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Abstract 
 
The paper contains description of a new quantitative method of evaluation of material hardness. First the es- 
sence of cognition subject, concerned with the hardness notion, has been discussed. Next some characteris- 
tics of exemplary existing evaluation methods have been presented. Then the attention was paid to the mis- 
takes present in understanding/reasoning of the discussed problem. The revolutionary new method is given in 
the next part of the paper by presenting functional and parametric characteristics of the process of local de-
formation of a material. At the end, the justification—with the essential meaning for investigations of present 
and newer materials—to introduce one unified quantitative method of hardness evaluation, has been deliv-
ered. 
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1. Introduction 
 
The problem of quantitative evaluation of solid (material) 
hardness is so vast/extensive that presentation of the 
whole existent knowledge would require several elabora- 
tions. At the same time, there are new methods proposed, 
by leaving apart some others, on how to determine and/ 
or improve them. It seems to be no need to analyze all 
the methods though some of them should be taken into 
consideration to present “the development” of the prob- 
lem. First of all we should take apart the formation of 
newer and other methods leading to differentiation of the 
results.  

There is lack of synthesis, with the new scientific ac- 
tions going rather forward, without primary description 
of the natural reality. One should adequately quantita-
tively describe the phenomenon of local deformations of 
a material that is the essence of its hardness. Therefore 
let us return to the source! The development does not 
rely on uncritical acceptance of existent knowledge and 
continuous producing of new technical solutions. In the 
analysis, any erroneous well grounded principles or laws 
should be removed.  

There is a law which does not reflect the reality in de- 
termination of material’s hardness and that is the Meyer’s 
law which will be presented here. Also some other rules, 
described using a function of the same class, which de- 
form the reality should be removed.  

A critical approach to the existent reality should pre-

vail. In the paper, first the essence of hardness notion 
will be analyzed. Then the characteristics of exemplary 
methods of quantitative evaluation of material hardness 
will be given. After that, the erroneous reasoning will be 
presented. Afterwards the new method of determination 
of material hardness will be given. Functional and para- 
metric characteristics of the process of local material 
deformation, being physical and measurable/determin- 
able magnitude, will be presented.  

Let us present the notion of hardness and indicate dif- 
ferent understanding of this magnitude. For defining the 
hardness, the dictionary [1] includes definition of rigidity 
as “lack of rigidity, elasticity” and it is rather pseudode- 
finition. Furthermore, the same source [1] defines the 
hardness as “the magnitude of deformation occurred un- 
der action of concentrated forces (acting on a small area 
of the studied material)”. There also, one of the measures 
of hardness is given, without an explanation of this no-
tion. Some sources [2,3] simply say that “the hardness of 
a material measures how tightly the atoms are held to-
gether within it” [2] or describe more extensively that 
“hardness is not an intrinsic property of any material, 
(like density or melting point), it is rather a characteristic 
deriving from the composition, the thermal and me- 
chanical history of the material, and essentially from the 
structure (or more properly the microstructure) of the 
specimen involved” [3]. 

In [4] the following definition of hardness is given: 
“Hardness is the resistance of a material to a firm defor-
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mation resulting from indentation inside the intruder”. 
There are several methods of hardness measurement, 
such as: Brinell, Rockwell, Vickers, Poldi, and Shore. It 
is worthy noting that hardness cannot be measured. In- 
stead, it may be evaluated qualitatively as it is a sense 
magnitude. The measurement may be performed but only 
the measure of this magnitude with, for example, a unit 
thrust force (mechanical pressure) that is a force referred 
to the area of indentation arisen in a studied material. 
This method, determination of the physical magnitude 
(hardness measure), is called by Brinell.   

The general definition of hardness may be précised as 
follows: Hardness of a material is its resistance to a local 
firm deformation. Then there are hardness measures 
(physical magnitudes), which should be measured (basic 
magnitudes), or determined (derived magnitudes, quite 
complex). There are different numerous methods con- 
cerning shape and hardness of an intruder, material di- 
mensions, its structure, sample thickness, loading, man- 
ner of penetrator thrust on the studied material (static, 
dynamic, kinematic), to mention just a few of factors 
(classification identifiers).  

There are several methods used for quantitative eva- 
luation of material hardness. References [5-10] define 
several approaches to the problem, and here are some of 
them by: Brinell, Vickers, Rockwell, Chruszczow-Bier- 
kowicz, Ludwik, UCI (Ultrasonic Contact Impedance), 
Shore, Poldi, Bauman, Leeba-RHT (Rebound Double 
Cone), Martens, Davydenkov, Ehrenberg, Bierbaum, 
Theinert, and Stöferle.  

Amongst them there are the quantitative methods for 
hardness and micro-hardness evaluation: static, dynamic, 
scratch method. The static and scratch methods have 
been distracted and placed in the orbits (Figure 1) ac- 
cording to their authors’ concepts.  

There are the following static methods placed on the 
first orbit (Figure 1): HB—Brinell, HV—Vickers, HU— 
Rockwell, HCH—Chruszczow-Bierkowicz, HL—Ludwik, 
HG—Grodziński. Second orbit is taken by scratch meth- 

 

Figure 1. Orbits of the methods for hardness determination 
(notions in the text). 

ods such as: Hr(MS)—Martens, Hr—Davydenkov, HR(E)— 
Ehrenberg, Hr(b)—Bierbaum. Next orbits are shown to be 
taken by some potential methods, still waiting for their 
formation. It seems to be the effect of a scientist name to 
be included as well.  

Some exemplary scratch methods rely on making a 
scratch by a set of standards of different hardness (file 
method, by Mohs), or by an indenter which is pressed 
perpendicularly to the surface and shifted at the same 
time. 

The scratch hardness, according to Martens, uses a 
diamond cone of angle 90˚. The loading F, to make a 
scratch 10 μm wide, is the measure of hardness: 

  10MSHr F                (1) 

The scratch hardness, according to Davydenkov, uses 
a diamond cone of angle 90˚. The inverse of scratch 
width a mm, obtained at loading 0.99 N, is the measure 
of hardness: 

50

1
Hr

a
                  (2) 

The scratch hardness, according to Ehrenberg, uses a 
diamond cone of any apex angle γ. The ratio of loading 
to the contact area of a material with the scratch during 
advance is the measure of hardness: 

  2

8 sin
2

E

F
Hr

a



              (3) 

Any other man, say Mr Kowalski, could introduce his 
method relying on using a scratch of a regular ten-angle 
pyramid and the measure of hardness could be a square 
root of the scratch width loaded by 0.75 N force: 

  75KHr a               (4) 

This way many other methods may be formed. Do we 
really need them? 

The Meyer’s law seems to be a sort of standard/indi- 
cator for the researchers to continue the study by using 
indenter intruding the studied material and to the quanti- 
tative evaluation of hardness. It is especially essential 
that though its inaccuracy is known [6,7], it is still in use. 
To say more, there are attempts to develop this law into 
the so called essential hardness [9,10]. According to this 
law, the force F of ball intruding into material is a func- 
tion of the obtained indentation with d being the diameter 
of this indentation 

nF a d                 (5) 

where a and n are proper constants obtained by experi-
ment. 
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The power form of the formula seems to be inadequate, 
and on the other hand, these two constants a, and n have 
no physical interpretation. This formula is convenient and 
the logarithm may be found on both sides by obtaining 
the form of straight line in double logarithmic coordi- 
nates. 

There are a few reasons of inexactness of the Meyer’s 
formula [7] with the reasons being in other forms of 
formulae on hardness measures: they are e.g. formulae 
on HB (Brinell measure), HV (Vickers measure), HR’C 
= HU (measure corresponding with unified/standardized 
method [9]). One cannot use this Meyer’s formula, sup- 
plement or extend it. Hardness should be described in a 
more accurate manner, and here this proper function will 
be an exponential function. 

Let us present the hardness measure of a material as: 
nH a F                   (6) 

By analyzing this measure of hardness one may notice 
that starting from some loading, its further increment 
does not affect the change in hardness. Let us another 
element is introduced to the Formula (6). This element of 
structure involves the essential hardness, and it is marked 
by symbol Hi. Therefore 

n
iH a F H                  (7) 

The details on this formula are given in the literature 
and sources cited therein. 
 

2. Adequate Law of Hardness 
 
Some exemplary works, proving of the quantum charac- 
ter of the reality, are given in [11-13]. Let us take into 
consideration a penetrator designed as a round straight 
cone of the apex angle 2α = 120˚. This penetrator ad-
vances vertically with the consecutive energetic states of 
deformed material (Figure 2). First, there is an initial 
stable state (ISS) and the tip of indenter is on the upper 
free surface of the object. This indenter continues to de-
form material reaching the position corresponding with 
an unstable state (US), the temporary/transient state 
where the thrust force Fo of a tool attains a maximum 
value. During reverse motion of the penetrator, the re-
versal elastic deformation of the material occurs. This 
phenomenon ends on the depth corresponding with the 
final stable state (FSS) of the material. 

In Figure 2 the lengths of material areas with charac-
teristic phenomena are given. Symbol H has been as-
cribed to the site where the material deformation (its 
loading as an active process) takes place. Section Hp de-
termines firm plastic deformation of a material.  

All mentioned above states of material have been pre-
sented separately (Figure 3) to mark quantum nature of  

 

Figure 2. Positions of penetrator corresponding with par-
ticular energetic states of material. 

 

Figure 3. Sites of energetic states of a material during its 
deformation. 

the natural reality. 
There are lots of cases where exponential function of 

type y = Cxn has been assumed as equivalent of a real 
course of a magnitude in spite if its inadequacy with re-
ality. Here it is worthy mentioning the exponential Kas-
sen formula on normal component of cutting force in 
machining with a single grain [14] which is still in use 
making much cognitive confusion. The Meyer’s law also 
does not describe the reality that is the hardness of solids.  

One should adequately describe the studied system. 
Let us consider the course of thrust force of a conic pene- 
trator dependent on the coordination position of that de-
vice (Figure 4). The primary form of this plot has been 
excerpted from [15]. There are two branches: one of 
them, longer, corresponds to the system loading, whereas 
the second one, shorter and steeper, corresponds with de- 
loading of the penetrator-material system. No power 
course may be observed. The analysis of the plot (Figure 
4) indicates that only a determined exponential function 
hould reflect it.  s     
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Figure 4. Registered course of thrust force of a conic penetrator on position coordinator of this tool [15]. 

Concerning the force Fo, its value should be assumed 
to correspond with the conditions of realized process. 
Constant Ho is the magnitude of H connected by a rela- 
tionship resulting from substitution to the formula F = Fo 
and obtaining 

Now let us return to the source, the differential de-
scription of the process. It has the following form under 
loading the system: 

d
F

dF h
h





                (8) 

ln 2o

H
H                  (10) where symbol F corresponds with loading force of the 

system, and h is a coordinate of the position of penetrator 
tip. Now, a process parameter is to be determined that is 

one measure of hardness for all materials. That should 
allow for exact comparison of the studied materials un-
der this feature which is called hardness. A conical dia-
mond element of apex angle 2α = 120˚ is a penetrator. 

One of the curves, central has been extracted (see 
Figure 4) and has been described (Figure 5) by equation 
being the solution of differential form as: 

e 1o

h

H
oF F
 
 

 




               (9) The searched parameter results from differentiating 
the Equation (9). This operation leads to the solution as 
the next new physical magnitude, being the hardness 
modulus, i.e. 

This equation concerns the phase of system loading 
that is the change of thrust force F of penetrator on the 
length H of its whole active path/way. Symbol Fo de-
notes maximum thrust force and the mark Ho—constant 
of active way.  

d
e

d
o

h h

e oH Ho
o

o

FF
M

h H
   M         (11) 

 

Figure 5. Characteristics of the process of local material deformation.    
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where M is this modulus, and Mo—energetic hardness 
modulus which, as results from the Formula (11), is de-
termined as follows: 

o
o

o

F
M

H
                 (12) 

And after including (10) 

ln 2o
o

F
M

H
                (13) 

For cognitive purposes one may analyze the course of 
this new magnitude (Figure 6). This parameter could be 
assumed for practice. 

Let us determine the energetic hardness modulus Mo 
for a carbon steel ST3SY, with the plots of local defor-
mation excerpted from [15] to use them for these analy-
ses. Force Fo was 1.5 kN, section length H = 0.35 mm, 
so: 

1.5ln 2 1.5 0.693
2.97

0.35 0.35oM


    kN·mm1 

The position of tangent to the curve F = f(h) at its ini-
tial point at h = 0, and the Mo value may be determined 
straight from the Formula (12) or (13), if the curve is 
possibly regular as in the analyzed case. If the curve has 
an irregular shape/character, which is connected with the 
degree of uniformity of the studied material, then the 
obtained results should be worked out by statistics to 
deliver them to the tangent line.  

This way a new adequate law of hardness is presented 
in Equation (9) with its specific form given in (11). They 
are hardness functional characteristics. The parametric 
characteristics are presented by Equation (12) or (13).  
 
3. Young’s Modulus Determination 
 
Young’s modulus of a studied solid may be determined 
based on the functional characteristics of the process of  

indentation of a panetrator in it with the characteristics 
referred to elastic materials deformations only. This may 
be presented by an analytical formula as follows: 

*
exp 1p

o
o

h H
F F

H

  
   

   
           (14) 

where Hp denotes the way length on which firm (plastic) 
deformations occur and *

oH  is a constant of passive 
way determined by the relationship: 

*

ln 2
s

o

H
H                  (15) 

At this stage of considerations the joint analytical and 
graphical illustration of the whole process of local mate-
rial deformation (Figure 7) may be presented. Figure 7 
comprises also earlier described energetic states of the 
deformed material corresponding with the initial, inter-
mediate (extremum) and final positions of the penetrator 
tip.  

To determine Young’s modulus, first the Hooke’s law 
containing this modulus should be written: 

F

A
                    (17) 

with 

l

l
 
                  (18) 

where F is the force the rod is deformed with, A—rod 
cross-section area, Δl—change of its length, and l— 
primary length of rod.  

This discussion should be referred to the local defor- 
mation of material to find out the connection between 
parameters describing this process and Young’s modulus. 
The force Fo should be taken into account, and the area A 
connected with the indentation cross-section at the height 
Hs. Therefore  

 

Figure 6. Course of the material hardness module. 
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Figure 7. Graphical and analytical illustration of the whole process of local material deformation. 

2 2π tgsA H                 (19) 

The relative deformation is described by the relation-
ship 

*
s

o

H

H
                  (20) 

And after taking into account (15) 

ln 2                  (21) 

Thus after taking into account (19), the stress will be 
(see Formula 17) equal: 

2 2π tg
o

s

F

H





 
            (22) 

And finely, after taking into account (21) and (22), the 
formula on modulus E takes the form: 

 2 2π ln 2 tg
o

2
o

s s

F CF
E

H H


 

  


     (23) 

where 

  2

1
1.38

π ln 2 tg
C


          (24) 

By presenting the literature data [13], concerning the 
considered process, we have: F = 1.5 kN; H = 0.35 mm; 
Hs = 0.1 mm; 2α = 120˚. After calculation we obtain: 

206.8E  kN·mm2 = 2.07  105 MPa 

4. Procedure at the Determination of  
Energetic Hardness Modulus of  
Homogeneous Materials 

 
This procedure is quite simple and does not require any 
complex calculations. The mathematical statistics is lim-
ited to calculation of the mean values of determined 
magnitudes: the penetrator thrust force F and respec-
tively shifted (onto tangent direction to the process char-
acteristics) coordinates h* of tool caving.  

The problem is to be explained against freely assumed 
values of coordinates of characteristics points (Figure 8). 
They are quite dissipated that underlies non-homogeneity 
of material structure. Coordinates of force remain the 
same, and the coordinates of indentation h are shifted 
onto tangent direction at initial point. These new posi-
tions, marked by a symbol h*, result from the relationship 
of the following form: 

*

ln 2

h
h                  (25) 

The values of the magnitudes have been presented in 
Table 1. There is also given a formula on energetic hard- 
ness modulus of which form is adjusted to the introduced 
denotations. Then: 

*o

F
M

h
                (26) 

Its value was calculated and received   2.63oM    
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Figure 8. Illustration of the procedure at determination of energetic hardness modulus of inhomogeneous materials. 

Table 1. Statement of the assumed and calculated magni- 
tudes. 

Fi hi 
*

ih  
i 

kN mm 

1 0.2 0.05 0.072 

2 0.4 0.15 0.216 

3 0.6 0.20 0.289 

4 1.0 0.25 0.361 

5 1.4 0.30 0.433 

  3.6 — 1.371 

F  0.72 — — 
*h    0.274 

0 *

0.72 kN
2.63

0.274 mm

F
M

h
    

 
kN·mm1. It is worthy mentioning that having any Mo 
value one may write functional characteristics of the 
process for any interstate space determined by the force 
Fo. It is enough now to determine the way constant Ho, 
and taking advantage of both magnitudes (Fo, Ho), being 
a kind of supporting structure of all this type of functions, 
exponential functions, and present all their configura-
tions. 
 
5. Summary 
 
One should underline that presented herewith the method 
of quantitative determination of material hardness is 
adequate in character and fully reflects the studied reality. 
It is quite simple and may successfully replace all other 
up-to-date existing methods which have no objective 
justifiable structure.  

The delivered here energetic hardness modulus well 
characterizes resistance of a material on local firm de-
formations. It may replace all other measures of hardness 
used until today.   

The only one energetic measure of hardness may al-

low arranging/settling the problem and easing material 
characterization against its considered property. One 
method and one measure of hardness will allow proper 
evaluation of hardness characteristics of the studied ma-
terials. Material is the one variable magnitude.  

Existing intensive progress in investigations of newer 
materials is an essential argument to introduce one uni-
fied quantitative method of hardness evaluation. This 
approach is quite general but should be concerned on all 
studied materials and objects.  
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