

Having the contraction data in (73)-(86) it becomes easy to construct the per-
turbation terms belonging to 6N = . These terms are respectively: 

1 1 1 1 1 ,VPVPVPVPVPV→
                     (88) 

2
12 1 1 1 ,VP VPVPVPV E→ − ∆

                  
(89) 

2
11 2 1 1 ,VPVP VPVPV E→ − ∆

                  
(90) 

2
11 1 2 1 ,VPVPVP VPV E→ − ∆

                  
(91) 

2
11 1 1 2 ,VPVPVPVP V E→ − ∆

                  
(92) 

( )22 2
11 2 2 ,VPVP VP V E→ ∆

                  
(93) 

( )22 2
12 1 2 ,VP VPVP V E→ ∆

                  
(94) 

( )22 2
12 2 1 VP VP VPV E→ ∆

                   
(95) 

( )

2
2

23
1

1 1 3 ,

,

VPVPVP V E

VPVPVP V E

→ − ∆

∆
                  

(96) 
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( )

2
2

23
1

1 3 1 ,

,

VPVP VPV E

VPVP VPV E

→ − ∆

∆
                   

(97) 

( )

2
2

23
1

3 1 1 ,

,

VP VPVPV E

VP VPVPV E

→ − ∆

∆
                   

(98) 

( )

2 2
2 1

23 2
1 1

3 2 ,

  ,

VP VP V E E

VP VP V E E

→ ∆ ∆

− ∆ ∆
                (99) 

( )

2 2
1 2

2
1 1

32

2 3 ,

  ,

VP VP V E E

VP VP V E E

→ ∆ ∆

− ∆ ∆
               (100) 

( )
( )
( )

( ) ( )

2
3

3
2 1

3
1 2

34
1

4 1 2

1

1

1

VP VPV E

VP VPV E E

VP VPV E E

VP VPV E

→ − ∆

∆ ∆

∆ ∆

− ∆
                

(101) 

( )
( )
( )

( ) ( )

2
3

3
2 1

3
1 2

34
1

1 4 2

1

1

1

VPVP V E

VPVP V E E

VPVP V E E

VPVP V E

→ − ∆

∆ ∆

∆ ∆

− ∆
               

(102) 

( )
( )

( ) ( )
( )

2
4

3
1 3

23
2

3
3 1

5 5

2

1

2

VP V E

VP V E E

VP V E

VP V E E

→ − ∆

∆ ∆

∆

∆ ∆

 

( ) ( )
( )

( ) ( )
( ) ( )

24
1 2

4
1 2 1

24
2 1

45
1

1

1

1

1

VP V E E

VP V E E E

VP V E E

VP V E

− ∆ ∆

− ∆ ∆ ∆

− ∆ ∆

∆
                  

(103) 

The numbers in brackets represent the quantity of the perturbation terms in a 
given rows. 

In a similar way the results for the perturbation terms belonging to 7N =  
and 8N =  are obtained; the terms are represented in Tables 1-6. 

9. Comparison of the Present Method with an Earlier  
Recurrent Approach to the Perturbation Energy [34] 

In [34] we presented a formalism which makes a recurrent calculation of the 
Schrödinger perturbation energy possible for an arbitrary order N. The me-
thod—outlined in the present paper—is based on partitions of the number 

1N − . It seems to be more transparent and systematical than that given in [34]. 
The present Section compares the both approaches—that of [34] and that of  
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Table 1. 7N = . Perturbation terms based on the smaller size of partitions of the number 
1 6N − = . Total number of the perturbation terms in the Table:  

( ) ( ) ( ) ( ) ( ) ( )6 7 8 12 4 37+ + + + = . 

1 1 1 1 1 1 6
1 1S VPVPVPVPVPVPV= →  (1) 

2 1 1 1 1 4 2
2 1 11S S VP VPVPVPVPV E→− ∆=  (1) 

1 2 1 1 1 4 2
2 1 11S S VPVP VPVPVPV E→− ∆=  (1) 

1 1 2 1 1 4 2
2 1 11S S VPVPVP VPVPV E= → − ∆  (1) 

1 1 1 2 1 4 2
2 1 11S S VPVPVPVP VPV E→− ∆=  (1) 

1 1 1 1 2 4 2
2 1 11S S VPVPVPVPVP V E→− ∆=  (1) 

2 2 1 1 ( )22 2 2 2
2 1 11S S VP VP VPVPV E∆= →  (1) 

2 1 2 1 ( )22 2 2 2
2 1 11S S VP VPVP VPV E∆= →  (1) 

2 1 1 2 ( )22 2 2 2
2 1 11S S VP VPVPVP V E∆= →  (1) 

1 2 2 1 ( )22 2 2 2
2 1 11S S VPVP VP VPV E∆= →  (1) 

1 2 1 2 ( )22 2 2 2
2 1 11S S VPVP VPVP V E∆= →  (1) 

1 1 2 2 ( )22 2 2 2
2 1 11S S VPVPVP VP V E∆= →  (1) 

2 2 2 ( )33 2 2 2
2 1   1S VP VP VP V E− ∆= →  (1) 

3 1 1 1 3 2
3 1 22S S VP VPVPVPV E→− ∆=  (1) 

 ( )23
1VP VPVPVPV E∆→  (1) 

1 3 1 1 3 2
3 1 22S S VPVP VPVPV E→− ∆=  (1) 

 ( )23
1VPVP VPVPV E∆→  (1) 

1 1 3 1 3 2
1 3 22S S VPVPVP VPV E→− ∆=  (1) 

 ( )23
1VPVPVP VPV E∆→  (1) 

1 1 1 3 3 2
1 3 22S S VPVPVPVP V E→− ∆=  (1) 

 ( )23
1VPVPVPVP V E→ ∆  (1) 

3 2 1 2 2
3 2 1 2 12S S S VP VP VPV E E∆→ ∆=  (1) 

 ( )33 2
1VP VP VPV E∆→ −  (1) 

3 1 2 2 2
3 1 2 2 12S S S VP VPVP V E E∆→ ∆=  (1) 

 ( )33 2
1VP VPVP V E∆→ −  (1) 

2 3 1 2 2
2 3 1 1 22S S S VP VP VPV E E∆→ ∆=  (1) 

 ( )32 3
1VP VP VPV E∆→ −  (1) 

2 1 3 2 2
2 1 3 1 22S S S VP VPVP V E E∆→ ∆=  (1) 

 ( )33
1VPVPVP V E∆→ −  (1) 

https://doi.org/10.4236/wjm.2019.95009


S. Olszewski 
 

 

DOI: 10.4236/wjm.2019.95009 129 World Journal of Mechanics 

 

Continued 

1 3 2 2 2
1 3 2 2 12S S S VPVP VP V E E∆→ ∆=  (1) 

 ( )33 2
1VPVP VP V E∆→ −  (1) 

1 2 3 2 2
1 2 3 1 22S S S VPVP VP V E E∆→ ∆=  (1) 

 ( )32 3
1VPVP VP V E∆→ −  (1) 

3 3 ( )22 2
3 3 24S S VP VP V E∆= →  (1) 

 ( )23 2
1 2VP VP V E E∆→ ∆−  (1) 

 ( )22 3
2 1VP VP V E E∆ ∆→ −  (1) 

 ( )43 3
1VP VP V E∆→  (1) 

 
Table 2. 7N = . Perturbation terms based on the intermediate size of partitions of the 
number 1 6N − = . Total number of the perturbation terms:  
( ) ( ) ( ) ( ) ( ) ( )5 5 5 14 14 53+ + + + = . 

4 1 1 2 2
4 1 35S S VP VPVPV E→− ∆=  (2) 

 3
1 2VP VPVPV E E∆ ∆→  (1) 

 3
2 1VP VPVPV E E∆ ∆→  (1) 

 ( )34
1VP VPVPV E∆→ −  (1) 

1 4 1 2 2
1 4 35S S VPVP VPV E→− ∆=  (2) 

 3
1 2VPVP VPV E E∆ ∆→  (1) 

 3
2 1VPVP VPV E E∆ ∆→  (1) 

 ( )34
1VPVP VPV E∆→ −  (1) 

1 1 4 2 2
1 4 35S S VPVPVP V E= → ∆−  (2) 

 3
1 2VPVPVP V E E∆ ∆→  (1) 

 3
2 1VPVPVP V E E∆ ∆→  (1) 

 ( )34
1  VPVPVP V E∆→ −  (1) 

4 2 2 2
4 2 3 15S S VP VP V E E∆→ ∆=  (2) 

 ( )23 2
1 2VP VP V E E∆→ ∆−  (1) 

 3 2
1 2 1VP VP V E E E∆ ∆ ∆→ −  (1) 

 ( )44 2
1VP VP V E∆→  (1) 

2 4 2 2
2 4 1 35S S VP VP V E E∆→ ∆=  (2) 

 2 3
1 2 3VP VP V E E E∆ ∆ ∆→ −  (1) 

 ( )22 3
2 1  VP VP V E E∆ ∆→ −  (1) 
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Continued 

 ( )42 4
1VP VP V E∆→  (1) 

5 1 2
5 1 414S S VP VPV E→− ∆=  (5) 

 3
3 1VP VPV E E∆ ∆→  (2) 

 ( )23
2VP VPV E∆→  (1) 

 3
1 3VP VPV E E∆ ∆→  (2) 

 ( )24
1 2VP VPV E E∆→ ∆−  (1) 

 4
1 2 1VP VPV E E E∆ ∆ ∆→ −  (1) 

 ( )24
2 1VP VPV E E∆ ∆→ −  (1) 

 ( )45
1VP VPV E∆→  (1) 

1 5 2
1 5 414S S VPVP V E= → ∆−  (5) 

 3
3 1VPVP V E E∆ ∆→  (2) 

 ( )23
2VPVP V E∆→  (1) 

 3
1 3VPVP V E E∆ ∆→  (2) 

 ( )24
1 2VPVP V E E∆→ ∆−  (1) 

 4
1 2 1VPVP V E E E∆ ∆ ∆→ −  (1) 

 ( )24
2 1VPVP V E E∆ ∆→ −  (1) 

 ( )45
1VPVP V E∆→  (1) 

 
Table 3. 7N = . The 42 energy perturbation terms belonging to partition 6 1N= − . The 
time-point contractions applied in the Table are presented. The number in brackets at the 
end of each row indicates the number of the perturbation terms due to that row. Total 
number of terms in Tables 1-3: ( ) ( ) ( ) 737 53 42 132 S+ + = = . 

1: 6  2
5VP V E→− ∆  ( )5 14S→ =  

1: 2 : 6  3
1 4VP V E E∆ ∆→  ( )1 4 5S S→ =  

1: 3 : 6  2
3

3VP V E E∆ ∆→  ( )2 3 2S S→ =  

1: 4 : 6  3
3

2VP V E E∆ ∆→  ( )3 2 2S S→ =  

1: 5 : 6  4
3

1VP V E E∆ ∆→  ( )4 1 5S S→ =  

1: 2 : 3 : 6  ( )24
1 3VP V E E∆ ∆→ −  ( )2

1 3 2S S→ =  

1: 2 : 4 : 6  ( )24
1 2VP V E E∆ ∆→ −  ( )2

1 2 1S S→ =  

1: 2 : 5 : 6  4
1 3 1VP V E E E→ ∆ ∆ ∆−  ( )2 2

1 3 2S S→ =  

1: 3 : 4 : 6  4
2 1 2VP V E E E→ ∆ ∆ ∆−  ( )2 2

2 1 1S S→ =  
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Continued 

1: 3 : 5 : 6  ( )24
2 1VP V E E∆ ∆→ −  ( )2 2

2 1 1S S→ =  

1: 4 : 5 : 6  ( )24
3 1VP V E E∆ ∆→ −  ( )2

3 1 2S S→ =  

1: 2 : 3 : 4 : 6  ( )3

1 2
5VP V E E→ ∆ ∆  ( )3

1 2 1S S→ =  

1: 2 : 3 : 5 : 6  ( )25
1 2 1VP V E E E∆ ∆ ∆→  ( )3

1 2 1S S→ =  

1: 2 : 4 : 5 : 6  ( )25
1 2 1VP V E E E∆ ∆→ ∆  ( )3

1 2 1S S→ =  

1: 3 : 4 : 5 : 6  ( )35
2 1VP V E E∆→ ∆  ( )3

1 2 1S S→ =  

1: 2 : 3 : 4 : 5 : 6  ( )56
1VP V E∆→ −  ( )5

1 1S→ =  

 
Table 4. 8N = . Perturbation terms based on the lower-size partitions of the number 

1 7N − = . Total number of the perturbation terms represented in Table 4:  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )7 10 4 10 24 6 12 4 5 93+ + + + + + + × = . 

1 1 1 1 1 1 1 7
1 1S VPVPVPVPVPVPVPV= →  (1) 

2 1 1 1 1 1 5 2
2 1 11S S VP VPVPVPVPVPV E→− ∆=  (1) 

1 2 1 1 1 1 5 2
2 1 11S S VPVP VPVPVPVPV E→− ∆=  (1) 

1 1 2 1 1 1 5 2
2 1 11S S VPVPVP VPVPVPV E→− ∆=  (1) 

1 1 1 2 1 1 5 2
2 1 11S S VPVPVPVP VPVPV E→− ∆=  (1) 

1 1 1 1 2 1 5 2
2 1 11S S VPVPVPVPVP VPV E= → ∆−  (1) 

1 1 1 1 1 2 5 2
2 1 11S S VPVPVPVPVPVP V E→− ∆=  (1) 

2 2 1 1 1 ( )22 3 2 2
2 1 11S S VP VP VPVPVPV E∆= →  (1) 

1 2 1 1 2 ( )23 2 2 2
1 2 11S S VPVP VPVPVP V E∆= →  (1) 

1 1 2 1 2 ( )23 2 2 2
1 2 11S S VPVPVP VPVP V E∆= →  (1) 

1 1 1 2 2 ( )23 2 2 2
1 2 11S S VPVPVPVP VP V E∆= →  (1) 

2 1 1 1 2 ( )23 2 2 2
1 2 11S S VP VPVPVPVP V E∆= →  (1) 

2 1 2 1 1 ( )22 3 2 2
2 1 11S S VP VPVP VPVPV E∆= →  (1) 

2 1 1 2 1 ( )22 3 2 2
2 1 11S S VP VPVPVP VPV E∆= →  (1) 

1 2 2 1 1 ( )22 3 2 2
2 1 11S S VPVP VP VPVPV E∆= →  (1) 

1 1 2 2 1 ( )23 2 2 2
1 2 11S S VPVPVP VP VPV E∆= →  (1) 

1 2 1 2 1 ( )23 2 2 2
1 2 11S S VPVP VPVP VPV E∆= →  (1) 

2 2 2 1 ( )33 2 2 2
2 1 11S S VP VP VP VPV E− ∆= →  (1) 

2 2 1 2 ( )33 2 2 2
2 1 11S S VP VP VPVP V E= → − ∆  (1) 

2 1 2 2 ( )33 2 2 2
2 1 11S S VP VPVP VP V E= → − ∆  (1) 
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Continued 

1 2 2 2 ( )33 2 2 2
1 2 11S S VPVP VP VP V E− ∆= →  (1) 

3 1 1 1 1 4 2
3 1 22S S VP VPVPVPVPV E→− ∆=  (2) 

 ( )23
1VP VPVPVPVPV E∆→   

1 3 1 1 1 4 2
1 3 22S S VPVP VPVPVPV E→− ∆=  (2) 

 ( )23
1VPVP VPVPVPV E∆→   

1 1 3 1 1 4 2
1 3 22S S VPVPVP VPVPV E→− ∆=  (2) 

 ( )23
1VPVPVP VPVPV E∆→   

1 1 1 3 1 4 2
1 3 22S S VPVPVPVP VPV E→− ∆=  (2) 

 ( )23
1VPVPVPVP VPV E∆→   

1 1 1 1 3 4 2
1 3 22S S VPVPVPVPVP V E→− ∆=  (2) 

 ( )23
1VPVPVPVPVP V E∆→   

3 2 1 1 2 2 2
3 2 1 2 12S S S VP VP VPVPV E E∆ ∆= →  (2) 

 ( )33 2
1VP VP VPVPV E∆→ −   

1 3 2 1 2 2 2
1 3 2 2 12S S S VPVP VP VPV E E∆ ∆= →  (2) 

 ( )33 2
1VPVP VP VPV E∆→ −   

2 1 3 1 2 2 2
2 1 3 1 22S S S VP VPVP VPV E E∆ ∆= →  (2) 

 ( )32 3
1VP VPVP VPV E∆→ −   

3 1 2 1 2 2 2
3 1 2 2 12S S S VP VPVP VPV E E∆ ∆= →  (2) 

 ( )33 2
1VP VPVP VPV E∆→ −   

2 3 1 1 2 2 2
2 3 1 1 22S S S VP VP VPVPV E E∆ ∆= →  (2) 

 ( )32 3
1VP VP VPVPV E∆→ −   

1 2 3 1 2 2 2
1 2 3 1 22S S S VPVP VP VPV E E∆ ∆= →  (2) 

 ( )32 3
1VPVP VP VPV E∆→ −   

1 1 2 3 2 2 2
1 2 3 1 22S S S VPVPVP VP V E E∆ ∆= →  (2) 

 ( )32 3
1VPVPVP VP V E∆→ −   

1 1 3 2 2 2 2
1 3 2 2 12S S S VPVPVP VP V E E∆ ∆= →  (2) 

 ( )33 2
1VPVPVP VP V E∆→ −   

1 2 1 3 2 2 2
1 2 3 1 22S S S VPVP VPVP V E E∆ ∆= →  (2) 

 ( )32 3
1VPVP VPVP V E∆→ −   
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1 3 1 2 2 2 2
1 3 2 1 22S S S VPVP VPVP V E E∆ ∆= →  (2) 

 ( )33 2
1VPVP VPVP V E∆→ −   

2 1 1 3 2 2 2
2 1 3 1 22S S S VP VPVPVP V E E∆ ∆= →  (2) 

 ( )32 3
1VP VPVPVP V E∆→ −   

3 1 1 2 2 2 2
3 1 2 2 12S S S VP VPVPVP V E E∆ ∆= →  (2) 

 ( )33 2
1VP VPVPVP V E∆→ −   

3 2 2 ( )22 2 2 2
3 2 2 12S S VP VP VP V E E= → − ∆ ∆  (2) 

 ( )43 2 2
1VP VP VP V E∆→   

2 3 2 2 2 2 2
2 3 1 2 12S S VP VP VP V E E E∆ ∆→ ∆= −  (2) 

 ( )42 3 2
1  VP VP VP V E∆→   

2 2 3 ( )22 2 2 2
2 3 1 22S S VP VP VP V E E= → − ∆ ∆  (2) 

 ( )42 2 3
1VP VP VP V E∆→   

3 3 1 ( )22 2 2
3 1 24S S VP VP VPV E∆= →  (4) 

 ( )23 2
1 2VP VP VPV E E∆→ ∆−   

 ( )22 3
2 1VP VP VPV E E∆ ∆→ −   

 ( )43 3
1VP VP VPV E∆→   

3 1 3 ( )22 2 2
3 1 24S S VP VPVP V E∆= →  (4) 

 ( )23 2
1 2VP VPVP V E E∆− ∆→   

 ( )22 3
2 1VP VPVP V E E∆ ∆→ −   

 ( )43 3
1VP VPVP V E∆→   

1 3 3 ( )22 2 2
1 3 24S S VPVP VP V E∆= →  (4) 

 ( )23 2
1 2VPVP VP V E E∆− ∆→   

 ( )22 3
2 1VPVP VP V E E∆ ∆→ −   

 ( )43 3
1VPVP VP V E∆→   

4 1 1 1 3 2
4 1 35S S VP VPVPVPV E→− ∆=  (2) 

 3
1 2VP VPVPVPV E E∆ ∆→  (1) 

 3
2 1VP VPVPVPV E E∆ ∆→  (1) 

 ( )34
1VP VPVPVPV E∆→ −  (1) 

1 4 1 1 3 2
1 4 35S S VPVP VPVPV E→− ∆=  (2) 

 3
1 2VPVP VPVPV E E∆ ∆→  (1) 
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 3
2 1VPVP VPVPV E E∆ ∆→  (1) 

 ( )34
1VPVP VPVPV E∆→ −  (1) 

1 1 4 1 3 2
1 4 35S S VPVPVP VPV E→− ∆=  (2) 

 3
1 2VPVPVP VPV E E∆ ∆→  (1) 

 3
2 1VPVPVP VPV E E∆ ∆→  (1) 

 ( )34
1VPVPVP VPV E∆→ −  (1) 

1 1 1 4 3 2
1 4 35S S VPVPVPVP V E→− ∆=  (2) 

 3
1 2VPVPVPVP V E E∆ ∆→  (1) 

 3
2 1VPVPVPVP V E E∆ ∆→  (1) 

 ( )34
1VPVPVPVP V E∆→ −  (1) 

 
Table 5. 8N = . Perturbation terms based on the higher-size partitions of the number 

1 7N − = . Total number of the perturbation terms:  
( ) ( ) ( ) ( ) ( ) ( )6 5 2 10 2 14 3 14 2 42 204× + × + × + × + × = . 

4 2 1 2 2
4 2 1 3 15S S S VP VP VPV E E∆→ ∆=  (2) 

 ( )23 2
2 1VP VP VPV E E∆ ∆→ −  (1) 

 3 2
1 2 1VP VP VPV E E E∆ ∆→ ∆−  (1) 

 ( )24 2
1VP VP VPV E∆→  (1) 

4 1 2 2 2
4 1 2 3 15S S S VP VPVP V E E∆→ ∆=  (2) 

 ( )23 2
2 1  VP VPVP V E E∆ ∆→ −  (1) 

 3 2
1 2 1VP VPVP V E E E∆ ∆→ ∆−  (1) 

 ( )44 2
1VP VPVP V E∆→  (1) 

2 4 1 2 2
2 4 1 1 35S S S VP VP VPV E E∆→ ∆=  (2) 

 2 3
1 2 1VP VP VPV E E E∆ ∆→ ∆−  (1) 

 ( )22 3
1 2VP VP VPV E E∆→ ∆−  (1) 

 ( )42 4
1VP VP VPV E∆→  (1) 

2 1 4 2 2
2 1 4 1 35S S S VP VPVP V E E∆→ ∆=  (2) 

 ( )22 3
1 2VP VPVP V E E∆− ∆→  (1) 

 2 3
1 2 1VP VPVP V E E E∆ ∆→ ∆−  (1) 

 ( )42 4
1VP VPVP V E∆→  (1) 

1 2 4 2 2
1 2 4 1 35S S S VPVP VP V E E∆→ ∆=  (2) 
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 ( )22 3
1 2VPVP VP V E E∆− ∆→  (1) 

 2 3
1 2 1VPVP VP V E E E∆ ∆→ ∆−  (1) 

 ( )42 4
1VPVP VP V E∆→  (1) 

1 4 2 2 2
1 5 2 3 15S S S VPVP VP V E E∆→ ∆=  (2) 

 ( )23 2
2 1VPVP VP V E E∆ ∆→ −  (1) 

 3 2
1 2 1VPVP VP V E E E∆ ∆→ ∆−  (1) 

 ( )44 2
1VPVP VP V E∆→  (1) 

4 3 2 2
4 3 3 25 2 10S S VP VP V E E∆× = ∆= →  (2) 

 ( )23 2
1 2VP VP V E E∆ ∆→ −  (1) 

 3 2
2 1 2VP VP V E E E∆ ∆ ∆→ −  (1) 

 ( )34 2
1 2VP VP V E E∆ ∆→  (1) 

 ( )22 3
3 1VP VP V E E∆ ∆→ −  (1) 

 ( )23 3
2 1 1VP VP V E E E∆ ∆→ ∆  (1) 

 ( )23 3
1 2 1VP VP V E E E∆ ∆→ ∆  (1) 

 ( )54 3
1VP VP V E∆→ −  (1) 

3 4 2 2
3 4 2 32 5 10S S VP VP V E E∆× = ∆= →  (2) 

 2 3
2 1 2VP VP V E E E∆ ∆ ∆→ −  (1) 

 2 3
2 2 1VP VP V E E E∆ ∆ ∆→ −  (1) 

 ( )32 4
2 1VP VP V E E∆ ∆→  (1) 

 ( )23 2
1 3VP VP V E E∆→ ∆−  (2) 

 ( )23 3
1 1 2VP VP V E E E∆→ ∆ ∆  (1) 

 ( )23 3
1 2 1VP VP V E E E∆→ ∆ ∆  (1) 

 ( )53 4
1VP VP V E∆→ −  (1) 

5 2 2 2
5 2 4 114S S VP VP V E E∆→ ∆=  (5) 

 ( )23 2
3 1VP VP V E E∆ ∆→ −  (2) 

 ( )23 2
2 1VP VP V E E∆→ ∆−  (1) 

 ( )23 2
3 1VP VP V E E∆ ∆→ −  (2) 

 ( )34 2
2 1VP VP V E E∆ ∆→  (1) 

 ( )24 2
1 2 1VP VP V E E E∆ ∆→ ∆  (1) 

 ( )24 2
1 2 1VP VP V E E E∆→ ∆ ∆  (1) 
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 ( )55 2
1VP VP V E∆→ −  (1) 

2 5 2 2
2 5 1 414S S VP VP V E E∆→ ∆=  (5) 

 ( )22 3
1 3VP VP V E E∆→ ∆−  (2) 

 ( )2 33
1 2VP VP V E E∆ ∆→ −  (1) 

 2 3
1 3 1VP VP V E E E∆ ∆ ∆→ −  (2) 

 ( )32 4
1 2VP VP V E E∆ ∆→  (1) 

 ( )2 4
1 2 1

2VP VP V E E E∆→ ∆ ∆  (1) 

 ( )22 4
1 2 1VP VP V E E E∆ ∆→ ∆  (1) 

 ( )52 5
1VP VP V E∆→ −  (1) 

5 1 1 2 2
5 1 414S S VP VPVPV E→− ∆=  (5) 

 3
1 3VP VPVPV E E∆ ∆→  (2) 

 ( )23
2VP VPVPV E∆→  (1) 

 3
3 1VP VPVPV E E∆ ∆→  (2) 

 ( )24
1 2VP VPVPV E E∆→ ∆−  (1) 

 4
1 2 1VP VPVPV E E E∆ ∆→ ∆−  (1) 

 ( )24
2 1VP VPVPV E E∆ ∆→ −  (1) 

 ( )45
1VP VPVPV E∆→  (1) 

1 5 1 2 2
1 5 414S S VPVP VPV E→− ∆=  (5) 

 3
1 3VPVP VPV E E∆ ∆→  (2) 

 ( )23
2VPVP VPV E∆→  (1) 

 3
3 1VPVP VPV E E∆ ∆→  (2) 

 ( )24
1 2VPVP VPV E E∆→ ∆−  (1) 

 4
1 2 1VPVP VPV E E E∆ ∆→ ∆−  (1) 

 ( )24
2 1VPVP VPV E E∆ ∆→ −  (1) 

 ( )45
1VPVP VPV E∆→  (1) 

1 1 5 2 2
1 5 414S S VPVPVP V E→− ∆=  (5) 

 3
1 3VPVPVP V E E∆ ∆→  (2) 

 ( )23
2VPVPVP V E∆→  (1) 

 3
3 1VPVPVP V E E∆ ∆→  (2) 

 ( )24
1 2VPVPVP V E E∆− ∆→  (1) 
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 4
1 2 1VPVPVP V E E E∆ ∆→ ∆−  (1) 

 ( )24
2 1VPVPVP V E E∆ ∆→ −  (1) 

 ( )45
1VPVPVP V E∆→  (1) 

6 1 2
6 1 542S S VP VPV E→− ∆=  (14) 

 3
4 1VP VPV E E∆ ∆→  (5) 

 3
3 2VP VPV E E∆ ∆→  (2) 

 3
2 3VP VPV E E∆ ∆→  (2) 

 3
1 4VP VPV E E∆ ∆→  (5) 

 ( )24
3 1VP VPV E E∆ ∆→ −  (2) 

 ( )24
2 1VP VPV E E∆→ ∆−  (1) 

 ( )24
1 3VP VPV E E∆→ ∆−  (2) 

 ( )24
1 2VP VPV E E∆ ∆→ −  (1) 

 ( )24
1 2VP VPV E E∆ ∆→ −  (1) 

 ( )24
1 3VP VPV E E∆→ ∆−  (2) 

 ( )35
2 1VP VPV E E∆ ∆→  (1) 

 ( )35
2 1VP VPV E E∆ ∆→  (1) 

 ( )35
1 2VP VPV E E∆ ∆→  (1) 

 ( )35
1 2VP VPV E E∆ ∆→  (1) 

 ( )56
1VP VPV E∆→ −  (1) 

1 6 2
1 6 542S S VPVP V E= → ∆−  (14) 

 3
1 4VPVP V E E∆ ∆→  (5) 

 3
2 3VPVP V E E∆ ∆→  (2) 

 3
3 2VPVP V E E∆ ∆→  (2) 

 3
4 1VPVP V E E∆ ∆→  (5) 

 ( )24
1 3VPVP V E E∆→ ∆−  (2) 

 ( )24
1 2VPVP V E E∆ ∆→ −  (1) 

 ( )24
1 3VPVP V E E∆→ ∆−  (2) 

 ( )24
2 1VPVP V E E∆→ ∆−  (1) 

 ( )24
2 1VPVP V E E∆→ ∆−  (1) 

 ( )24
3 1VPVP V E E∆ ∆→ −  (2) 
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 ( )35
1 2VPVP V E E∆ ∆→  (1) 

 ( )35
1 2VPVP V E E∆ ∆→  (1) 

 ( )35
2 1VPVP V E E∆ ∆→  (1) 

 ( )35
2 1VPVP V E E∆ ∆→  (1) 

 ( )56
1VPVP V E∆→ −  (1) 

 
Table 6. 8N = . Perturbation terms due to the highest partition number of 1 7N − = . 
Total number of the perturbation terms obtained in the present Table:  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 742 3 14 5 14 9 5 5 4 6 132 S+ × + + + + + + + = = . Total number of the 

perturbation terms in Tables 4-6: ( ) ( ) ( ) 893 204 132 429 S+ + = = . 

1: 7  2
6VP V E→− ∆  ( )6 42S→ =  

1: 2 : 7  3
1 5VP V E E∆ ∆→  ( )1 5 14S S→ =  

1: 3 : 7  3
2 4VP V E E∆ ∆→  ( )2 4 5S S→ =  

1: 4 : 7  3
3 3VP V E E∆ ∆→  ( )3 3 4S S→ =  

1: 5 : 7  3
4 2VP V E E∆ ∆→  ( )4 2 5S S→ =  

1: 6 : 7  3
5 1VP V E E∆ ∆→  ( )5 1 14S S→ =  

1: 2 : 3 : 7  ( )24
1 4VP V E E∆ ∆→ −  ( )2

1 4 5S S→ =  

1: 2 : 4 : 7  4
1 2 3VP V E E E→ ∆ ∆ ∆−  ( )1 2 3 2S S S→ =  

1: 2 : 5 : 7  4
1 3 2VP V E E E→ ∆ ∆ ∆−  ( )1 3 2 2S S S→ =  

1: 2 : 6 : 7  4
1 4 1VP V E E E→ ∆ ∆ ∆−  ( )1 4 1 5S S S→ =  

1: 3 : 4 : 7  4
1 2 3VP V E E E→ ∆ ∆ ∆−  ( )1 2 3 2S S S→ =  

1: 3 : 5 : 7  4
2 2 2VP V E E E→ ∆ ∆ ∆−  ( )3

2 1S→ =  

1: 3 : 6 : 7  4
2 3 1VP V E E E→ ∆ ∆ ∆−  ( )2 3 1 2S S S→ =  

1: 4 : 5 : 7  4
3 1 2VP V E E E→ ∆ ∆ ∆−  ( )3 1 2 2S S S→ =  

1: 4 : 6 : 7  4
3 2 1VP V E E E→ ∆ ∆ ∆−  ( )3 2 1 2S S S→ =  

1: 5 : 6 : 7  ( )24
4 1VP V E E∆ ∆→ −  ( )2

4 1 5S S→ =  

1: 2 : 3 : 4 : 7  ( )35
1 3VP V E E→ ∆ ∆  ( )3

1 3 2S S→ =  

1: 2 : 3 : 5 : 7  ( ) ( )2 25
1 2VP V E E∆→ ∆  ( )2 2

1 2 1S S→ =  

1: 2 : 3 : 6 : 7  ( )25
1 2 1VP V E E E∆ ∆ ∆→  ( )3

1 3 2S S→ =  

1: 2 : 4 : 5 : 7  5
1 2 1 2VP V E E E E∆ ∆ ∆ ∆→  ( )2 2

1 2 1S S→ =  

1: 2 : 4 : 6 : 7  ( )25
1 2 1VP V E E E∆→ ∆ ∆  ( )2 2

1 2 1S S→ =  
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1: 2 : 5 : 6 : 7  ( )25
1 3 1VP V E E E∆ ∆→ ∆  ( )2

1 3 1 2S S S→ =  

1: 3 : 4 : 5 : 7  ( )25
2 1 2VP V E E E∆→ ∆ ∆  ( )3

2 1 2 1S S S→ =  

1: 3 : 4 : 6 : 7  5
2 1 2 1VP V E E E E∆ ∆ ∆ ∆→  ( )2 1 2 1 1S S S S→ =  

1: 3 : 5 : 6 : 7  ( ) ( )2 25
2 1VP V E E∆→ ∆  ( )2 2

2 1 1S S→ =  

1: 4 : 5 : 6 : 7  ( )35
3 1VP V E E∆→ ∆  ( )3

3 1 2S S→ =  

1: 2 : 3 : 4 : 5 : 7  ( )46
1 2VP V E E∆ ∆→ −  ( )4

1 2 1S S→ =  

1: 2 : 3 : 4 : 6 : 7  ( )36
1 2 1VP V E E E→− ∆ ∆ ∆  ( )3

1 2 1 1S S S→ =  

1: 2 : 3 : 5 : 6 : 7  ( ) ( )2 26
1 2 1VP V E E E∆ ∆ ∆→ −  ( )2 2

1 2 1 1S S S→ =  

1: 2 : 4 : 5 : 6 : 7  ( )36
1 2 1VP V E E E∆ ∆ ∆→ −  ( )3

1 2 1 1S S S→ =  

1: 3 : 4 : 5 : 6 : 7  ( )46
2 1VP V E E∆ ∆→ −  ( )4

2 1 1S S→ =  

1: 2 : 3 : 4 : 5 : 6 : 7  ( )67
1VP V E∆→  ( )6

1 1S→ =  

 
actual paper—for an example. To this purpose we choose the calculation of 6N =  
being the most developed case considered in Appendix of [34]. The mentioned 
data of Appendix are next compared with the corresponding data due to the 
present method; see Table 7. 

On the left-hand side of Table 7 are presented the symbols of the perturbation 
terms applied in the partition notation of the present paper, on the right-hand 
side of Table 7 the method represented in Appendix of [34] is applied. 

There exists a full agreement of the data obtained in the present paper with 
those taken from Appendix of [34]. 

10. Summary: General Properties of the Scale of Time Suitable 
to Calculate the Schrödinger Perturbation Energy 

One of the fundamental processes of quantum mechanics is a change of a given 
system upon the action of some perturbation potential which—in its charac-
ter—can be independent of time, but is dependent solely on the particle coordi-
nates. To calculate the result of such a change acting on a non-degenerate quan-
tum system, the Schrödinger perturbation formalism—represented by the sets of 
energy terms labelled by orders N—is required. In principle no time approach, 
or time parameter, should be used to this purpose. 

We are guided, however, by the Leibniz idea that a suitable arrangement of 
the physical events along a time scale can be helpful in an analysis of any system 
change, including the perturbation effect. Consequently, by assuming that a 
change of a system—also due to the action of a time-independent perturbation 
potential—requires some interval of time, a sequence and origin of the time 
moments entering such interval can be of importance. 

In principle there exist many ways according to which the necessary sets of  
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Table 7. Comparison of the energy terms calculated in Appendix of [34] with those ob-
tained in the present paper: an example giving the terms belonging to the order 6N = . 
The first 14 terms presented in the right-hand side column are calculated—according to 
[34]—automatically on the basis of the results obtained for 5N = . 

Number of the term 
Partition symbol applied  
in the present method 

Energy result obtained in [34] 

1 1 1 1 1 1 VPVPVPVPVPV  

2 2 1 1 1 2
1VP VPVPVPV E∆−  

3 3 1 1 (1st term) 2
2VP VPVPV E∆−  

4 3 1 1 (2nd term) ( )23
1VP VPVPV E∆  

5 1 2 1 1 2
1VPVP VPVPV E∆−  

6, 7 4 1 (1st term) 2
3VP VPV E∆−  

8 4 1 (2nd term) 3
1 2VP VPV E E∆ ∆  

9 4 1 (3rd term) 3
2 1VP VPV E E∆ ∆  

10 4 1 (4th term) ( )34
1VP VPV E∆−  

11 1 3 1 (1st term) 2
2VPVP VPV E∆−  

12 1 3 1 (2nd term) ( )23
1VPVP VPV E∆  

13 1 1 2 1 2
1VPVPVP VPV E− ∆  

14 2 2 1 2 2
1VP VP VPV E∆  

15-19 5 (1st term) 2
4VP V E− ∆  

20, 21 5 (2nd term) 3
1 3VP V E E∆ ∆  

22 5 (3rd term) ( )23
2VP V E∆  

23, 24 5 (4th term) 3
3 1VP V E E∆ ∆  

25 5 (5th term) ( )24
1 2VP V E E− ∆ ∆  

26 5 (6th term) 4
1 2 1VP V E E E∆ ∆ ∆−  

27 5 (7th term) ( )24
2 1VP V E E∆− ∆  

28 5 (8th term) ( )45
1VP V E∆  

29, 30 1 4 (1st term) 2
3VPVP V E− ∆  

31 1 4 (2nd term) 3
1 2VPVP V E E∆ ∆  

32 1 4 (3rd term) 3
2 1VPVP V E E∆ ∆  

33 1 4 (4th term) ( )44
1VPVP V E∆  

34 1 1 3 (1st term) 2
2VPVPVP V E∆−  

35 1 1 3 (2nd term) ( )23
1VPVPVP V E∆  
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36 2 3 (1st term) 2 2
1 2VP VP V E E∆ ∆  

37 2 3 (2nd term) ( )32 3
1VP VP V E∆−  

38 1 1 1 2 3
1VPVPVPVP V E∆−  

39 2 1 2 ( )22 2
1VP VPVP V E∆  

40 3 2 (1st term) 2 2
2 1VP VP V E E∆ ∆  

41 3 2 (2nd term) ( )33 2
1VP VP V E∆−  

42 1 2 2 ( )22 2
1VPVP VP V E∆  

 
terms representing the perturbation effect can be calculated. But we find that a 
circular scale of time—accompanied by the time-point contractions on it—can 
represent in full the necessary terms belonging to a particular order of the per-
turbation energy. These terms become obtainable on the basis of the time scale 
in an almost automatic way. Only the change of the perturbation or-
der—associated with a change of the number of time points considered on the 
scale—implies a progressive action attributed to time. 

A full presentation of the perturbation terms has been done for orders 7N =  
and 8N = ; the terms of the lower N are accessible in the literature presented 
before [25]-[34]. 

At the first sight it seems that the paper has only a purely mathematical back-
ground. In fact the aim is to solve a definite Schrödinger differential equation, 
but the way to do that is to solve first a presumably more simple equation. Next 
the solutions of that more simple equation should be combined into those be-
longing to a more complicated problem. 

Both equations are assumed to be different by a potential change independent 
of time. In fact the time parameter neither enters the actual perturbation equa-
tion, nor the equation representing a former more simple problem. Nevertheless 
the change of the potential—equivalent to the change of the Hamiltonian oper-
ator between the unperturbed and perturbed equations—occupies some time. 
We assume the time of the potential change as negligibly small. A much more 
longer time, therefore of a non-negligible size, is expected to be occupied as an 
effect of the original potential change. This is so because the perturbed, i.e. orig-
inally unstable system, should wait to occupy one of its stationary states. In effect 
the time, required to make the perturbed system equivalent to a stationary object, 
can be long. An estimate of the size of that interval is beyond of our ability. Ma-
thematically however, the both states, unperturbed and perturbed one, are both 
accessible and can be defined without any reference to the notion of time. So a 
question may arise what is the role of time—if any such role does exist—in the 
perturbation theory? 

With the absence of any time intervals in the formalism, the answer is that 
time is an ordering parameter. Moreover this role is rather of a gradual character 
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because it does not concern the perturbation process as a whole, but is decisive 
in the successive steps of that process. In fact the perturbation effect can be se-
parated into parts called the perturbation orders. Any order N is characterized 
by: 1) a definite number of the Huby-Tong kinds of the perturbation terms spe-
cified by the formula (21); 2) a constant number of 1N −  terms P and number 
of N terms V entering any perturbation term belonging to the order N. 

But beyond of the number of terms characteristic for a given N, an important 
role plays the sequence of the “collision” events of an unperturbed system with 
the perturbation potential. This sequence follows a closed scale of time equiva-
lent to a topological circle. Any scale representing some Nth perturbation order 
has N time points on it. Among these points only one—called the beginning-end 
point—is free from contractions. Other time points on the scale, being 1N −  in 
their number, can be submitted to contractions in a definite way. The contrac-
tions give the corresponding (closed) loops of time discussed in Sec. 4 and con-
sequently the expected corrections to energy. 

As an effect of contractions variable with N, the number of kinds of the per-
turbation terms increased by a single term due to an uncontracted loop of time 
characteristic for a given N, becomes equal to the number NS  presented in the 
formula (21). The arrangement of the time points in the contractions is provid-
ing us with the side loops of time corresponding to contractions. After combin-
ing the energy contributions due to the side loops with those given by the main 
loop of time, we arrive at the proper Schrödinger perturbation terms for energy 
of a given order N. No supplementary calculations are required to attain that 
purpose. 

In fact the shape of the time scale, together with the time-point contractions 
done on it, play a decisive role in calculating all kinds of the Schrödinger per-
turbation terms entering a given order N. This result is not proved in an exact 
way but obtained in course of the systematic energy calculations belonging to the 
individual N’s. 

11. A Philosophical Background Concerning the Present Results 

A philosophical background of the results obtained in the paper seems to be 
twofold. The first aim was to obtain a general look on the shape of the time scale. 
A principal point becomes here to get a real relevance of the question of the di-
rection of time, or more simply the problem of sequence of the time events, to 
some physical process [35]. Let us note here an opinion that the theory of the 
whole world time is a redundant concept—one only needs a knowledge of 
world’s possible configurations [36]. 

A reply in the present case is that if the scales belonging to individual N are 
considered, their shape is evidently a closed line. A characteristic circular-like 
character of the time scale suitable to calculations of the perturbation energy for 
a given N seems to be not a unique property in physics; see e.g. Rey [37] and 
Zawirski quoted in [38]. A much discussed reference which can be cited here is 
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the paper by Gödel [39]. In an analysis of cosmological solutions concerning the 
Einstein’s field equations for gravitation he remarked that: (a) it is not possible 
to assign a time coordinate t to each space-time point in such a way that t always 
increases, if one moves in a positive time-like direction, and this holds for both 
for an open and a closed time coordinate; (b) every world line of matter occur-
ring in the solution is an open line of an infinite length which approaches any of 
its preceding points again; (c) there also exist closed time-like lines. 

In fact a total scale of time applied in the present paper—because of an in-
creasing number of collisions with the potential perV —does increase gradually 
with N. This makes the second step of the time way, i.e. that due to an increase 
of N, similar to an infinite linear scale referred in (1). 
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