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Abstract 
 
A new technique based on Tikhonov regularization, for converting time-concentration data into concentra-
tion-reaction rate data, was applied to a novel pyrolysis investigation carried out by Susu and Kunugi [1]. 
The reaction which involves the thermal decomposition of n-eicosane using synthesis gas for K2CO3-cata-
lyzed shift reaction was reported to be autocatalytic. This result was confirmed by applying Tikhonov regu-
larization to the experimental data (conversion vs. time) presented by Susu and Kunugi [1]. Due to the 
ill-posed nature of the problem of obtaining reaction rates from experimental data, conventional methods will 
lead to noise amplification of the experimental data. Hence, Tikhonov regularization is preferably employed 
because it is entirely independent of reaction rate model and it also manages to keep noise amplification un-
der control, thus, leading to more reliable results. This is shown by the agreement of the kinetic parameters 
obtained using the resulting conversion-reaction rate profile, with the Ostwald-type process for autocatalysis 
suggested by Susu and Kunugi [1]. 
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1. Introduction 
 

In the investigation of the kinetics of chemically reacting 
systems, it is often necessary to convert experimental 
time-concentration data into concentration-reaction rate 
data in order to determine the kinetic parameters of pos- 
tulated reaction rate models. This has been described as 
an ill-posed problem in the sense that if inappropriate 
methods are used, the noise in the original data will be 
amplified leading to unreliable results. One of such pro- 
cedures commonly used is that of direct numerical dif- 
ferentiation of the experimental data which amplifies the 
unavoidable noise in the experimental data [2]. Another 
technique attempts to integrate the rate equations in order 
to obtain concentration in terms of time and the unknown 
parameters. The unknown parameters are then deter- 
mined by matching the resulting time-concentration pro- 
file with the experimental data. Unfortunately, this tech- 
nique usually results in complex time-concentration pro- 
files in which the unknown parameters are so lumped up 
to the extent that they cannot be determined to a reason- 
able degree of accuracy. 

Recently, Yeow et al. [2] showed that Tikhonov regu- 
larization is a reliable procedure for converting experi- 
mental time-concentration data into concentration-reac- 
tion rate data. This procedure has been successful in 
keeping noise amplification under control and it also has 
the added advantage in that it does not require an as- 
sumed model for the reaction of interest. Having ob- 
tained the concentration-reaction rate data by Tikhonov 
regularization, the kinetic parameters in the rate equa- 
tions are readily obtained by directly fitting these equa- 
tions into the concentration-reaction rate curves. Thus, 
the kinetic parameters are thereby determined with rela- 
tive ease and reliability. 

Curve-fitting techniques are employed to estimate the 
kinetic parameters in the rate equations. These are nu- 
merical optimization techniques which are usually im- 
plemented by suitable commercial software such as 
Mathematica. The optimization technique used in the 
present investigation is the flexible tolerance search 
method of Palviani and Himmelblau [3] which was im- 
plemented by a computer programme.  

In this paper, Tikhonov regularization is applied to the 
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kinetic data reported by Susu and Kunugi [1], in which 
n-eicosane was thermally decomposed using synthesis 
gas with 2 3 -catalyzed shift reaction in a stainless 
steel batch reactor. Since Tikhonov regularization tech- 
nique is entirely independent of reaction rate models (or 
reaction mechanism), it can be used as a check on the 
applicability of the postulated reaction mechanism for 
the initial decomposition reaction and the autocatalytic 
reaction. The experimental data of the reported pyrolysis 
investigation were presented in form of conversion of 
n-eicosane vs. time at a total initial pressure of 3.9 × 103 
kPa and at three different temperatures of 425˚C, 440˚C 
and 450˚C. Total n-eicosane conversion was found to be 
autocatalytic, a phenomenon which was attributed to the 
enhancement of the decomposition reaction due to the 
participation of allyl radicals in a new chain mechanism. 
Susu [4] further proposed free radical mechanism for the 
primary decomposition reaction and the autocatalytic 
reaction. The primary reaction was suggested to be first 
order and the activation energy of the autocatalytic reac- 
tion was found to 105 

K CO

kJ mol , much lower than the 
activation energy of the initial decomposition reaction 
which would be of the order of C-C bond energy. If in- 
deed these arguments are supported by the kinetic pa- 
rameters obtained through the use of Tikhonov regulari- 
zation technique, it could be used to validate the pro- 
posed reaction mechanism for the autocatalytic reaction. 
 
2. The Governing Equation 

 
Generally, reaction rate  can be expressed in terms 
of concentration  as: 

 r t
 c t

   d

d

c t
r t

t
                  (1) 

which can be rewritten as: 

    0' 0
' d '

t

t
c t r t t c


             (2) 

where 0  is the initial concentration. Equation (2) is a 
Volterra integral equation for the unknown reaction rate 

 and initial concentration 0  if this quantity is not 
measured directly or if the experimental measurement is 
considered to be unreliable. This is an integral equation 
of the first kind. The mathematical nature of this equa- 
tion shows that the problem of obtaining 

c

 r t c

 r t  is an ill- 
posed problem in the sense that if inappropriate methods 
are used, the noise in the experimentally measured time- 
concentration data will be amplified leading to inaccurate 
results [5]. 

Instead of solving Equation (2) directly for  r t , this 
equation, can be integrated by part as follows: 

Given a function  f t  such that 

   d

d

r t
f t

t
                 (3) 

Integrating the RHS of Equation (2) by parts gives 

     
' 0' 0 ' 0

' d ' ' ' 'd '
t tt

tt t
r t t t r t t r t

 
         (4) 

Substituting for  from Equations (3), we have d ( ')r t

     
' 0 ' 0' 0

' d ' ' ' ' ' d '
tt t

t tt
r t t t r t t f t t

 
     (5) 

Combining Equations (2) and (5), we have 

      0' 0 ' 0
' ' ' ' d '

ttC

t t
c t t r t t f t t c

 
        (6) 

where the superscripts  and C M  are used to distin- 
guish between the computed concentration  and the 
experimentally measured concentration 

Cc
Mc . 

      0' 0
' ' d '

tC

t
c t tr t t f t t c


          (7) 

From Equation (3) 

    0' 0
' d '

t

t
r t f t t r


              (8) 

where  is the initial rate of reaction.  0

Combining Equations (7) and (8), we have 
r

 0 0' 0 ' 0
( ) ( ')d ' ' ( ')d '

t tC

t t
c t t f t t r t f t t c

 
       (9) 

  0' 0
( ) ' ( ')d '

tC

t
c t t t f t t c tr

 0        (10) 

Equation (10) is the governing equation and the start- 
ing point of this investigation. It can be regarded as the 
Volterra integral equation of the first kind to be solved 
for the unknown function  f t  and the constants 0  
and 0 . From the way this equation was obtained it is 
clear that it is independent of reaction mechanism. 

c
r

Given the values of  f t , 0  and 0 , c r  r t  and 
 c t  can be computed by direct numerical integration. 

Since numerical integration does not suffer from noise 
amplification, the  r t  thus obtained is expected to be 
relatively free from the influence of experimental noise 
[2]. 
 
3. Discretization of the Volterra Integral 

Equation 
 

In discretized form Equation (10) becomes 

   0 0
0

'
j i

j

t t
C
i i ij i j

t

c t c t r t t f t
 

 

 j          (11) 

where, 1, 2, , Di N  , and 1, 2, , Kj N  . 

DN  is the number of data points, and KN

, ,
 is the 

number of discretization points. 1 2 3, ,
KNf f f f，  are 

the discretized  f t . The independent variable 0 't  
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maxt  is divided into KN  uniformly spaced discretiza- 
tion points with step size  max' 1Kt t N   ) , where 

max DNt  t  is the largest  in the data set. it ij  is the 
coefficient arising from the numerical scheme used to 
approximate the integral in Equation (10). For Simpson’s 
1 3  rule, used throughout this investigation, 2 3ij   
for odd j (except 1 1 3i  ), and 4 3ij   for even j. 

The deviation of  from Cc Mc  is given by 

 
0

j it t
M

i i ij i j jc t t f




  0 0ic t r 

i ic C c 

iB 

ij ij i

't
 

  
 jt




 

0 0iB r
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    (13) 

0
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j
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t

A f
 

 

    j             (14) 

where  and  and, 1iC

 'jA t t 

r t

' ,

t 

0 fo

               (15) 

'i t j                 (16) 

, 1,2it i  ,3, , N D  are the times at which the concentra- 
tion is measured and 1, 2,3, ,j KN 

0 't t 
t j

c

ij

1

 are the uni- 
formly spaced discretized time . max

In matrix notation Equation (14) can be rewritten as 

0 0c r  C B AM 

0

j i

j

t t

t

 

 

 A

N 

f            (17) 

where, 

( )i jt t t '             (18) 

C  and  are  column vectors, B D

A  is a D KNN   matrix of coefficient of the un-  

known column vector 1 2 3, , , ,
KNf f f f

T
   f  . Since  

KN  generally exceeds the number of data points DN , 
A  is not a square matrix and Equation (14) cannot be in- 

verted to give a unique , 0  and 0 . Instead, these un- 
knowns are selected to minimize the sum of squares of 

f c r

i , 

 


2
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0 0          

T

i c r

c r

    
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
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     (19) 

However, because of the noise in the experimental 
data, minimizing    will not in general result in a 
smooth  f t . Hence, to ensure smoothness, additional 
conditions have to be imposed, which is the minimize- 
tion of the sum of squares of the second derivative 

2 2d 'td f at the internal discretization points. In terms of 
the column vector f , this condition takes on the form of 
minimizing 

   
22

2

d

d
j

f

t

 
 
 

1

2

kN
T T T

j





  f f f f        (20) 

where   is the tri-diagonal matrix of coefficients arising 
from the finite difference approximation of 2d d '2f t  [2] 
and is given by 

 2

1 2 1

1 2 1

1 2 1
1

. . . . . . .
'

. . . . . . .

1 2 1

1 2 1

t
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     
 

 
  

      (21) 

 
4. Tikhonov Regularization 

 
In Tikhonov regularization [5] instead of minimizing 

T  and T Tf f  separately, a linear combination of 
these two quantities T T T     R f f is minimized. 
  is an adjustable weighting/regularization factor that 
controls the extent to which the noise in the kinetic data 
is being filtered out. Minimizing  requires the fol- 
lowing conditions to hold: 

R

0
jf





R

, 1, 2,3, , Kj   N        (22) 

0

0
c





R

                      (23) 

0

0
r





R

                      (24) 

These give rise to a set of linear algebraic equations 
for , 0  and 0  (assuming that both initial condi-
tions are known). It can be shown [6] that the ,  
and  that satisfy Equations (22)-(24) are given by:  

f

0r

c r
f 0c

  1
' ' ' ' ' 'T T T


 f cA A A  M          (25) 

where  denotes the column vector  

1 2 0 0K

'f

3, , f , , , ,
T

Nf f f c r  
f '

 incorporating  and 0  
into .  is the composite matrix 

0c
, ,

r
A  A C B  derived 

from Equations (15), (16) and (18) to reflect the inclu- 
sion of 0  and  in . Similarly, c 0r 'f '  is the com- 
posite matrix  , ,0 0 , where  is a 0  2 1KN  

r
 

column vector of 0 to allow for the fact that 0  and 0  
play no part in the smoothness condition in Equation (20) 
(Yeow et al., 2003). Equation (25) is the operating equa- 
tion of Tihkonov regularization computation. 

c

 
5. Implementation of the Computational 

Steps 
 

The implementation of this procedure based on Tikhonov 
regularization involves the generation of large matrices 
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and thus requires the use of computer programmes or 
suitable commercial software. In the present investiga- 
tion, FORTRAN programmes were used to generate the 
matrices arising from Tikhonov regularization and MAT- 
LAB was used to perform the matrix operations.  

Given any experimental time-concentration data, the 
first step is to divide the independent variable max0 't t   
into uniformly spaced discretization points KN  with 
step size max' ( Kt t N  1) . Then, matrix A  ( ijA ) 
is determined from Equations (16) and (18) and com-
bined with the column matrices  and C  to give the 
composite matrix  in Equation (25). Similarly, the 
composite matrix

B
A

'  is obtained by combining matrix  , 
given by Equation (21), with the column vector . In 
order to simplify these computations, FORTRAN pro-
grammes were developed to generate matrices 

0

'A  and 
  directly from experimental data. The experimental 
time-concentration data were inputs for these pro-
grammes and the outputs were matrices 'A  and  . 
These matrices are usually large in size depending on the 
values of DN  and KN . In the present investigation, 

DN  is 6 and KN  was chosen to be 21. However, larger 
values of KN  may be used for better behaved smooth 
functions for  r t  and .  Cc t

The next step is the solution of Equation (25) for val- 
ues of  by simple matrix operations using MATLAB 
or any other commercial software. These values of  
are then substituted into the governing Equation (10) to 
give the concentrations  and also into the Equa- 
tion (8) to the give the reaction rates 

'f
'f

 Cc t
 r t . Since  f t  

is known at a large number of closely spaced discretiza- 
tion points, the integration for  and  is car- 
ried out numerically to give well-behaved smooth func- 
tions. FORTRAN programmes were generated from 
Simpson’s algorithm for performing this task. The values 
of  were inputs for these programmes while 

 r t  Cc t

'f  r t  
and  were the outputs. These computational steps 
are summarized in Figure 1. 

( )Cc t

 
6. Choice of Regularization  

Parameter   λ
 

The regularization parameter   is an adjustable weighting 
/regularization factor that controls the extent to which the 
noise in the kinetic data is being filtered out. It balances 
the two requirements on  f t : 

1) Fitting the experimental data. 
2) Remaining as smooth as possible. 
A large   will give a smooth  f t  but at the ex- 

pense of the goodness of fit of the kinetic data and vice 
versa. The most appropriate value of   depends on factors 
such as: 

1) The noise level in the experimental data. 
2) The number of data points DN . 
3) The number of discretization points KN . 
4) The numerical schemes used to approximate the in- 

tegral in Equation (10) and the second derivative in 
Equation (20). 

  is neither a property of the reaction under consid-
eration nor a constant determined by the concentration 
measurement technique or instrument employed [3]. A 
suitable choice of the regularization parameter   has to 
be provided by the user in order to apply Tikhonov regu- 
larization. In the present investigation, this choice has 
been guided by the simple expectation that the average 
and maximum deviation between  and Cc Mc  must be 
physically realistic i.e. they must be comparable with the 
estimated magnitude of the error bars of the kinetic data 
while ensuring that the resulting reaction rate curve is 
sufficiently smooth [3]. This is otherwise referred to as 
the Morozov Principle [5]. This principle was applied 
throughout this investigation for locating the appropriate 
 . The value of   that gave the minimum deviation 
between  and Cc Mc  was chosen. It was also observed 
that as long as   is of the appropriate order of magni-
tude, changes of   within this range do not greatly 
affect the final results. There are alternative methods for 
selecting   such as the practical L-curve method [7] or 
the statistically rigorous method of Generalized Cross 
Validation [8]. 

 
7. Parameter Estimation and Optimization 

Technique 
 
Estimating the kinetic parameters of a rate model is a 
very important aspect of any kinetic investigation. This 
can be accomplished by least-square fitting of the rate 
equation into the concentration-reaction rate curve. Sev- 
eral numerical minimization techniques have been de- 
veloped to perform this task, including, simulated an- 
nealing, random search, Nelder-Mead simplex method 
and differentiation evolution [9]. All these minimization 
computations entail the assumption of initial guesses and 
can be performed using the commercial software Mathe- 
matica. 

The general objective in optimization is to choose a set 
of values of variables (or parameters) subject to the 
various constraints that produce the desired optimum 
response for the chosen objective function [5]. For the 
flexible tolerance method [3] used in this investigation, 
the objective function is the sum of squares of residuals 
between experimental and predicted rates of reaction. 

 2

1

n
calc obs

i i
i

S r r


               (26) 
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Figure 1. Schematic diagram for Tikhonov regularization solution technique. 
 

The smaller the value of , the better the model and 
the more reliable the values of the kinetic parameters 
thus obtained. This method incorporates portions of the 
polyhedron method with the additional advantage of not 
restricting intermediate iteration to the feasible region. 
The method used here is the unweighted least square 
method [10] which is based on the polyhedron method of 
Nelder and Mead. This method alters the shape of the 
simplex to suit local topology. The tolerance criterion is 
reduced within the region of an optimum till it reaches a 
preset small value. This flexible tolerance method was 

implemented by a FORTRAN programme. The pro- 
gramme uses initial guesses to compute the reaction rates 
and then minimizes the sum of squares of errors (Equa- 
tion (26)) between observed and calculated rates. 

S

 
8. Reaction Mechanism and Rate Models 

 
For the initial first-order chain sequence the following 
free radical mechanism was proposed for the decomposi- 
tion of n-eicosane with a C-C bond scission at the  - 
isomer of iso-eicosane as the initiation step [4]. 
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3

3

3

6

3

Initiation 

   
 

3 2 3162

1
3 3 2 16

CH CH CH CH

CH +H CCH CH CH          (27) 

Propagation 

 
 

3 3 2 318

2
4 3 2 17

CH +CH CH CH

CH +H CCH CH CH



        (28) 

 
 

3 2 317

3
3 2 2 2 15

H CCH CH CH

H CCH=CH +CH CH CH



    (29) 

 
 

4 2 2 315

4
3 3 2 15

CH +CH CH CH

CH +H C CH CH



            (30) 

Termination 
5

3 22CH C H                (31) 

 
   

3 3 2 316

6
3 2 162

CH +H CCH CH CH

CH CH CH CH

 
          (32) 

Based on this mechanism the overall reaction rate was 
given as: 

    
1 2

1 220 1
2 20

5

d

d

nC k
k iC n

t k

 
   

 
20C     (33) 

This rate expression is considered as first order be- 
cause the concentration of iso-eicosane  20iC  was 
constant throughout the decomposition reaction. The 

’s are the rate constants in . k 1hr

For the new second-order chain sequence resulting 
from the production of allyl radicals from propylene the 
following mechanism was proposed by Susu [4]. 

Initiation 
9

3 6 3 3 5 4C H +CH C H +CH           (34) 

Propagation 

 
 

3 5 3 2 318

10
3 6 3 2 317

C H +CH CH CH

C H +H CCH CH CH



          (35) 

 
 

3 2 317

11
3 5 3 2 315

H CCH CH CH

C H +CH CH CH



            (36) 

Termination 
12

3 3 5 4CH +C H C H 
8              (37) 

The overall rate expression for this new mechanism 
was given as: 

   20 10 12
3 6 20

9

d C
C H C

d

n k k
n

t k
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1

       (38) 

This is a second-order rate model where the ’s are 
the rate constants in . In the manner of 

Ostwald, the maximum rate at the inflection point was 
equated to 

k
3 1cm gmol hr  

 2
4 1k    where k k   . k  is the 

first-order rate constant of the decomposition reaction 
and k  is the bimolecular rate constant of the second- 
order reaction. For autocatalysis to occur, 1   and 
the second-order rate constant is obtained from the 
maximum rate. Therefore, a change in reaction rate from 
first to second order such that  should explain 
the autocatalytic decomposition reaction in an Ostwald- 
type process [11]. 

k k 

It is necessary to express the rate models in terms of 
conversion  X t  of n-eicosane since the experimental 
data is presented in form of  X t  vs. time.  X t  is 
related to the instantaneous concentration  20Cn  and 
initial concentration  20Cn

0
 by      20 20 0

Therefore, in terms of conversion 
C iCX t 


i


. 

X t , the first-order 
rate expression in Equation (33) becomes 

 
1 2

1
2 0

5

d

d

kX

t k

 
   

 

1 2

2Ck i X         (39) 

Since  1 2

20Ci  is a constant this expression can be re- 

written as 
1 2

1
2

5

d

d

kX
K X

t k

 
  

 
             (40) 

where  1 2

2 2 20CK k i   and , and  are in 1k 2k 5k
1hr . 

Similarly, in terms of conversion  X t  the second- 
order rate expression in Equation (38) becomes  

 10 12
3 6

9

d
C H

d

k kX
X

t k
             (41) 

In this case, the data to be used for  3 6

12k

C H
nC

10k

 is given 
in terms of moles of 3 6  per mole of 20  (dimen- 
sionless), as a result the units of ,  and  will  

C H

9k

be 
 
 

20 1

3 6

C
hr

C H

ngmol

gmol
 . These ’s can easily be con- k

1verted into their physical equivalents in 3 1gmolcm hr    
by dividing by the initial concentration of n-eicosane 
 20 0

Cn  . 
 

9. Results and Discussion 
 

Tikhonov regularization computation has been applied to 
the experimental time-conversion data of the pyrolysis of 
n-eicosane with synthesis gas in 2 3 -catalyzed shift 
reaction. Susu and Kunugi [1] reported that total n-eico- 
sane conversion was autocatalytic; a phenomenon which 
was attributed to the enhancement of the decomposition 
reaction due to the participation of allyl radicals in a new 

K CO
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chain mechanism. For comparison, the time-conversion 
data obtained from Tikhonov regularization computation 
for  425˚C, 440˚C and 450˚C are plotted together 
with the experimental data in Figures 2(a), 3(a) and 4(a) 
respectively. The continuous curve represents the com- 
puted conversion while the dotted curve represents the 
experimental data. At 425˚C the computed conver- 
sions agree well with the experimental data and also 
traced out the characteristic S-shape of time-conversion 
curves for autocatalytic reactions [11]. At  440˚C and  

T 

T 

T 
 

 
(a) 

 
(b) 

Figure 2. (a) A plot of conversion vs. time for n-eicosane 
pyrolysis at 425˚C. (b) Reaction rate vs. conversion curve 
obtained by Tikhonov regularization for n-eicosane pyroly-
sis at 425˚C. 

 
(a) 

 
(b) 

Figure 3. (a) A plot of conversion vs time for n-eicosane 
pyrolysis at 440˚C; (b) Reaction rate vs conversion curve 
obtained by Tikhonov regularization for n-eicosane pyroly- 
sis at 440˚C. 
 
450˚C the computed conversions also agree with the ex- 
perimental data but do not trace out the S-shape well 
enough. This resulted from the fact that the experimental 
data points provided at these temperatures are not suffi- 
cient (see Table 1). Thus, the experimental data for T   
440˚C and 450˚C were first interpolated to generate 
moredata points before applying Tikhonov regularization. 
Since interpolation will introduce some error, the con- 
versions computed by Tikhonov regularizetion are ex- 
pected to show some deviations from the original ex- 
perimental data. 
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(a) 

 
(b) 

Figure 4. (a) A plot of conversion vs time for n-eicosane 
pyrolysis at 450˚C; (b) Reaction rate vs conversion curve 
obtained by Tikhonov regularization for n-eicosane pyroly-
sis at 450˚C. 
 

Figures 2(b), 3(b) and 4(b) are plots of reaction rate 
vs. conversion obtained by Tikhonov regularization for 

425˚C, 440˚C and 450˚C respectively. Smoothness 
of these curves was achieved by setting the regularize- 
tion parameter 

T 

  to the most appropriate value which 
was found to be 0.015. These graphs were used to esti- 
mate the first and second order rate constants in Equa-
tions (40) and (41) respectively by least square curve- 
fitting. As shown in Tables 2 and 3, the second-order 
rate constants  are much larger than the first-order 

rate constants 

k

k  with k k    in the order of 10–1 
to 10–2. Therefore, the values of these rate constants are 
in agreement with the Ostwald-type process for auto- 
catalytic reactions ( 1  ) as suggested by Susu and 
Kunugi [1]. The plots of rate constant vs. temperature for 
the first and second order reaction schemes are shown in 
Figures 5 and 6 respectively. The rate constants in-
creased with temperature. 

The Arrhenius plots for the first and second order ki- 
netics are shown in Figures 7 and 8, and the activation 
energies computed from these plots are shown in Tables 
1 and 2. These activation energies are generally of the 
order of the C-C bond energy which agrees with that the 
scission of C-C bond is rate-determining in the initial 
decomposition reaction. Susu and Kunugi [1] reported 
activation energy of 105 kJ gmol  for the bimolecular 
(second-order) rate constant which is also of the order of 
the C-C bond energy. 

 
Table 1. Experimental data for the Pyrolysis of n-Eicosane. 

T (˚C) Time (hr)
Conversion of 

n-Eicosane 
Yield of C3H6 

(mol C3H6/mol n-C20)

0.50 0.06 0.078 

0.75 0.14 0.088 

1.00 0.20 0.118 

1.25 0.32 0.046 

1.50 0.42 0.050 

425 

1.75 0.45 0.047 

0.25 0.08 0.044 

0.50 0.34 0.049 

0.75 0.40 0.093 
440 

1.00 0.53 0.139 

0.50 0.29 0.056 

0.75 0.58 0.063 450 

1.00 0.72 0.086 

 
Table 2. Rate constants and objective functions for n-eico- 
sane kinetics. 

TEMPERATURE (˚C) 
Rate 

constant

 1
hr


 425 440 450 

Activation 
Energy 

 kJ gmol

1
 k 4.091 5.486 6.490 77.09 

2
k  18.045 46.763 48.301 171.63 

5
k  4.773 7.782 9.278 112.48 

OBJ. F. 0.1471 0.5935 0.6149 - 
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Table 3. Rate constants and objective functions for n-eico- 
sane kinetics (Seond-order). 

TEMPERATURE (˚C) Rate constant 
cm3·gmol−1·hr−1 

425 440 450 

Activation 
Energy 

 kJ gmol

9
k  55.648 59.910 104.946 98.79 

10
k  138.795 145.432 241.187 85.65 

12
k  138.184 144.838 261.691 98.83 

OBJ. F. 0.0678 1.8792 1.6055 - 

 

 

Figure 5. First-order rate constant vs. temperature for 
n-eicosane pyrolysis. 
 

 

Figure 6. Second-order rate constant vs. temperature for n- 
eicosane pyrolysis. 

 

Figure 7. Arrhenius plot for n-eicosane pyrolysis (First- 
order). 
 

 

Figure 8. Arrhenius plot for n-eicosane pyrolysis (Second- 
order). 

 
10. Conclusions 

 
Tikhonov regularization computation was successfully 
applied to the kinetic data of an autocatalytic reaction 
reported by Susu and Kunugi [1]. This method of con- 
verting time-concentration data into concentration-reac- 
tion rate data is superior to the common procedure of 
direct numerical differentiation of the experimental data, 
in the sense that it manages to keep noise amplification 
under control [2]. It is also independent of reaction 
mechanism or reaction rate model and thus provides a 
good check on such models accompanying any kinetic 
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