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Abstract 
Coccidiosis is a gastrointestinal disease caused by parasites of the genus Ei-
meria. To produce the ecological niche model for the geographic distribution 
of Eimeria species, the maximum entropy algorithm (MaxEnt) was used and 
19 bioclimatic variables with a spatial resolution of 30 arc-seconds (approx-
imately 1 km2) were downloaded from the World Climate Database. These 
were reduced to BIO2, BIO3, BIO4, BIO7 and BIO15 for each species after 
examining cross-correlations among them to account multicollinearity. A 
jackknife analysis was included to assess the contribution of five bioclimatic 
variables and the fit of the model was evaluated with the area under receiver 
operating characteristic curve (AUC). Under a current climate scenario, the 
jackknife evaluation of the MaxEnt model showed that BIO4 (temperature 
seasonality) made the greatest contribution to the distribution model for 22 
Eimeria species; whereas BIO7 (temperature annual range) was the most im-
portant factor that contributes to the distribution model of 10 species. The 
habitat suitability model based on the maximum entropy theory was sup-
ported by AUC values higher than 0.9 and predicted that the suitable habitats 
for different species of Eimeria are present in southern, eastern and western 
areas of Mexico. Our study may support future studies exploring factors that 
constrain the distribution of Eimeria as well as strategies aimed at reducing 
the disease prevalence. 
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1. Introduction 

Coccidiosis is a gastrointestinal disease caused by parasites of the genus Eimeria. 
Environmental and climatic factors are relevant for development, survival and 
transmission of coccidiosis in large and small ruminants. Temperature, rainfall, 
solar radiation, soil type and pH, altitude or elevation and vegetation index in-
fluence the spatial distribution of parasites [1]. Climate is considered to strongly 
affect the emergence, spread and frequency of infectious disease outbreaks and 
tolerance to different climate conditions may lead to divergent geographical dis-
tributions [2]. For instance, Eimeria infectious oocysts are able to survive in the 
environment for several weeks or months in favorable conditions of moderate 
heat and moisture [3]. A growing body of evidence emphasizes the importance 
of incorporating data derived from geographic information systems and predic-
tive niche models to support epidemiological studies and develop accurate dis-
tribution forecasts [2]. Geographic information systems have been currently 
used to create spatial distribution maps and ecological niche modeling has been 
used to evaluate the ecological requirements, responses and distribution areas of 
several species of parasites such as Lutzomyia [4], cattle fever ticks [5], avian 
blood parasites [6], Fasciola hepatica [7] [8], Angiostrongylus cantonensis [9], 
Opisthorchis viverrini [8] [10], among others. Rhipicephalus (Boophilus) spp. 
locations have been recently georeferenced and the spatial distribution of the 
tick in Mexico was modeled [11] [12] [13]. Consequently, the knowledge of the 
bioecology of parasites, such as their habitat suitability, might support studies 
that increase preventive or control measures to avoid their further distribution.  

Despite significant advances in studies of the epidemiology of coccidiosis in 
Mexico, there is scarce organized information and a lack of ecological niche 
models that consider abiotic interactions when predicting current parasite dis-
tributions, thus the precise spatial distribution of the parasite in this country is 
still unknown. Within this context, the aim of the present study was to model 
the potential current spatial distribution of the parasite using data on a range of 
bioclimatic parameters.  

2. Material and Methods 
Study Area 

Mexico is located in the region of North America and bordered by the United 
States of America in the north, Guatemala and Belize in the south, the Atlantic 
and Pacific Oceans in the east and west, respectively. Altitude is one factor the 
affects the climate of Mexico. Thus, five main climates exist, which can be gen-
erally classified according to temperature in warm and temperate; and according 
to precipitation in: humid, subhumid and very dry [14]. The latter is present 
mostly in 20.8% of the country, mainly in the northern regions. These locations 
have mean annual temperatures of 18˚C - 26˚C and a mean annual precipitation 
of 100 to 300 mm. Warm humid climate is present in the southern region and 
represents 4.7% of Mexico. Mean annual temperature is 22˚C to 26˚C and preci-
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pitation ranges from 2000 to 4000 mm per year. Warm subhumid climate is 
present in 23% of the country with a mean annual temperature that sometimes 
overcome 26˚C with 1000 to 2000 mm of annual rainfall. Finally, humid tempe-
rate climate is present in the mountainous ridges and represent 2.7% of the ter-
ritory. Annual mean temperature ranges from 18˚C to 22˚C and annual precipi-
tation ranges from 2000 to 4000 mm [15]. Hence, the seasonal distribution of 
precipitation is uneven and may influence the richness in wildlife species and 
ecosystem types.  

3. Data Collection 

A systematic literature review was performed to record occurrences of Eimeria 
into a database in Microsoft Excel 2016. Documents such as articles, thesis, di-
agnosis records, abstracts and conference proceedings reporting natural infec-
tions of this parasite were integrated. Data of Eimeria were included into a data-
base with information about the year, location, state and reference or case num-
ber of the occurrence of the parasite. Latitude and longitude for each record 
were determined using Google Earth. Data were analyzed to avoid redundancy 
of occurrences [16] [17]. 

3.1. Environmental Data 

To produce the ecological niche model for the geographic distribution of Eime-
ria species that infect cattle, sheep and goats in Mexico, 19 bioclimatic variables 
with a spatial resolution of 30 arc-seconds (approximately 1 km2) were down-
loaded from the World Climate Database (BIO1 = Annual Mean Temperature; 
BIO2 = Mean Diurnal Range (Mean of monthly (max temp - min temp)); BIO3 
= Isothermality (BIO2/BIO7) (*100); BIO4 = Temperature Seasonality (standard 
deviation *100); BIO5 = Max Temperature of Warmest Month; BIO6 = Min 
Temperature of Coldest Month; BIO7 = Temperature Annual Range (BIO5 - 
BIO6); BIO8 = Mean Temperature of Wettest Quarter; BIO9 = Mean Tempera-
ture of Driest Quarter; BIO10 = Mean Temperature of Warmest Quarter; BIO11 
= Mean Temperature of Coldest Quarter; BIO12 = Annual Precipitation; BIO13 
= Precipitation of Wettest Month; BIO14 = Precipitation of Driest Month; 
BIO15 = Precipitation Seasonality (Coefficient of Variation); BIO16 = Precipita-
tion of Wettest Quarter; BIO17 = Precipitation of Driest Quarter; BIO18 = Pre-
cipitation of Warmest Quarter; BIO19 = Precipitation of Coldest Quarter) [18]. 

3.2. Ecological Niche Model 

The maximum entropy algorithm (MaxEnt version 3.3.3.k) [19] was used for 
model construction and to produce prediction maps of environmental suitabil-
ity. For each Eimeria species, 75% of the occurrence data were used as a training 
model, and the remaining 25% was used for model validation [20]. This study 
set the default parameters of MaxEnt. A logistic output format was chosen to as-
sign values for each grid cell ranging from unsuitable (0) to fully suitable (1).  
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3.3. Statistical Analysis 

Ten MaxEnt runs were performed for each species to evaluate the predictive 
power of the algorithm, each with the same number of occurrence points [21]. A 
jackknife analysis was used to assess the contribution of bioclimatic variables in 
MaxEnt. The jackknife was proposed by M.H. Quenouille in 1945 and given its 
name by John Tukey 11 years later. The procedure was developed to correct bias 
and to construct confidence limits for a large class of estimators by involving re-
sampling without replacement [22] [23] [24]. The bioclimatic variable with 
highest gain for each Eimeria species is the one that, according to the jackknife 
analysis, has the most useful information by itself. The environmental variable 
that decreases the gain the most when it is omitted is the one that appears to 
have the most information that is not present in the other variables [25] [26]. In 
contrast, variables with no contribution in the test were excluded from the final 
analysis. 

4. Results 
Habitat Suitability Modelling 

The 19 bioclimatic variables were reduced to BIO2, BIO3, BIO4, BIO7 and 
BIO15 for each species after examining cross-correlations among them to ac-
count multicollinearity [27]. The AUC for training and testing data was calcu-
lated for each Eimeria species. The climatic suitability for Eimeria species dis-
tribution in Mexico predicted by the best performing MaxEnt model are shown 
in maps in which warmer colours depict areas with higher climatic suitability for 
Eimeria species that infect cattle (Figure 1), sheep (Figure 2) and goats (Figure 
3). 

Eimeria species were predicted to be present in most central and southern 
parts of Mexico, even though there are regions of high habitat suitability in the 
western area, as well. The MaxEnt algorithm assessed the relevance of the vari-
ables that contribute to Eimeria spatial distribution through jackknife analysis of 
the contribution of each climatic variable to the model, the average values of 
AUC of 10 model iterations and the average percentage contribution of each 
variable to the model.   

To determine the relative contribution of the bioclimatic variables in the spa-
tial distribution of Eimeria species of cattle (Table 1), sheep (Table 2) and goats 
(Table 3), the values for each bioclimatic variable on training presence and 
background data are randomly permuted [26].  

A jackknife technique was used for variance estimation as it derives estimates 
of the bioclimatic variable of interest from each of several subsamples of the 
parent sample and then estimates the variance of the parent sample estimator 
from the variability between the subsample estimates [28]. 

Under a current climate scenario, the jackknife evaluation of the MaxEnt 
model demonstrated that BIO4 (temperature seasonality) made the greatest con-
tribution to the distribution model for E. alabamensis, E. bovis, E. brasiliensis,  
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Table 1. Permutation importance (%) of bioclimatic variables to the spatial distribution of Eimeria spp. of cattle.  
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BIO2 2.1 1.4 0.9 0 0.1 0 0 0 0 2.9 0 0.1 0.3 

BIO3 1.7 4.7 10.1 1.3 0.5 1.4 10.5 0 3.5 0.6 0.7 11.9 2.4 

BIO4 52.2 23.5 66.3 54.9 71.7 50.9 42.6 62 30.6 50 76.9 35.3 81.8 

BIO7 43.5 63.6 17.1 43.1 26 47.6 45.3 37.5 65 46.1 22.4 49.2 14 

BIO15 0.5 6.7 5.6 0.7 1.7 0.2 1.6 0.6 0.8 0.3 0 3.5 1.5 

BIO2 = Mean Diurnal Range (Mean of monthly (max temp - min temp)); BIO3 = Isothermality (BIO2/BIO7) (*100); BIO4 = Temperature Seasonality 
(standard deviation *100); BIO7 = Temperature Annual Range (BIO5-BIO6); BIO15 = Precipitation Seasonality (Coefficient of Variation). *The MaxEnt 
model was reevaluated on the permuted data of training presence and background data for each bioclimatic variable, and the resulting drop in training AUC 
is shown normalized to percentages. 

 

 
Figure 1. Habitat suitability maps developed with a Maximum Entropy prediction algorithm for Eimeria species 
that infect cattle. (A) E. alabamensis; (B) Eimeria auburnensis; (C) E. bovis; (D) E. brasiliensis; (E) E. bukidnonensis; 
(F) E. canadensis; (G) E. cylindrica; (H) E. ellipsoidalis; (I) E. pellita; (J) E. subspherica; (K) E. wyomingensis; (L) 
E. zuernii. A logistic output format was chosen to assign values for each grid cell ranging from unsuitable (0) to 
fully suitable (1). Warmer colours depict areas with higher climatic suitability for Eimeria species. 
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Table 2. Permutation importance* (%) of bioclimatic variables to the spatial distribution of Eimeria spp. of sheep.  

 E. ahsata E. bakuensis E. crandallis E. faurei E. granulosa E. intrincata E. ovinoidalis E. pallida E. parva E. weybridgensis Eimeria spp. 

BIO2 0.2 0.1 0.7 0 1.6 0 3.3 0 3.4 0 0 

BIO3 0 1.7 1.9 2.1 0 0 0 1.8 5.2 1.7 5.9 

BIO4 78.3 73.2 43.3 70 56.2 59.3 22.9 71.8 34.2 60.4 39.6 

BIO7 21.2 24.4 52 27.2 40.7 40.7 73.7 24.9 57.1 37.8 51.2 

BIO15 0.4 0.5 2.1 0.7 1.6 0 0.2 1.6 0 0.2 3.3 

BIO2 = Mean Diurnal Range (Mean of monthly (max temp - min temp)); BIO3 = Isothermality (BIO2/BIO7) (*100); BIO4 = Temperature Seasonality 
(standard deviation *100); BIO7 = Temperature Annual Range (BIO5-BIO6); BIO15 = Precipitation Seasonality (Coefficient of Variation). *The MaxEnt 
model was reevaluated on the permuted data of training presence and background data for each bioclimatic variable, and the resulting drop in training AUC 
is shown normalized to percentages. 

 

 
Figure 2. Habitat suitability maps developed with a Maximum Entropy prediction algorithm for Eimeria species that infect 
sheep. (A) E. ahsata; (B) E. bakuensis; (C) E. crandallis; (D) E. faurei; (E) E. granulosa; (F) E. intrincata; (G) E. ovinoidalis; (H) 
E. pallida; (I) E. parva; (J) E. weybridgensis. A logistic output format was chosen to assign values for each grid cell ranging from 
unsuitable (0) to fully suitable (1). Warmer colours depict areas with higher climatic suitability for Eimeria species. 
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Table 3. Permutation importance* (%) of bioclimatic variables to the spatial distribution of Eimeria spp. of goats.  

 E. alijevi E arloingi E. caprina E. caprovina E. christenseni E. hirci E. jolchijevi E. ninakohlyakimovae Eimeria spp. 

BIO2 0 2 0 0 0 0.3 0 0.5 8.9 

BIO3 12.3 3.9 17.7 4.6 1.5 2.5 13.9 0 0 

BIO4 56.3 84.9 47.4 32.2 85 62.5 37.4 73.1 84.1 

BIO7 5.1 6.8 29.2 4.6 6.3 10 33.6 25.8 6.3 

BIO15 26.3 2.4 5.7 58.5 7.1 24.8 15.1 0.5 0.6 

BIO2 = Mean Diurnal Range (Mean of monthly (max temp - min temp)); BIO3 = Isothermality (BIO2/BIO7) (*100); BIO4 = Temperature Seasonality 
(standard deviation *100); BIO7 = Temperature Annual Range (BIO5-BIO6); BIO15 = Precipitation Seasonality (Coefficient of Variation). *The MaxEnt 
model was reevaluated on the permuted data of training presence and background data for each bioclimatic variable, and the resulting drop in training AUC 
is shown normalized to percentages. 

 

 
Figure 3. Habitat suitability maps developed with a Maximum Entropy prediction algorithm for Eimeria species that 
infect goats. (A) E. alijevi; (B) E. arloingi; (C) E. caprina; (D) E. caprovina; (E) E. christenseni; (F) E. hirci; (G) E. jolchijevi; 
(H) E. ninakohlyakimovae. A logistic output format was chosen to assign values for each grid cell ranging from 
unsuitable (0) to fully suitable (1). Warmer colours depict areas with higher climatic suitability for Eimeria species. 

 
E. bukidnonensis, E. canadensis, E. cylindrica, E. ellipsoidalis, E. pellita, E. 
subspherical, E. wyomingensis, E. ahsata, E. bakuensis, E. faurei, E. ovinoidalis, 
E. pallida, E. alijevi, E. arloingi, E. caprina, E. caprovina, E. christenseni, E. hirci 
and E. ninakohlyakimovae. The MaxEnt model’s internal jackknife test showed 
that BIO7 (temperature annual range) is the most important factor that contrib-
utes to the distribution model of E. auburnensis, E. pellita, E. zuernii, E. crandal-
lis, E. faurei, E. garnulosa, E. intrincata, E. parva, E. weybridgensis and E. jolchi-
jevi, relative to other variables (Table 4).  
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Table 4. Main bioclimatic driver of Eimeria geographical distribution in Mexico.  

Eimeria species Main driver of Eimeria distribution 

CATTLE  

Eimeria alabamensis Temperature Seasonality 

Eimeria auburnensis Temperature Annual Range 

Eimeria bovis Temperature Seasonality 

Eimeria brasiliensis Temperature Seasonality 

Eimeria bukidnonensis Temperature Seasonality 

Eimeria canadensis Temperature Seasonality 

Eimeria cylindrica Temperature Seasonality 

Eimeria ellipsoidalis Temperature Seasonality 

Eimeria pellita Temperature Annual Range 

Eimeria subspherica Temperature Seasonality 

Eimeria wyomingensis Temperature Seasonality 

Eimeria zuernii Temperature Annual Range 

SHEEP  

Eimeria ahsata Temperature Seasonality 

Eimeria bakuensis Temperature Seasonality 

Eimeria crandallis Temperature Annual Range 

Eimeria faurei Temperature Annual Range 

Eimeria granulosa Temperature Annual Range 

Eimeria intrincata Temperature Annual Range 

Eimeria ovina Temperature Seasonality 

Eimeria ovinoidalis Temperature Seasonality 

Eimeria pallida Temperature Annual Range 

Eimeria parva Temperature Annual Range 

Eimeria weybridgensis  

GOAT  

Eimeria alijevi Temperature Seasonality 

Eimeria arloingi Temperature Seasonality 

Eimeria caprina Temperature Seasonality 

Eimeria caprovina Temperature Seasonality 

Eimeria christenseni Temperature Seasonality 

Eimeria hirci Temperature Seasonality 

Eimeria jolchijevi Temperature Annual Range 

Eimeria ninakohlyakimovae Temperature Seasonality 

 
As the model output shows, the bioclimatic suitability for all Eimeria species 

was predicted to be highest in humid and subhumid tropical and temperate cli-
mates. Furthermore, temperature seasonality (BIO4) and annual temperature 
range (BIO7) may be the main factors for the distribution of this parasite. The 
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MaxEnt model accomplished an excellent fit with average test AUC values of 
over 0.9 for all the species (Table 5). 

 
Table 5. Area under the ROC (receiver operating characteristic) curve or AUC metric 
used to evaluate the model performance of the Eimeria geographical distribution in Mex-
ico.  

Eimeria species Area Under the Curve value 

CATTLE  

Eimeria alabamensis 0.959 

Eimeria auburnensis 0.960 

Eimeria bovis 0.953 

Eimeria brasiliensis 0.960 

Eimeria bukidnonensis 0.962 

Eimeria canadensis 0.956 

Eimeria cylindrica 0.956 

Eimeria ellipsoidalis 0.969 

Eimeria pellita 0.969 

Eimeria subspherica 0.950 

Eimeria wyomingensis 0.960 

Eimeria zuernii 0.951 

SHEEP  

Eimeria ahsata 0.973 

Eimeria bakuensis 0.963 

Eimeria crandallis 0.965 

Eimeria faurei 0.962 

Eimeria granulosa 0.968 

Eimeria intrincata 0.963 

Eimeria ovina 0.962 

Eimeria ovinoidalis 0.967 

Eimeria pallida 0.966 

Eimeria parva 0.974 

Eimeria weybridgensis  

GOAT  

Eimeria alijevi 0.965 

Eimeria arloingi 0.972 

Eimeria caprina 0.970 

Eimeria caprovina 0.962 

Eimeria christenseni 0.959 

Eimeria hirci 0.964 

Eimeria jolchijevi 0.965 

Eimeria ninakohlyakimovae 0.964 
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It is safe to state that both bioclimatic variables are high for Mexican north-
western states that are located near monsoonal flows, which increase the vari-
ability of the synoptic atmospheric circulation. Thus, these regions have higher 
ranges of temperature variability [29]. Likewise, given the prediction model, one 
may conclude that even though Eimeria populations tolerate a wide range of 
temperatures, they are not able to sporulate in northwestern and central dry ar-
eas that have temperatures above 37˚C or below 13˚C.  

5. Discussion  

It is well understood that Eimeria species are able to survive for prolonged pe-
riods of time in conditions of moderate heat and humidity [3] [30], yet oocysts 
are strongly affected by high temperatures and desiccation [31]. As the MaxEnt 
model output showed, if the climate conditions are warm, Eimeria presences in-
crease, such as in the southern and central regions of Mexico. However, if the 
climate conditions are too hot, the survival rate of this parasite decreases, and 
colonization of areas is reduced. According to our results, Eimeria is scarcely 
present in the western and central areas of the northern region of Mexico. The 
low occurrences of Eimeria in Mexico may be attributed to climatic conditions 
required for their development, which was demonstrated by using the MaxEnt 
niche modelling approach. The predicted distribution of this parasite is limited 
in areas that have at least one month with mean temperatures higher than 30˚C, 
usually recorded in several areas above the Northern tropic (Tropic of Cancer). 
When temperature is too warm, oocysts are unable to sporulate [3], therefore 
reducing the infected population of hosts. The habitat suitability model based on 
the maximum entropy theory, predicted the potential habitat quality of different 
species of Eimeria in cattle, sheep and goats with an excellent fit of the algorithm 
(AUC > 0.90). The modelled habitat suitability using bioclimatic parameters 
proposed a distribution with temperature seasonality (BIO4) and temperature 
annual range (BIO7) constituting decisive factors. The parasite’s habitat was 
mainly influenced by temperature seasonality (BIO4) for nine out of 12 species 
of cattle, four out of 10 species of sheep and seven out of eight species of goats. 
Interestingly, the annual temperature range (BIO7) variable was identified as the 
most critical factor shaping the distribution of the pathogenic E. zuernii. Simi-
larly, the results of the jackknife test of variable importance showed that the bi-
oclimatic variable with highest gain in the predicting power of the model when 
used in isolation was BIO7 for most Eimeria species that infect sheep in Mexico 
(E. crandallis, E. faurei, E. granulosa, E.intrincata, E. parva and E. weybridgen-
sis), except for the highly pathogenic E. ovinoidalis. The highest contributions 
for Eimeria distribution arise for the warm-climate adapted species, suggesting 
the large influence of temperature on the colonization and survival of this para-
site. These findings are not in conformity with other studies that conclude that 
rainfall and soil moisture is the most relevant factor that contributes to the pre-
valence of Eimeria [32] [33]. Similarly, authors have estimated 62% of positive 
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calves in a dry region of Mexico [34], hence supporting the importance of preci-
pitation as a pertinent factor driving the distribution of this parasite in Mexico. 
Previous results have indicated a correlation between temperature and humidity 
with seasonal factors, which indicated lower oocyst shedding during winter pe-
riod compared to the fall [35]. Results reported by the authors of the latter study 
supported the theory than increased risk of faster sporulation of oocysts is due to 
internal environmental factors that consequently increase oocyst excretion. The 
jackknife test showed that BIO4 and BIO7 have the most useful information in-
dependent of the others, yet the heuristic test estimateda permutation impor-
tance higher than 20% for precipitation seasonality (BIO15) for three species of 
goats (E. alijevi, E. caprovina, E. hirci). It is reasonable to speculate that BIO15 
ranked higher in the heuristic test than in the jackknife method because the 
model assigned a correlated effect with another variable to that particular one. 
The variance and bias estimation performed by the jackknife method when 
BIO15 was left out from the dataset, demonstrated that neither does this biocli-
matic variable appear to have the most information by itself, nor does it appear 
to have the most information that is not present in the other variables [25] [26].   

It would be a mistake to see the current study as definitive, as one major limi-
tation was that our findings did not include information to support or reject 
macroecological patterns related to parasite distribution. It is well understood 
that spatial distribution of parasites is influenced by abiotic and biotic environ-
ments, such as temperature, precipitation, altitude, presence of predators, hu-
man disturbance, geographic barriers, soil type and vegetation among other fac-
tors [36] [37]. In fact, previous studies suggest that biotic factors will be more 
relevant at a species equatorial range limit; whereas abiotic factors will influence 
the high latitude or poleward limit [21].  

Even though the high accordance between the distribution of Eimeria occur-
rence data and modelling results was supported by AUC values higher than 0.9, 
it would be unsafe to state that this species may colonize all predicted areas de-
spite suitable climate, as both the model fit and prediction accuracy can be li-
mited. Occurrence data can be affected by a sampling bias, as species were more 
commonly reported in some states due to the proximity of these regions to re-
search institutions, resulting in unequal probabilities of records. 

Climate in Mexico is influenced mostly by its geographic position. The model-
ling in the present study predicted suitable climatic conditions for this parasite 
in 50.9% of the country. Although some aspects of our dataset are limited, we are 
convinced that the encouraging results herein obtained would hopefully moti-
vate researchers to use the predicted habitat suitability in areas and countries 
where similar climatic conditions as the ones reported here prevail. This infor-
mation might support the implementation of preventive strategies and measures 
designed to control this parasite. Further studies that include abiotic and biotic 
factors in an integrated approach are encouraged to gather evidence related to 
the distribution of Eimeria species that infect large and small domestic rumi-
nants. 
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6. Conclusion 

Using the maximum entropy theory, a habitat suitability model was generated to 
predict the current potential existence of the parasite with a reliable performance 
of the prediction model algorithm. Among the variables selected for model con-
struction, BIO4 and BIO7 influenced the distribution of different species of 
Eimeria and showed that the habitat suitability of Eimeria increases in areas with 
moderate warm climate. Our study may support future studies exploring factors 
that constrain the distribution of Eimeria as well as strategies aimed at reducing 
the disease prevalence.  
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